• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

LoLab-VU / pysb
76%
master: 79%

Build:
Build:
LAST BUILD BRANCH: gpu_ssa
DEFAULT BRANCH: master
Repo Added 06 Sep 2015 03:25AM UTC
Files 106
Badge
Embed ▾
README BADGES
x

If you need to use a raster PNG badge, change the '.svg' to '.png' in the link

Markdown

Textile

RDoc

HTML

Rst

LAST BUILD ON BRANCH influence_nets
branch: influence_nets
CHANGE BRANCH
x
Reset
  • influence_nets
  • JamesPino-patch-1
  • add_python2_to_travis
  • alias_components
  • appveyorfix
  • asv
  • benchmarking
  • bidirectional_fix
  • bngSSASimulator
  • bng_read_expr_from_gdat
  • bng_simulator
  • bngconsole
  • bngl_import
  • boole2rules
  • celery
  • cupsoda
  • cupsoda_logging
  • cupsoda_py3
  • cupsoda_simulator
  • cytoscapejs
  • dae
  • dev
  • dev_may2017
  • drug_binding_macro
  • duplicate_sites
  • dupsites_localfxns
  • ems_monintegrator
  • export_compartments
  • fast_exprs
  • fast_netfiles
  • fix_solver_verbose
  • gpu_ssa
  • hybrid_particle_population
  • is_equivalent_to
  • kappatests
  • kasimPy3errorfix
  • lassie
  • lcs
  • master
  • more_docs
  • multi
  • new_revrule_op
  • nfsim
  • pysbflat_matchonce
  • remove_pygraphiv_add_dot
  • remove_pygraphviz_dep_render_network
  • rule_function
  • sensitivity_analysis
  • simclass_LAH
  • simcls_stochkit
  • simres_hdf5
  • simulatorclass
  • sphinxfix
  • sphinxver
  • stochkit
  • synth_without_initials
  • test2-rebase-cupsoda
  • update_sensitivity_tool
  • v1.6.0
  • v1.7.0
  • v1.9.0
  • v1.9.1

pending completion
704

push

travis-ci

alubbock
Dynamic influence networks using Kappa

A potentially interesting visualisation was recently published using
Kappa: dynamic influence networks (DINs). Example here:
https://creativecodinglab.github.io/DynamicInfluenceNetworks/

The corresponding publication describing the method is here:
http://ieeexplore.ieee.org/document/8017593

Since this method uses Kappa, but no example Kappa code was given,
I figured out how to generate the necessary flux data in Kappa
and added this to our Kappa interface in PySB.

Example:

    from pysb.kappa import run_simulation
    from pysb.examples import earm_1_0
    _ = run_simulation(earm_1_0.model, cleanup=False, time=10000, \
                       din_zip_file=True, din_flux_segments=50)

There are two new arguments to `pysb.kappa.run_simulation`:
din_zip_file, which you set to True to generate the DIN, and
din_flux_segments, which specifies the number of (equally spaced)
time segments to split the flux analysis into across the simulation.

The result is a .zip file containing the flux data and observables'
trajectories, which can be uploaded to the live demo at the github.io
address given above.

6221 of 8217 relevant lines covered (75.71%)

1.33 hits per line

Relevant lines Covered
Build:
Build:
8217 RELEVANT LINES 6221 COVERED LINES
1.33 HITS PER LINE
Source Files on influence_nets
  • List 0
  • Changed 0
  • Source Changed 0
  • Coverage Changed 0
Coverage ∆ File Lines Relevant Covered Missed Hits/Line

Recent builds

Builds Branch Commit Type Ran Committer Via Coverage
704 influence_nets Dynamic influence networks using Kappa A potentially interesting visualisation was recently published using Kappa: dynamic influence networks (DINs). Example here: https://creativecodinglab.github.io/DynamicInfluenceNetworks/ The corresponding p... push 11 Nov 2017 12:30AM UTC alubbock travis-ci pending completion  
See All Builds (507)
  • Repo on GitHub
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc