• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

JuliaLang / julia / #37586

pending completion
#37586

push

local

web-flow
gf: remove unnecessary assert cycle==depth (#50542)

We do not care about this condition (the point of this fast path is to
skip checking it).

Fix #50450

73401 of 84388 relevant lines covered (86.98%)

24766646.08 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

92.67
/base/abstractarray.jl
1
# This file is a part of Julia. License is MIT: https://julialang.org/license
2

3
## Basic functions ##
4

5
"""
6
    AbstractArray{T,N}
7

8
Supertype for `N`-dimensional arrays (or array-like types) with elements of type `T`.
9
[`Array`](@ref) and other types are subtypes of this. See the manual section on the
10
[`AbstractArray` interface](@ref man-interface-array).
11

12
See also: [`AbstractVector`](@ref), [`AbstractMatrix`](@ref), [`eltype`](@ref), [`ndims`](@ref).
13
"""
14
AbstractArray
15

16
convert(::Type{T}, a::T) where {T<:AbstractArray} = a
66,645✔
17
convert(::Type{AbstractArray{T}}, a::AbstractArray) where {T} = AbstractArray{T}(a)::AbstractArray{T}
15,403✔
18
convert(::Type{AbstractArray{T,N}}, a::AbstractArray{<:Any,N}) where {T,N} = AbstractArray{T,N}(a)::AbstractArray{T,N}
17,326✔
19

20
"""
21
    size(A::AbstractArray, [dim])
22

23
Return a tuple containing the dimensions of `A`. Optionally you can specify a
24
dimension to just get the length of that dimension.
25

26
Note that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref)
27
may be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices).
28

29
See also: [`length`](@ref), [`ndims`](@ref), [`eachindex`](@ref), [`sizeof`](@ref).
30

31
# Examples
32
```jldoctest
33
julia> A = fill(1, (2,3,4));
34

35
julia> size(A)
36
(2, 3, 4)
37

38
julia> size(A, 2)
39
3
40
```
41
"""
42
size(t::AbstractArray{T,N}, d) where {T,N} = d::Integer <= N ? size(t)[d] : 1
1,613,359✔
43

44
"""
45
    axes(A, d)
46

47
Return the valid range of indices for array `A` along dimension `d`.
48

49
See also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices).
50

51
# Examples
52

53
```jldoctest
54
julia> A = fill(1, (5,6,7));
55

56
julia> axes(A, 2)
57
Base.OneTo(6)
58

59
julia> axes(A, 4) == 1:1  # all dimensions d > ndims(A) have size 1
60
true
61
```
62

63
# Usage note
64

65
Each of the indices has to be an `AbstractUnitRange{<:Integer}`, but at the same time can be
66
a type that uses custom indices. So, for example, if you need a subset, use generalized
67
indexing constructs like `begin`/`end` or [`firstindex`](@ref)/[`lastindex`](@ref):
68

69
```julia
70
ix = axes(v, 1)
71
ix[2:end]          # will work for eg Vector, but may fail in general
72
ix[(begin+1):end]  # works for generalized indexes
73
```
74
"""
75
function axes(A::AbstractArray{T,N}, d) where {T,N}
897,905✔
76
    @inline
896,403✔
77
    d::Integer <= N ? axes(A)[d] : OneTo(1)
904,377✔
78
end
79

80
"""
81
    axes(A)
82

83
Return the tuple of valid indices for array `A`.
84

85
See also: [`size`](@ref), [`keys`](@ref), [`eachindex`](@ref).
86

87
# Examples
88

89
```jldoctest
90
julia> A = fill(1, (5,6,7));
91

92
julia> axes(A)
93
(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))
94
```
95
"""
96
function axes(A)
187,975,706✔
97
    @inline
88,989,785✔
98
    map(oneto, size(A))
6,042,417,095✔
99
end
100

101
"""
102
    has_offset_axes(A)
103
    has_offset_axes(A, B, ...)
104

105
Return `true` if the indices of `A` start with something other than 1 along any axis.
106
If multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`.
107

108
See also [`require_one_based_indexing`](@ref).
109
"""
110
has_offset_axes(A) = _any_tuple(x->Int(first(x))::Int != 1, false, axes(A)...)
1,000,364✔
111
has_offset_axes(A::AbstractVector) = Int(firstindex(A))::Int != 1 # improve performance of a common case (ranges)
319,757✔
112
# Use `_any_tuple` to avoid unneeded invoke.
113
# note: this could call `any` directly if the compiler can infer it
114
has_offset_axes(As...) = _any_tuple(has_offset_axes, false, As...)
623,600✔
115
has_offset_axes(::Colon) = false
11✔
116
has_offset_axes(::Array) = false
622,348✔
117

118
"""
119
    require_one_based_indexing(A::AbstractArray)
120
    require_one_based_indexing(A,B...)
121

122
Throw an `ArgumentError` if the indices of any argument start with something other than `1` along any axis.
123
See also [`has_offset_axes`](@ref).
124

125
!!! compat "Julia 1.2"
126
     This function requires at least Julia 1.2.
127
"""
128
require_one_based_indexing(A...) = !has_offset_axes(A...) || throw(ArgumentError("offset arrays are not supported but got an array with index other than 1"))
1,503,603✔
129

130
# Performance optimization: get rid of a branch on `d` in `axes(A, d)`
131
# for d=1. 1d arrays are heavily used, and the first dimension comes up
132
# in other applications.
133
axes1(A::AbstractArray{<:Any,0}) = OneTo(1)
×
134
axes1(A::AbstractArray) = (@inline; axes(A)[1])
6,141,453,183✔
135
axes1(iter) = oneto(length(iter))
1✔
136

137
"""
138
    keys(a::AbstractArray)
139

140
Return an efficient array describing all valid indices for `a` arranged in the shape of `a` itself.
141

142
The keys of 1-dimensional arrays (vectors) are integers, whereas all other N-dimensional
143
arrays use [`CartesianIndex`](@ref) to describe their locations.  Often the special array
144
types [`LinearIndices`](@ref) and [`CartesianIndices`](@ref) are used to efficiently
145
represent these arrays of integers and `CartesianIndex`es, respectively.
146

147
Note that the `keys` of an array might not be the most efficient index type; for maximum
148
performance use  [`eachindex`](@ref) instead.
149

150
# Examples
151
```jldoctest
152
julia> keys([4, 5, 6])
153
3-element LinearIndices{1, Tuple{Base.OneTo{Int64}}}:
154
 1
155
 2
156
 3
157

158
julia> keys([4 5; 6 7])
159
CartesianIndices((2, 2))
160
```
161
"""
162
keys(a::AbstractArray) = CartesianIndices(axes(a))
28,766✔
163
keys(a::AbstractVector) = LinearIndices(a)
54,547,254✔
164

165
"""
166
    keytype(T::Type{<:AbstractArray})
167
    keytype(A::AbstractArray)
168

169
Return the key type of an array. This is equal to the
170
[`eltype`](@ref) of the result of `keys(...)`, and is provided
171
mainly for compatibility with the dictionary interface.
172

173
# Examples
174
```jldoctest
175
julia> keytype([1, 2, 3]) == Int
176
true
177

178
julia> keytype([1 2; 3 4])
179
CartesianIndex{2}
180
```
181

182
!!! compat "Julia 1.2"
183
     For arrays, this function requires at least Julia 1.2.
184
"""
185
keytype(a::AbstractArray) = keytype(typeof(a))
14,013✔
186
keytype(::Type{Union{}}, slurp...) = eltype(Union{})
×
187

188
keytype(A::Type{<:AbstractArray}) = CartesianIndex{ndims(A)}
2✔
189
keytype(A::Type{<:AbstractVector}) = Int
14,013✔
190

191
valtype(a::AbstractArray) = valtype(typeof(a))
15✔
192
valtype(::Type{Union{}}, slurp...) = eltype(Union{})
×
193

194
"""
195
    valtype(T::Type{<:AbstractArray})
196
    valtype(A::AbstractArray)
197

198
Return the value type of an array. This is identical to [`eltype`](@ref) and is
199
provided mainly for compatibility with the dictionary interface.
200

201
# Examples
202
```jldoctest
203
julia> valtype(["one", "two", "three"])
204
String
205
```
206

207
!!! compat "Julia 1.2"
208
     For arrays, this function requires at least Julia 1.2.
209
"""
210
valtype(A::Type{<:AbstractArray}) = eltype(A)
17✔
211

212
prevind(::AbstractArray, i::Integer) = Int(i)-1
146,341✔
213
nextind(::AbstractArray, i::Integer) = Int(i)+1
184,260,236✔
214

215

216
"""
217
    eltype(type)
218

219
Determine the type of the elements generated by iterating a collection of the given `type`.
220
For dictionary types, this will be a `Pair{KeyType,ValType}`. The definition
221
`eltype(x) = eltype(typeof(x))` is provided for convenience so that instances can be passed
222
instead of types. However the form that accepts a type argument should be defined for new
223
types.
224

225
See also: [`keytype`](@ref), [`typeof`](@ref).
226

227
# Examples
228
```jldoctest
229
julia> eltype(fill(1f0, (2,2)))
230
Float32
231

232
julia> eltype(fill(0x1, (2,2)))
233
UInt8
234
```
235
"""
236
eltype(::Type) = Any
14,023✔
237
eltype(::Type{Bottom}, slurp...) = throw(ArgumentError("Union{} does not have elements"))
9✔
238
eltype(x) = eltype(typeof(x))
4,897,448✔
239
eltype(::Type{<:AbstractArray{E}}) where {E} = @isdefined(E) ? E : Any
2,993,040✔
240

241
"""
242
    elsize(type)
243

244
Compute the memory stride in bytes between consecutive elements of [`eltype`](@ref)
245
stored inside the given `type`, if the array elements are stored densely with a
246
uniform linear stride.
247

248
# Examples
249
```jldoctest
250
julia> Base.elsize(rand(Float32, 10))
251
4
252
```
253
"""
254
elsize(A::AbstractArray) = elsize(typeof(A))
1,763,818✔
255

256
"""
257
    ndims(A::AbstractArray) -> Integer
258

259
Return the number of dimensions of `A`.
260

261
See also: [`size`](@ref), [`axes`](@ref).
262

263
# Examples
264
```jldoctest
265
julia> A = fill(1, (3,4,5));
266

267
julia> ndims(A)
268
3
269
```
270
"""
271
ndims(::AbstractArray{T,N}) where {T,N} = N
973,846✔
272
ndims(::Type{<:AbstractArray{<:Any,N}}) where {N} = N
61✔
273
ndims(::Type{Union{}}, slurp...) = throw(ArgumentError("Union{} does not have elements"))
×
274

275
"""
276
    length(collection) -> Integer
277

278
Return the number of elements in the collection.
279

280
Use [`lastindex`](@ref) to get the last valid index of an indexable collection.
281

282
See also: [`size`](@ref), [`ndims`](@ref), [`eachindex`](@ref).
283

284
# Examples
285
```jldoctest
286
julia> length(1:5)
287
5
288

289
julia> length([1, 2, 3, 4])
290
4
291

292
julia> length([1 2; 3 4])
293
4
294
```
295
"""
296
length
297

298
"""
299
    length(A::AbstractArray)
300

301
Return the number of elements in the array, defaults to `prod(size(A))`.
302

303
# Examples
304
```jldoctest
305
julia> length([1, 2, 3, 4])
306
4
307

308
julia> length([1 2; 3 4])
309
4
310
```
311
"""
312
length(t::AbstractArray) = (@inline; prod(size(t)))
17,668,304✔
313

314
# `eachindex` is mostly an optimization of `keys`
315
eachindex(itrs...) = keys(itrs...)
254✔
316

317
# eachindex iterates over all indices. IndexCartesian definitions are later.
318
eachindex(A::AbstractVector) = (@inline(); axes1(A))
1,086,525,429✔
319

320

321
@noinline function throw_eachindex_mismatch_indices(::IndexLinear, inds...)
1✔
322
    throw(DimensionMismatch("all inputs to eachindex must have the same indices, got $(join(inds, ", ", " and "))"))
1✔
323
end
324
@noinline function throw_eachindex_mismatch_indices(::IndexCartesian, inds...)
1✔
325
    throw(DimensionMismatch("all inputs to eachindex must have the same axes, got $(join(inds, ", ", " and "))"))
1✔
326
end
327

328
"""
329
    eachindex(A...)
330
    eachindex(::IndexStyle, A::AbstractArray...)
331

332
Create an iterable object for visiting each index of an `AbstractArray` `A` in an efficient
333
manner. For array types that have opted into fast linear indexing (like `Array`), this is
334
simply the range `1:length(A)` if they use 1-based indexing.
335
For array types that have not opted into fast linear indexing, a specialized Cartesian
336
range is typically returned to efficiently index into the array with indices specified
337
for every dimension.
338

339
In general `eachindex` accepts arbitrary iterables, including strings and dictionaries, and returns
340
an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
341

342
If `A` is `AbstractArray` it is possible to explicitly specify the style of the indices that
343
should be returned by `eachindex` by passing a value having `IndexStyle` type as its first argument
344
(typically `IndexLinear()` if linear indices are required or `IndexCartesian()` if Cartesian
345
range is wanted).
346

347
If you supply more than one `AbstractArray` argument, `eachindex` will create an
348
iterable object that is fast for all arguments (typically a [`UnitRange`](@ref)
349
if all inputs have fast linear indexing, a [`CartesianIndices`](@ref) otherwise).
350
If the arrays have different sizes and/or dimensionalities, a `DimensionMismatch` exception
351
will be thrown.
352

353
See also [`pairs`](@ref)`(A)` to iterate over indices and values together,
354
and [`axes`](@ref)`(A, 2)` for valid indices along one dimension.
355

356
# Examples
357
```jldoctest
358
julia> A = [10 20; 30 40];
359

360
julia> for i in eachindex(A) # linear indexing
361
           println("A[", i, "] == ", A[i])
362
       end
363
A[1] == 10
364
A[2] == 30
365
A[3] == 20
366
A[4] == 40
367

368
julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing
369
           println(i)
370
       end
371
CartesianIndex(1, 1)
372
CartesianIndex(2, 1)
373
```
374
"""
375
eachindex(A::AbstractArray) = (@inline(); eachindex(IndexStyle(A), A))
170,000✔
376

377
function eachindex(A::AbstractArray, B::AbstractArray)
37✔
378
    @inline
37✔
379
    eachindex(IndexStyle(A,B), A, B)
37✔
380
end
381
function eachindex(A::AbstractArray, B::AbstractArray...)
×
382
    @inline
×
383
    eachindex(IndexStyle(A,B...), A, B...)
×
384
end
385
eachindex(::IndexLinear, A::AbstractArray) = (@inline; oneto(length(A)))
12,717,000✔
386
eachindex(::IndexLinear, A::AbstractVector) = (@inline; axes1(A))
4,850,115,731✔
387
function eachindex(::IndexLinear, A::AbstractArray, B::AbstractArray...)
34✔
388
    @inline
34✔
389
    indsA = eachindex(IndexLinear(), A)
34✔
390
    _all_match_first(X->eachindex(IndexLinear(), X), indsA, B...) ||
69✔
391
        throw_eachindex_mismatch_indices(IndexLinear(), eachindex(A), eachindex.(B)...)
392
    indsA
33✔
393
end
394
function _all_match_first(f::F, inds, A, B...) where F<:Function
39✔
395
    @inline
39✔
396
    (inds == f(A)) & _all_match_first(f, inds, B...)
43✔
397
end
398
_all_match_first(f::F, inds) where F<:Function = true
39✔
399

400
# keys with an IndexStyle
401
keys(s::IndexStyle, A::AbstractArray, B::AbstractArray...) = eachindex(s, A, B...)
×
402

403
"""
404
    lastindex(collection) -> Integer
405
    lastindex(collection, d) -> Integer
406

407
Return the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`.
408

409
The syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and
410
`A[lastindex(A, 1), lastindex(A, 2)]`, respectively.
411

412
See also: [`axes`](@ref), [`firstindex`](@ref), [`eachindex`](@ref), [`prevind`](@ref).
413

414
# Examples
415
```jldoctest
416
julia> lastindex([1,2,4])
417
3
418

419
julia> lastindex(rand(3,4,5), 2)
420
4
421
```
422
"""
423
lastindex(a::AbstractArray) = (@inline; last(eachindex(IndexLinear(), a)))
1,525,475,445✔
424
lastindex(a, d) = (@inline; last(axes(a, d)))
3,254✔
425

426
"""
427
    firstindex(collection) -> Integer
428
    firstindex(collection, d) -> Integer
429

430
Return the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`.
431

432
The syntaxes `A[begin]` and `A[1, begin]` lower to `A[firstindex(A)]` and
433
`A[1, firstindex(A, 2)]`, respectively.
434

435
See also: [`first`](@ref), [`axes`](@ref), [`lastindex`](@ref), [`nextind`](@ref).
436

437
# Examples
438
```jldoctest
439
julia> firstindex([1,2,4])
440
1
441

442
julia> firstindex(rand(3,4,5), 2)
443
1
444
```
445
"""
446
firstindex(a::AbstractArray) = (@inline; first(eachindex(IndexLinear(), a)))
1,999,065✔
447
firstindex(a, d) = (@inline; first(axes(a, d)))
2,701✔
448

449
first(a::AbstractArray) = a[first(eachindex(a))]
1,309,175✔
450

451
"""
452
    first(coll)
453

454
Get the first element of an iterable collection. Return the start point of an
455
[`AbstractRange`](@ref) even if it is empty.
456

457
See also: [`only`](@ref), [`firstindex`](@ref), [`last`](@ref).
458

459
# Examples
460
```jldoctest
461
julia> first(2:2:10)
462
2
463

464
julia> first([1; 2; 3; 4])
465
1
466
```
467
"""
468
function first(itr)
3,128,385✔
469
    x = iterate(itr)
6,253,355✔
470
    x === nothing && throw(ArgumentError("collection must be non-empty"))
3,128,386✔
471
    x[1]
3,128,384✔
472
end
473

474
"""
475
    first(itr, n::Integer)
476

477
Get the first `n` elements of the iterable collection `itr`, or fewer elements if `itr` is not
478
long enough.
479

480
See also: [`startswith`](@ref), [`Iterators.take`](@ref).
481

482
!!! compat "Julia 1.6"
483
    This method requires at least Julia 1.6.
484

485
# Examples
486
```jldoctest
487
julia> first(["foo", "bar", "qux"], 2)
488
2-element Vector{String}:
489
 "foo"
490
 "bar"
491

492
julia> first(1:6, 10)
493
1:6
494

495
julia> first(Bool[], 1)
496
Bool[]
497
```
498
"""
499
first(itr, n::Integer) = collect(Iterators.take(itr, n))
34✔
500
# Faster method for vectors
501
function first(v::AbstractVector, n::Integer)
1,482✔
502
    n < 0 && throw(ArgumentError("Number of elements must be nonnegative"))
1,482✔
503
    v[range(begin, length=min(n, checked_length(v)))]
1,480✔
504
end
505

506
"""
507
    last(coll)
508

509
Get the last element of an ordered collection, if it can be computed in O(1) time. This is
510
accomplished by calling [`lastindex`](@ref) to get the last index. Return the end
511
point of an [`AbstractRange`](@ref) even if it is empty.
512

513
See also [`first`](@ref), [`endswith`](@ref).
514

515
# Examples
516
```jldoctest
517
julia> last(1:2:10)
518
9
519

520
julia> last([1; 2; 3; 4])
521
4
522
```
523
"""
524
last(a) = a[end]
34,835,563✔
525

526
"""
527
    last(itr, n::Integer)
528

529
Get the last `n` elements of the iterable collection `itr`, or fewer elements if `itr` is not
530
long enough.
531

532
!!! compat "Julia 1.6"
533
    This method requires at least Julia 1.6.
534

535
# Examples
536
```jldoctest
537
julia> last(["foo", "bar", "qux"], 2)
538
2-element Vector{String}:
539
 "bar"
540
 "qux"
541

542
julia> last(1:6, 10)
543
1:6
544

545
julia> last(Float64[], 1)
546
Float64[]
547
```
548
"""
549
last(itr, n::Integer) = reverse!(collect(Iterators.take(Iterators.reverse(itr), n)))
57✔
550
# Faster method for arrays
551
function last(v::AbstractVector, n::Integer)
1,873✔
552
    n < 0 && throw(ArgumentError("Number of elements must be nonnegative"))
1,873✔
553
    v[range(stop=lastindex(v), length=min(n, checked_length(v)))]
1,871✔
554
end
555

556
"""
557
    strides(A)
558

559
Return a tuple of the memory strides in each dimension.
560

561
See also: [`stride`](@ref).
562

563
# Examples
564
```jldoctest
565
julia> A = fill(1, (3,4,5));
566

567
julia> strides(A)
568
(1, 3, 12)
569
```
570
"""
571
function strides end
572

573
"""
574
    stride(A, k::Integer)
575

576
Return the distance in memory (in number of elements) between adjacent elements in dimension `k`.
577

578
See also: [`strides`](@ref).
579

580
# Examples
581
```jldoctest
582
julia> A = fill(1, (3,4,5));
583

584
julia> stride(A,2)
585
3
586

587
julia> stride(A,3)
588
12
589
```
590
"""
591
function stride(A::AbstractArray, k::Integer)
483✔
592
    st = strides(A)
483✔
593
    k ≤ ndims(A) && return st[k]
477✔
594
    ndims(A) == 0 && return 1
7✔
595
    sz = size(A)
7✔
596
    s = st[1] * sz[1]
7✔
597
    for i in 2:ndims(A)
7✔
598
        s += st[i] * sz[i]
2✔
599
    end
2✔
600
    return s
7✔
601
end
602

603
@inline size_to_strides(s, d, sz...) = (s, size_to_strides(s * d, sz...)...)
448,756✔
604
size_to_strides(s, d) = (s,)
118✔
605
size_to_strides(s) = ()
×
606

607
function isstored(A::AbstractArray{<:Any,N}, I::Vararg{Integer,N}) where {N}
34✔
608
    @boundscheck checkbounds(A, I...)
37✔
609
    return true
31✔
610
end
611

612
# used to compute "end" for last index
613
function trailingsize(A, n)
1✔
614
    s = 1
1✔
615
    for i=n:ndims(A)
1✔
616
        s *= size(A,i)
1✔
617
    end
1✔
618
    return s
1✔
619
end
620
function trailingsize(inds::Indices, n)
×
621
    s = 1
×
622
    for i=n:length(inds)
×
623
        s *= length(inds[i])
×
624
    end
×
625
    return s
×
626
end
627
# This version is type-stable even if inds is heterogeneous
628
function trailingsize(inds::Indices)
×
629
    @inline
×
630
    prod(map(length, inds))
×
631
end
632

633
## Bounds checking ##
634

635
# The overall hierarchy is
636
#     `checkbounds(A, I...)` ->
637
#         `checkbounds(Bool, A, I...)` ->
638
#             `checkbounds_indices(Bool, IA, I)`, which recursively calls
639
#                 `checkindex` for each dimension
640
#
641
# See the "boundscheck" devdocs for more information.
642
#
643
# Note this hierarchy has been designed to reduce the likelihood of
644
# method ambiguities.  We try to make `checkbounds` the place to
645
# specialize on array type, and try to avoid specializations on index
646
# types; conversely, `checkindex` is intended to be specialized only
647
# on index type (especially, its last argument).
648

649
"""
650
    checkbounds(Bool, A, I...)
651

652
Return `true` if the specified indices `I` are in bounds for the given
653
array `A`. Subtypes of `AbstractArray` should specialize this method
654
if they need to provide custom bounds checking behaviors; however, in
655
many cases one can rely on `A`'s indices and [`checkindex`](@ref).
656

657
See also [`checkindex`](@ref).
658

659
# Examples
660
```jldoctest
661
julia> A = rand(3, 3);
662

663
julia> checkbounds(Bool, A, 2)
664
true
665

666
julia> checkbounds(Bool, A, 3, 4)
667
false
668

669
julia> checkbounds(Bool, A, 1:3)
670
true
671

672
julia> checkbounds(Bool, A, 1:3, 2:4)
673
false
674
```
675
"""
676
function checkbounds(::Type{Bool}, A::AbstractArray, I...)
79,096,470✔
677
    @inline
79,096,470✔
678
    checkbounds_indices(Bool, axes(A), I)
80,509,252✔
679
end
680

681
# Linear indexing is explicitly allowed when there is only one (non-cartesian) index
682
function checkbounds(::Type{Bool}, A::AbstractArray, i)
128,778,939✔
683
    @inline
121,173,756✔
684
    checkindex(Bool, eachindex(IndexLinear(), A), i)
3,350,326,841✔
685
end
686
# As a special extension, allow using logical arrays that match the source array exactly
687
function checkbounds(::Type{Bool}, A::AbstractArray{<:Any,N}, I::AbstractArray{Bool,N}) where N
75✔
688
    @inline
75✔
689
    axes(A) == axes(I)
117✔
690
end
691

692
"""
693
    checkbounds(A, I...)
694

695
Throw an error if the specified indices `I` are not in bounds for the given array `A`.
696
"""
697
function checkbounds(A::AbstractArray, I...)
725,334,252✔
698
    @inline
197,831,043✔
699
    checkbounds(Bool, A, I...) || throw_boundserror(A, I)
725,335,312✔
700
    nothing
725,333,868✔
701
end
702

703
"""
704
    checkbounds_indices(Bool, IA, I)
705

706
Return `true` if the "requested" indices in the tuple `I` fall within
707
the bounds of the "permitted" indices specified by the tuple
708
`IA`. This function recursively consumes elements of these tuples,
709
usually in a 1-for-1 fashion,
710

711
    checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &
712
                                                          checkbounds_indices(Bool, IA, I)
713

714
Note that [`checkindex`](@ref) is being used to perform the actual
715
bounds-check for a single dimension of the array.
716

717
There are two important exceptions to the 1-1 rule: linear indexing and
718
CartesianIndex{N}, both of which may "consume" more than one element
719
of `IA`.
720

721
See also [`checkbounds`](@ref).
722
"""
723
function checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple)
162,789,832✔
724
    @inline
13,860,102✔
725
    checkindex(Bool, IA[1], I[1])::Bool & checkbounds_indices(Bool, tail(IA), tail(I))
281,315,000✔
726
end
727
function checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple)
26,529✔
728
    @inline
3,655✔
729
    checkindex(Bool, OneTo(1), I[1])::Bool & checkbounds_indices(Bool, (), tail(I))
47,074✔
730
end
731
checkbounds_indices(::Type{Bool}, IA::Tuple, ::Tuple{}) = (@inline; all(x->length(x)==1, IA))
577,883✔
732
checkbounds_indices(::Type{Bool}, ::Tuple{}, ::Tuple{}) = true
×
733

734
throw_boundserror(A, I) = (@noinline; throw(BoundsError(A, I)))
571✔
735

736
# check along a single dimension
737
"""
738
    checkindex(Bool, inds::AbstractUnitRange, index)
739

740
Return `true` if the given `index` is within the bounds of
741
`inds`. Custom types that would like to behave as indices for all
742
arrays can extend this method in order to provide a specialized bounds
743
checking implementation.
744

745
See also [`checkbounds`](@ref).
746

747
# Examples
748
```jldoctest
749
julia> checkindex(Bool, 1:20, 8)
750
true
751

752
julia> checkindex(Bool, 1:20, 21)
753
false
754
```
755
"""
756
checkindex(::Type{Bool}, inds::AbstractUnitRange, i) =
×
757
    throw(ArgumentError("unable to check bounds for indices of type $(typeof(i))"))
758
checkindex(::Type{Bool}, inds::AbstractUnitRange, i::Real) = (first(inds) <= i) & (i <= last(inds))
5,119,317✔
759
checkindex(::Type{Bool}, inds::IdentityUnitRange, i::Real) = checkindex(Bool, inds.indices, i)
3,072,569✔
760
checkindex(::Type{Bool}, inds::OneTo{T}, i::T) where {T<:BitInteger} = unsigned(i - one(i)) < unsigned(last(inds))
4,021,698,090✔
761
checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Colon) = true
458✔
762
checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Slice) = true
163✔
763
function checkindex(::Type{Bool}, inds::AbstractUnitRange, r::AbstractRange)
7,987,099✔
764
    @_propagate_inbounds_meta
591,677✔
765
    isempty(r) | (checkindex(Bool, inds, first(r)) & checkindex(Bool, inds, last(r)))
395,512,239✔
766
end
767
checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractVector{Bool}) = indx == axes1(I)
2✔
768
checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractArray{Bool}) = false
1✔
769
function checkindex(::Type{Bool}, inds::AbstractUnitRange, I::AbstractArray)
9,962✔
770
    @inline
4,928✔
771
    b = true
4,928✔
772
    for i in I
14,952✔
773
        b &= checkindex(Bool, inds, i)
156,507✔
774
    end
196,250✔
775
    b
12,675✔
776
end
777

778
# See also specializations in multidimensional
779

780
## Constructors ##
781

782
# default arguments to similar()
783
"""
784
    similar(array, [element_type=eltype(array)], [dims=size(array)])
785

786
Create an uninitialized mutable array with the given element type and size, based upon the
787
given source array. The second and third arguments are both optional, defaulting to the
788
given array's `eltype` and `size`. The dimensions may be specified either as a single tuple
789
argument or as a series of integer arguments.
790

791
Custom AbstractArray subtypes may choose which specific array type is best-suited to return
792
for the given element type and dimensionality. If they do not specialize this method, the
793
default is an `Array{element_type}(undef, dims...)`.
794

795
For example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are
796
neither mutable nor support 2 dimensions:
797

798
```julia-repl
799
julia> similar(1:10, 1, 4)
800
1×4 Matrix{Int64}:
801
 4419743872  4374413872  4419743888  0
802
```
803

804
Conversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two
805
elements since `BitArray`s are both mutable and can support 1-dimensional arrays:
806

807
```julia-repl
808
julia> similar(trues(10,10), 2)
809
2-element BitVector:
810
 0
811
 0
812
```
813

814
Since `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a
815
different element type it will create a regular `Array` instead:
816

817
```julia-repl
818
julia> similar(falses(10), Float64, 2, 4)
819
2×4 Matrix{Float64}:
820
 2.18425e-314  2.18425e-314  2.18425e-314  2.18425e-314
821
 2.18425e-314  2.18425e-314  2.18425e-314  2.18425e-314
822
```
823

824
See also: [`undef`](@ref), [`isassigned`](@ref).
825
"""
826
similar(a::AbstractArray{T}) where {T}                             = similar(a, T)
2,789✔
827
similar(a::AbstractArray, ::Type{T}) where {T}                     = similar(a, T, to_shape(axes(a)))
2,950✔
828
similar(a::AbstractArray{T}, dims::Tuple) where {T}                = similar(a, T, to_shape(dims))
71,805,654✔
829
similar(a::AbstractArray{T}, dims::DimOrInd...) where {T}          = similar(a, T, to_shape(dims))
803✔
830
similar(a::AbstractArray, ::Type{T}, dims::DimOrInd...) where {T}  = similar(a, T, to_shape(dims))
6,492,147✔
831
# Similar supports specifying dims as either Integers or AbstractUnitRanges or any mixed combination
832
# thereof. Ideally, we'd just convert Integers to OneTos and then call a canonical method with the axes,
833
# but we don't want to require all AbstractArray subtypes to dispatch on Base.OneTo. So instead we
834
# define this method to convert supported axes to Ints, with the expectation that an offset array
835
# package will define a method with dims::Tuple{Union{Integer, UnitRange}, Vararg{Union{Integer, UnitRange}}}
836
similar(a::AbstractArray, ::Type{T}, dims::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T} = similar(a, T, to_shape(dims))
117,108✔
837
similar(a::AbstractArray, ::Type{T}, dims::Tuple{Integer, Vararg{Integer}}) where {T} = similar(a, T, to_shape(dims))
5✔
838
# similar creates an Array by default
839
similar(a::AbstractArray, ::Type{T}, dims::Dims{N}) where {T,N}    = Array{T,N}(undef, dims)
6,473,052✔
840

841
to_shape(::Tuple{}) = ()
400✔
842
to_shape(dims::Dims) = dims
5,585✔
843
to_shape(dims::DimsOrInds) = map(to_shape, dims)::DimsOrInds
6,827,530✔
844
# each dimension
845
to_shape(i::Int) = i
139✔
846
to_shape(i::Integer) = Int(i)
86✔
847
to_shape(r::OneTo) = Int(last(r))
64,622✔
848
to_shape(r::AbstractUnitRange) = r
188✔
849

850
"""
851
    similar(storagetype, axes)
852

853
Create an uninitialized mutable array analogous to that specified by
854
`storagetype`, but with `axes` specified by the last
855
argument.
856

857
**Examples**:
858

859
    similar(Array{Int}, axes(A))
860

861
creates an array that "acts like" an `Array{Int}` (and might indeed be
862
backed by one), but which is indexed identically to `A`. If `A` has
863
conventional indexing, this will be identical to
864
`Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the
865
indices of the result will match `A`.
866

867
    similar(BitArray, (axes(A, 2),))
868

869
would create a 1-dimensional logical array whose indices match those
870
of the columns of `A`.
871
"""
872
similar(::Type{T}, dims::DimOrInd...) where {T<:AbstractArray} = similar(T, dims)
14✔
873
similar(::Type{T}, shape::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T<:AbstractArray} = similar(T, to_shape(shape))
522,396,817✔
874
similar(::Type{T}, dims::Dims) where {T<:AbstractArray} = T(undef, dims)
522,396,910✔
875

876
"""
877
    empty(v::AbstractVector, [eltype])
878

879
Create an empty vector similar to `v`, optionally changing the `eltype`.
880

881
See also: [`empty!`](@ref), [`isempty`](@ref), [`isassigned`](@ref).
882

883
# Examples
884

885
```jldoctest
886
julia> empty([1.0, 2.0, 3.0])
887
Float64[]
888

889
julia> empty([1.0, 2.0, 3.0], String)
890
String[]
891
```
892
"""
893
empty(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}()
326✔
894

895
# like empty, but should return a mutable collection, a Vector by default
896
emptymutable(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}()
206✔
897
emptymutable(itr, ::Type{U}) where {U} = Vector{U}()
53✔
898

899
"""
900
    copy!(dst, src) -> dst
901

902
In-place [`copy`](@ref) of `src` into `dst`, discarding any pre-existing
903
elements in `dst`.
904
If `dst` and `src` are of the same type, `dst == src` should hold after
905
the call. If `dst` and `src` are multidimensional arrays, they must have
906
equal [`axes`](@ref).
907

908
See also [`copyto!`](@ref).
909

910
!!! compat "Julia 1.1"
911
    This method requires at least Julia 1.1. In Julia 1.0 this method
912
    is available from the `Future` standard library as `Future.copy!`.
913
"""
914
function copy!(dst::AbstractVector, src::AbstractVector)
50✔
915
    firstindex(dst) == firstindex(src) || throw(ArgumentError(
50✔
916
        "vectors must have the same offset for copy! (consider using `copyto!`)"))
917
    if length(dst) != length(src)
43,453,763✔
918
        resize!(dst, length(src))
43,453,683✔
919
    end
920
    copyto!(dst, src)
43,453,763✔
921
end
922

923
function copy!(dst::AbstractArray, src::AbstractArray)
15✔
924
    axes(dst) == axes(src) || throw(ArgumentError(
16✔
925
        "arrays must have the same axes for copy! (consider using `copyto!`)"))
926
    copyto!(dst, src)
14✔
927
end
928

929
## from general iterable to any array
930

931
# This is `Experimental.@max_methods 1 function copyto! end`, which is not
932
# defined at this point in bootstrap.
933
typeof(function copyto! end).name.max_methods = UInt8(1)
934

935
function copyto!(dest::AbstractArray, src)
4,624,604✔
936
    destiter = eachindex(dest)
4,626,793✔
937
    y = iterate(destiter)
6,270,620✔
938
    for x in src
7,643,913✔
939
        y === nothing &&
5,381,193✔
940
            throw(ArgumentError("destination has fewer elements than required"))
941
        dest[y[1]] = x
5,381,312✔
942
        y = iterate(destiter, y[2])
9,118,303✔
943
    end
8,482,630✔
944
    return dest
4,626,791✔
945
end
946

947
function copyto!(dest::AbstractArray, dstart::Integer, src)
276✔
948
    i = Int(dstart)
276✔
949
    if haslength(src) && length(dest) > 0
276✔
950
        @boundscheck checkbounds(dest, i:(i + length(src) - 1))
271✔
951
        for x in src
281✔
952
            @inbounds dest[i] = x
2,337✔
953
            i += 1
2,335✔
954
        end
2,803✔
955
    else
956
        for x in src
6✔
957
            dest[i] = x
6✔
958
            i += 1
3✔
959
        end
3✔
960
    end
961
    return dest
272✔
962
end
963

964
# copy from an some iterable object into an AbstractArray
965
function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer)
9✔
966
    if (sstart < 1)
9✔
967
        throw(ArgumentError(LazyString("source start offset (",sstart,") is < 1")))
1✔
968
    end
969
    y = iterate(src)
8✔
970
    for j = 1:(sstart-1)
11✔
971
        if y === nothing
5✔
972
            throw(ArgumentError(LazyString(
1✔
973
                "source has fewer elements than required, ",
974
                "expected at least ", sstart,", got ", j-1)))
975
        end
976
        y = iterate(src, y[2])
4✔
977
    end
6✔
978
    if y === nothing
7✔
979
        throw(ArgumentError(LazyString(
1✔
980
            "source has fewer elements than required, ",
981
            "expected at least ",sstart," got ", sstart-1)))
982
    end
983
    i = Int(dstart)
6✔
984
    while y !== nothing
12✔
985
        val, st = y
10✔
986
        dest[i] = val
11✔
987
        i += 1
6✔
988
        y = iterate(src, st)
7✔
989
    end
6✔
990
    return dest
2✔
991
end
992

993
# this method must be separate from the above since src might not have a length
994
function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer, n::Integer)
10✔
995
    n < 0 && throw(ArgumentError(LazyString("tried to copy n=",n,
10✔
996
        ", elements, but n should be nonnegative")))
997
    n == 0 && return dest
9✔
998
    dmax = dstart + n - 1
8✔
999
    inds = LinearIndices(dest)
8✔
1000
    if (dstart ∉ inds || dmax ∉ inds) | (sstart < 1)
14✔
1001
        sstart < 1 && throw(ArgumentError(LazyString("source start offset (",
4✔
1002
            sstart,") is < 1")))
1003
        throw(BoundsError(dest, dstart:dmax))
3✔
1004
    end
1005
    y = iterate(src)
4✔
1006
    for j = 1:(sstart-1)
7✔
1007
        if y === nothing
5✔
1008
            throw(ArgumentError(LazyString(
1✔
1009
                "source has fewer elements than required, ",
1010
                "expected at least ",sstart,", got ",j-1)))
1011
        end
1012
        y = iterate(src, y[2])
4✔
1013
    end
6✔
1014
    i = Int(dstart)
3✔
1015
    while i <= dmax && y !== nothing
7✔
1016
        val, st = y
4✔
1017
        @inbounds dest[i] = val
4✔
1018
        y = iterate(src, st)
4✔
1019
        i += 1
4✔
1020
    end
4✔
1021
    i <= dmax && throw(BoundsError(dest, i))
3✔
1022
    return dest
2✔
1023
end
1024

1025
## copy between abstract arrays - generally more efficient
1026
## since a single index variable can be used.
1027

1028
"""
1029
    copyto!(dest::AbstractArray, src) -> dest
1030

1031
Copy all elements from collection `src` to array `dest`, whose length must be greater than
1032
or equal to the length `n` of `src`. The first `n` elements of `dest` are overwritten,
1033
the other elements are left untouched.
1034

1035
See also [`copy!`](@ref Base.copy!), [`copy`](@ref).
1036

1037
# Examples
1038
```jldoctest
1039
julia> x = [1., 0., 3., 0., 5.];
1040

1041
julia> y = zeros(7);
1042

1043
julia> copyto!(y, x);
1044

1045
julia> y
1046
7-element Vector{Float64}:
1047
 1.0
1048
 0.0
1049
 3.0
1050
 0.0
1051
 5.0
1052
 0.0
1053
 0.0
1054
```
1055
"""
1056
function copyto!(dest::AbstractArray, src::AbstractArray)
2,767,629✔
1057
    isempty(src) && return dest
2,780,806✔
1058
    if dest isa BitArray
154,746✔
1059
        # avoid ambiguities with other copyto!(::AbstractArray, ::SourceArray) methods
1060
        return _copyto_bitarray!(dest, src)
1✔
1061
    end
1062
    src′ = unalias(dest, src)
2,824,272✔
1063
    copyto_unaliased!(IndexStyle(dest), dest, IndexStyle(src′), src′)
2,780,371✔
1064
end
1065

1066
function copyto!(deststyle::IndexStyle, dest::AbstractArray, srcstyle::IndexStyle, src::AbstractArray)
×
1067
    isempty(src) && return dest
×
1068
    src′ = unalias(dest, src)
×
1069
    copyto_unaliased!(deststyle, dest, srcstyle, src′)
×
1070
end
1071

1072
function copyto_unaliased!(deststyle::IndexStyle, dest::AbstractArray, srcstyle::IndexStyle, src::AbstractArray)
2,780,371✔
1073
    isempty(src) && return dest
2,780,371✔
1074
    destinds, srcinds = LinearIndices(dest), LinearIndices(src)
2,780,372✔
1075
    idf, isf = first(destinds), first(srcinds)
154,745✔
1076
    Δi = idf - isf
154,745✔
1077
    (checkbounds(Bool, destinds, isf+Δi) & checkbounds(Bool, destinds, last(srcinds)+Δi)) ||
2,780,372✔
1078
        throw(BoundsError(dest, srcinds))
1079
    if deststyle isa IndexLinear
154,744✔
1080
        if srcstyle isa IndexLinear
150,087✔
1081
            # Single-index implementation
1082
            @inbounds for i in srcinds
5,274,996✔
1083
                dest[i + Δi] = src[i]
34,083,843✔
1084
            end
65,520,850✔
1085
        else
1086
            # Dual-index implementation
1087
            i = idf - 1
137,663✔
1088
            @inbounds for a in src
276,369✔
1089
                dest[i+=1] = a
4,185,766✔
1090
            end
8,225,949✔
1091
        end
1092
    else
1093
        iterdest, itersrc = eachindex(dest), eachindex(src)
4,657✔
1094
        if iterdest == itersrc
4,657✔
1095
            # Shared-iterator implementation
1096
            for I in iterdest
3,484✔
1097
                @inbounds dest[I] = src[I]
287,198✔
1098
            end
152,483✔
1099
        else
1100
            # Dual-iterator implementation
1101
            ret = iterate(iterdest)
5,830✔
1102
            @inbounds for a in src
4,960✔
1103
                idx, state = ret::NTuple{2,Any}
2,033,747✔
1104
                dest[idx] = a
2,033,747✔
1105
                ret = iterate(iterdest, state)
2,036,663✔
1106
            end
4,032,949✔
1107
        end
1108
    end
1109
    return dest
2,780,370✔
1110
end
1111

1112
function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray)
20,816✔
1113
    copyto!(dest, dstart, src, first(LinearIndices(src)), length(src))
20,824✔
1114
end
1115

1116
function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray, sstart::Integer)
22✔
1117
    srcinds = LinearIndices(src)
22✔
1118
    checkbounds(Bool, srcinds, sstart) || throw(BoundsError(src, sstart))
31✔
1119
    copyto!(dest, dstart, src, sstart, last(srcinds)-sstart+1)
13✔
1120
end
1121

1122
function copyto!(dest::AbstractArray, dstart::Integer,
401,286✔
1123
               src::AbstractArray, sstart::Integer,
1124
               n::Integer)
1125
    n == 0 && return dest
401,286✔
1126
    n < 0 && throw(ArgumentError(LazyString("tried to copy n=",
401,284✔
1127
        n," elements, but n should be nonnegative")))
1128
    destinds, srcinds = LinearIndices(dest), LinearIndices(src)
401,283✔
1129
    (checkbounds(Bool, destinds, dstart) && checkbounds(Bool, destinds, dstart+n-1)) || throw(BoundsError(dest, dstart:dstart+n-1))
401,295✔
1130
    (checkbounds(Bool, srcinds, sstart)  && checkbounds(Bool, srcinds, sstart+n-1))  || throw(BoundsError(src,  sstart:sstart+n-1))
401,274✔
1131
    src′ = unalias(dest, src)
401,311✔
1132
    @inbounds for i = 0:n-1
802,536✔
1133
        dest[dstart+i] = src′[sstart+i]
20,134,573✔
1134
    end
39,867,878✔
1135
    return dest
401,268✔
1136
end
1137

1138
function copy(a::AbstractArray)
146,890✔
1139
    @_propagate_inbounds_meta
521✔
1140
    copymutable(a)
147,602✔
1141
end
1142

1143
function copyto!(B::AbstractVecOrMat{R}, ir_dest::AbstractRange{Int}, jr_dest::AbstractRange{Int},
6,603✔
1144
               A::AbstractVecOrMat{S}, ir_src::AbstractRange{Int}, jr_src::AbstractRange{Int}) where {R,S}
1145
    if length(ir_dest) != length(ir_src)
6,603✔
1146
        throw(ArgumentError(LazyString("source and destination must have same size (got ",
1✔
1147
            length(ir_src)," and ",length(ir_dest),")")))
1148
    end
1149
    if length(jr_dest) != length(jr_src)
6,602✔
1150
        throw(ArgumentError(LazyString("source and destination must have same size (got ",
×
1151
            length(jr_src)," and ",length(jr_dest),")")))
1152
    end
1153
    @boundscheck checkbounds(B, ir_dest, jr_dest)
6,602✔
1154
    @boundscheck checkbounds(A, ir_src, jr_src)
6,602✔
1155
    A′ = unalias(B, A)
12,698✔
1156
    jdest = first(jr_dest)
6,602✔
1157
    for jsrc in jr_src
13,204✔
1158
        idest = first(ir_dest)
25,593✔
1159
        for isrc in ir_src
51,186✔
1160
            @inbounds B[idest,jdest] = A′[isrc,jsrc]
208,753✔
1161
            idest += step(ir_dest)
207,331✔
1162
        end
389,069✔
1163
        jdest += step(jr_dest)
25,593✔
1164
    end
44,584✔
1165
    return B
6,602✔
1166
end
1167

1168
@noinline _checkaxs(axd, axs) = axd == axs || throw(DimensionMismatch("axes must agree, got $axd and $axs"))
64,739✔
1169

1170
function copyto_axcheck!(dest, src)
39,877✔
1171
    _checkaxs(axes(dest), axes(src))
43,956✔
1172
    copyto!(dest, src)
53,738✔
1173
end
1174

1175
"""
1176
    copymutable(a)
1177

1178
Make a mutable copy of an array or iterable `a`.  For `a::Array`,
1179
this is equivalent to `copy(a)`, but for other array types it may
1180
differ depending on the type of `similar(a)`.  For generic iterables
1181
this is equivalent to `collect(a)`.
1182

1183
# Examples
1184
```jldoctest
1185
julia> tup = (1, 2, 3)
1186
(1, 2, 3)
1187

1188
julia> Base.copymutable(tup)
1189
3-element Vector{Int64}:
1190
 1
1191
 2
1192
 3
1193
```
1194
"""
1195
function copymutable(a::AbstractArray)
2,653✔
1196
    @_propagate_inbounds_meta
934✔
1197
    copyto!(similar(a), a)
152,509✔
1198
end
1199
copymutable(itr) = collect(itr)
1✔
1200

1201
zero(x::AbstractArray{T}) where {T} = fill!(similar(x, typeof(zero(T))), zero(T))
16,961✔
1202

1203
## iteration support for arrays by iterating over `eachindex` in the array ##
1204
# Allows fast iteration by default for both IndexLinear and IndexCartesian arrays
1205

1206
# While the definitions for IndexLinear are all simple enough to inline on their
1207
# own, IndexCartesian's CartesianIndices is more complicated and requires explicit
1208
# inlining.
1209
function iterate(A::AbstractArray, state=(eachindex(A),))
89,557,611✔
1210
    y = iterate(state...)
112,444,689✔
1211
    y === nothing && return nothing
91,392,412✔
1212
    A[y[1]], (state[1], tail(y)...)
90,935,403✔
1213
end
1214

1215
isempty(a::AbstractArray) = (length(a) == 0)
3,782,288,047✔
1216

1217

1218
## range conversions ##
1219

1220
map(::Type{T}, r::StepRange) where {T<:Real} = T(r.start):T(r.step):T(last(r))
2✔
1221
map(::Type{T}, r::UnitRange) where {T<:Real} = T(r.start):T(last(r))
162✔
1222
map(::Type{T}, r::StepRangeLen) where {T<:AbstractFloat} = convert(StepRangeLen{T}, r)
6✔
1223
function map(::Type{T}, r::LinRange) where T<:AbstractFloat
1✔
1224
    LinRange(T(r.start), T(r.stop), length(r))
1✔
1225
end
1226

1227
## unsafe/pointer conversions ##
1228

1229
# note: the following type definitions don't mean any AbstractArray is convertible to
1230
# a data Ref. they just map the array element type to the pointer type for
1231
# convenience in cases that work.
1232
pointer(x::AbstractArray{T}) where {T} = unsafe_convert(Ptr{T}, x)
42,489,725✔
1233
function pointer(x::AbstractArray{T}, i::Integer) where T
6,360,817✔
1234
    @inline
3,909,272✔
1235
    unsafe_convert(Ptr{T}, x) + Int(_memory_offset(x, i))::Int
382,141,137✔
1236
end
1237

1238
# The distance from pointer(x) to the element at x[I...] in bytes
1239
_memory_offset(x::DenseArray, I::Vararg{Any,N}) where {N} = (_to_linear_index(x, I...) - first(LinearIndices(x)))*elsize(x)
327,300,606✔
1240
function _memory_offset(x::AbstractArray, I::Vararg{Any,N}) where {N}
100,840✔
1241
    J = _to_subscript_indices(x, I...)
100,840✔
1242
    return sum(map((i, s, o)->s*(i-o), J, strides(x), Tuple(first(CartesianIndices(x)))))*elsize(x)
378,193✔
1243
end
1244

1245
## Approach:
1246
# We only define one fallback method on getindex for all argument types.
1247
# That dispatches to an (inlined) internal _getindex function, where the goal is
1248
# to transform the indices such that we can call the only getindex method that
1249
# we require the type A{T,N} <: AbstractArray{T,N} to define; either:
1250
#       getindex(::A, ::Int) # if IndexStyle(A) == IndexLinear() OR
1251
#       getindex(::A{T,N}, ::Vararg{Int, N}) where {T,N} # if IndexCartesian()
1252
# If the subtype hasn't defined the required method, it falls back to the
1253
# _getindex function again where an error is thrown to prevent stack overflows.
1254
"""
1255
    getindex(A, inds...)
1256

1257
Return a subset of array `A` as specified by `inds`, where each `ind` may be,
1258
for example, an `Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref).
1259
See the manual section on [array indexing](@ref man-array-indexing) for details.
1260

1261
# Examples
1262
```jldoctest
1263
julia> A = [1 2; 3 4]
1264
2×2 Matrix{Int64}:
1265
 1  2
1266
 3  4
1267

1268
julia> getindex(A, 1)
1269
1
1270

1271
julia> getindex(A, [2, 1])
1272
2-element Vector{Int64}:
1273
 3
1274
 1
1275

1276
julia> getindex(A, 2:4)
1277
3-element Vector{Int64}:
1278
 3
1279
 2
1280
 4
1281
```
1282
"""
1283
function getindex(A::AbstractArray, I...)
96,294,904✔
1284
    @_propagate_inbounds_meta
93,266,605✔
1285
    error_if_canonical_getindex(IndexStyle(A), A, I...)
93,266,605✔
1286
    _getindex(IndexStyle(A), A, to_indices(A, I)...)
208,098,863✔
1287
end
1288
# To avoid invalidations from multidimensional.jl: getindex(A::Array, i1::Union{Integer, CartesianIndex}, I::Union{Integer, CartesianIndex}...)
1289
@propagate_inbounds getindex(A::Array, i1::Integer, I::Integer...) = A[to_indices(A, (i1, I...))...]
222,121,856✔
1290

1291
function unsafe_getindex(A::AbstractArray, I...)
264✔
1292
    @inline
264✔
1293
    @inbounds r = getindex(A, I...)
389✔
1294
    r
262✔
1295
end
1296

1297
struct CanonicalIndexError <: Exception
1298
    func::String
1299
    type::Any
1300
    CanonicalIndexError(func::String, @nospecialize(type)) = new(func, type)
14✔
1301
end
1302

1303
error_if_canonical_getindex(::IndexLinear, A::AbstractArray, ::Int) =
2✔
1304
    throw(CanonicalIndexError("getindex", typeof(A)))
1305
error_if_canonical_getindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} =
3✔
1306
    throw(CanonicalIndexError("getindex", typeof(A)))
1307
error_if_canonical_getindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing
93,265,235✔
1308

1309
## Internal definitions
1310
_getindex(::IndexStyle, A::AbstractArray, I...) =
×
1311
    error("getindex for $(typeof(A)) with types $(typeof(I)) is not supported")
1312

1313
## IndexLinear Scalar indexing: canonical method is one Int
1314
_getindex(::IndexLinear, A::AbstractVector, i::Int) = (@_propagate_inbounds_meta; getindex(A, i))  # ambiguity resolution in case packages specialize this (to be avoided if at all possible, but see Interpolations.jl)
19,504,002✔
1315
_getindex(::IndexLinear, A::AbstractArray, i::Int) = (@_propagate_inbounds_meta; getindex(A, i))
51✔
1316
function _getindex(::IndexLinear, A::AbstractArray, I::Vararg{Int,M}) where M
2,034,021✔
1317
    @inline
950,165✔
1318
    @boundscheck checkbounds(A, I...) # generally _to_linear_index requires bounds checking
45,991,639✔
1319
    @inbounds r = getindex(A, _to_linear_index(A, I...))
45,991,590✔
1320
    r
45,991,553✔
1321
end
1322
_to_linear_index(A::AbstractArray, i::Integer) = i
221,522✔
1323
_to_linear_index(A::AbstractVector, i::Integer, I::Integer...) = i
1,390,831✔
1324
_to_linear_index(A::AbstractArray) = first(LinearIndices(A))
323,601✔
1325
_to_linear_index(A::AbstractArray, I::Integer...) = (@inline; _sub2ind(A, I...))
2,169,206✔
1326

1327
## IndexCartesian Scalar indexing: Canonical method is full dimensionality of Ints
1328
function _getindex(::IndexCartesian, A::AbstractArray, I::Vararg{Int,M}) where M
352,905✔
1329
    @inline
352,905✔
1330
    @boundscheck checkbounds(A, I...) # generally _to_subscript_indices requires bounds checking
352,978✔
1331
    @inbounds r = getindex(A, _to_subscript_indices(A, I...)...)
364,111✔
1332
    r
352,831✔
1333
end
1334
function _getindex(::IndexCartesian, A::AbstractArray{T,N}, I::Vararg{Int, N}) where {T,N}
74,293,278✔
1335
    @_propagate_inbounds_meta
74,293,278✔
1336
    getindex(A, I...)
141,781,966✔
1337
end
1338
_to_subscript_indices(A::AbstractArray, i::Integer) = (@inline; _unsafe_ind2sub(A, i))
417,356✔
1339
_to_subscript_indices(A::AbstractArray{T,N}) where {T,N} = (@inline; fill_to_length((), 1, Val(N)))
2✔
1340
_to_subscript_indices(A::AbstractArray{T,0}) where {T} = ()
×
1341
_to_subscript_indices(A::AbstractArray{T,0}, i::Integer) where {T} = ()
417✔
1342
_to_subscript_indices(A::AbstractArray{T,0}, I::Integer...) where {T} = ()
×
1343
function _to_subscript_indices(A::AbstractArray{T,N}, I::Integer...) where {T,N}
9,814✔
1344
    @inline
9,814✔
1345
    J, Jrem = IteratorsMD.split(I, Val(N))
9,814✔
1346
    _to_subscript_indices(A, J, Jrem)
9,814✔
1347
end
1348
_to_subscript_indices(A::AbstractArray, J::Tuple, Jrem::Tuple{}) =
2✔
1349
    __to_subscript_indices(A, axes(A), J, Jrem)
1350
function __to_subscript_indices(A::AbstractArray,
2✔
1351
        ::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}}, J::Tuple, Jrem::Tuple{})
1352
    @inline
2✔
1353
    (J..., map(first, tail(_remaining_size(J, axes(A))))...)
2✔
1354
end
1355
_to_subscript_indices(A, J::Tuple, Jrem::Tuple) = J # already bounds-checked, safe to drop
9,812✔
1356
_to_subscript_indices(A::AbstractArray{T,N}, I::Vararg{Int,N}) where {T,N} = I
29,748✔
1357
_remaining_size(::Tuple{Any}, t::Tuple) = t
2✔
1358
_remaining_size(h::Tuple, t::Tuple) = (@inline; _remaining_size(tail(h), tail(t)))
2✔
1359
_unsafe_ind2sub(::Tuple{}, i) = () # _ind2sub may throw(BoundsError()) in this case
×
1360
_unsafe_ind2sub(sz, i) = (@inline; _ind2sub(sz, i))
417,356✔
1361

1362
## Setindex! is defined similarly. We first dispatch to an internal _setindex!
1363
# function that allows dispatch on array storage
1364

1365
"""
1366
    setindex!(A, X, inds...)
1367
    A[inds...] = X
1368

1369
Store values from array `X` within some subset of `A` as specified by `inds`.
1370
The syntax `A[inds...] = X` is equivalent to `(setindex!(A, X, inds...); X)`.
1371

1372
# Examples
1373
```jldoctest
1374
julia> A = zeros(2,2);
1375

1376
julia> setindex!(A, [10, 20], [1, 2]);
1377

1378
julia> A[[3, 4]] = [30, 40];
1379

1380
julia> A
1381
2×2 Matrix{Float64}:
1382
 10.0  30.0
1383
 20.0  40.0
1384
```
1385
"""
1386
function setindex!(A::AbstractArray, v, I...)
2,784,974✔
1387
    @_propagate_inbounds_meta
2,672,640✔
1388
    error_if_canonical_setindex(IndexStyle(A), A, I...)
2,672,640✔
1389
    _setindex!(IndexStyle(A), A, v, to_indices(A, I)...)
3,836,222✔
1390
end
1391
function unsafe_setindex!(A::AbstractArray, v, I...)
732✔
1392
    @inline
732✔
1393
    @inbounds r = setindex!(A, v, I...)
732✔
1394
    r
730✔
1395
end
1396

1397
error_if_canonical_setindex(::IndexLinear, A::AbstractArray, ::Int) =
7✔
1398
    throw(CanonicalIndexError("setindex!", typeof(A)))
1399
error_if_canonical_setindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} =
2✔
1400
    throw(CanonicalIndexError("setindex!", typeof(A)))
1401
error_if_canonical_setindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing
2,672,378✔
1402

1403
## Internal definitions
1404
_setindex!(::IndexStyle, A::AbstractArray, v, I...) =
×
1405
    error("setindex! for $(typeof(A)) with types $(typeof(I)) is not supported")
1406

1407
## IndexLinear Scalar indexing
1408
_setindex!(::IndexLinear, A::AbstractArray, v, i::Int) = (@_propagate_inbounds_meta; setindex!(A, v, i))
358,778✔
1409
function _setindex!(::IndexLinear, A::AbstractArray, v, I::Vararg{Int,M}) where M
161,503✔
1410
    @inline
107,052✔
1411
    @boundscheck checkbounds(A, I...)
168,136✔
1412
    @inbounds r = setindex!(A, v, _to_linear_index(A, I...))
168,099✔
1413
    r
168,098✔
1414
end
1415

1416
# IndexCartesian Scalar indexing
1417
function _setindex!(::IndexCartesian, A::AbstractArray{T,N}, v, I::Vararg{Int, N}) where {T,N}
2,378,340✔
1418
    @_propagate_inbounds_meta
2,378,340✔
1419
    setindex!(A, v, I...)
2,378,439✔
1420
end
1421
function _setindex!(::IndexCartesian, A::AbstractArray, v, I::Vararg{Int,M}) where M
916✔
1422
    @inline
916✔
1423
    @boundscheck checkbounds(A, I...)
921✔
1424
    @inbounds r = setindex!(A, v, _to_subscript_indices(A, I...)...)
911✔
1425
    r
911✔
1426
end
1427

1428
"""
1429
    parent(A)
1430

1431
Return the underlying parent object of the view. This parent of objects of types `SubArray`, `SubString`, `ReshapedArray`
1432
or `LinearAlgebra.Transpose` is what was passed as an argument to `view`, `reshape`, `transpose`, etc.
1433
during object creation. If the input is not a wrapped object, return the input itself. If the input is
1434
wrapped multiple times, only the outermost wrapper will be removed.
1435

1436
# Examples
1437
```jldoctest
1438
julia> A = [1 2; 3 4]
1439
2×2 Matrix{Int64}:
1440
 1  2
1441
 3  4
1442

1443
julia> V = view(A, 1:2, :)
1444
2×2 view(::Matrix{Int64}, 1:2, :) with eltype Int64:
1445
 1  2
1446
 3  4
1447

1448
julia> parent(V)
1449
2×2 Matrix{Int64}:
1450
 1  2
1451
 3  4
1452
```
1453
"""
1454
function parent end
1455

1456
parent(a::AbstractArray) = a
1,273✔
1457

1458
## rudimentary aliasing detection ##
1459
"""
1460
    Base.unalias(dest, A)
1461

1462
Return either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from
1463
affecting the returned object. No guarantees are provided.
1464

1465
Custom arrays that wrap or use fields containing arrays that might alias against other
1466
external objects should provide a [`Base.dataids`](@ref) implementation.
1467

1468
This function must return an object of exactly the same type as `A` for performance and type
1469
stability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should
1470
provide a [`Base.unaliascopy`](@ref) implementation.
1471

1472
See also [`Base.mightalias`](@ref).
1473
"""
1474
unalias(dest, A::AbstractArray) = mightalias(dest, A) ? unaliascopy(A) : A
8,711,048✔
1475
unalias(dest, A::AbstractRange) = A
2,948,944✔
1476
unalias(dest, A) = A
2,709,857✔
1477

1478
"""
1479
    Base.unaliascopy(A)
1480

1481
Make a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against
1482
another array in order to preserve consistent semantics as that other array is mutated.
1483

1484
This must return an object of the same type as `A` to preserve optimal performance in the
1485
much more common case where aliasing does not occur. By default,
1486
`unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where
1487
`copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of
1488
`Base.unaliascopy(A)`.
1489
"""
1490
unaliascopy(A::Array) = copy(A)
186✔
1491
unaliascopy(A::AbstractArray)::typeof(A) = (@noinline; _unaliascopy(A, copy(A)))
4✔
1492
_unaliascopy(A::T, C::T) where {T} = C
4✔
1493
_unaliascopy(A, C) = throw(ArgumentError("""
×
1494
    an array of type `$(typename(typeof(A)).wrapper)` shares memory with another argument
1495
    and must make a preventative copy of itself in order to maintain consistent semantics,
1496
    but `copy(::$(typeof(A)))` returns a new array of type `$(typeof(C))`.
1497
    To fix, implement:
1498
        `Base.unaliascopy(A::$(typename(typeof(A)).wrapper))::typeof(A)`"""))
1499
unaliascopy(A) = A
×
1500

1501
"""
1502
    Base.mightalias(A::AbstractArray, B::AbstractArray)
1503

1504
Perform a conservative test to check if arrays `A` and `B` might share the same memory.
1505

1506
By default, this simply checks if either of the arrays reference the same memory
1507
regions, as identified by their [`Base.dataids`](@ref).
1508
"""
1509
mightalias(A::AbstractArray, B::AbstractArray) = !isbits(A) && !isbits(B) && !_isdisjoint(dataids(A), dataids(B))
5,913,486✔
1510
mightalias(x, y) = false
×
1511

1512
_isdisjoint(as::Tuple{}, bs::Tuple{}) = true
×
1513
_isdisjoint(as::Tuple{}, bs::Tuple{UInt}) = true
×
1514
_isdisjoint(as::Tuple{}, bs::Tuple) = true
×
1515
_isdisjoint(as::Tuple{UInt}, bs::Tuple{}) = true
×
1516
_isdisjoint(as::Tuple{UInt}, bs::Tuple{UInt}) = as[1] != bs[1]
5,803,093✔
1517
_isdisjoint(as::Tuple{UInt}, bs::Tuple) = !(as[1] in bs)
83,159✔
1518
_isdisjoint(as::Tuple, bs::Tuple{}) = true
×
1519
_isdisjoint(as::Tuple, bs::Tuple{UInt}) = !(bs[1] in as)
5,362✔
1520
_isdisjoint(as::Tuple, bs::Tuple) = !(as[1] in bs) && _isdisjoint(tail(as), bs)
81,238✔
1521

1522
"""
1523
    Base.dataids(A::AbstractArray)
1524

1525
Return a tuple of `UInt`s that represent the mutable data segments of an array.
1526

1527
Custom arrays that would like to opt-in to aliasing detection of their component
1528
parts can specialize this method to return the concatenation of the `dataids` of
1529
their component parts.  A typical definition for an array that wraps a parent is
1530
`Base.dataids(C::CustomArray) = dataids(C.parent)`.
1531
"""
1532
dataids(A::AbstractArray) = (UInt(objectid(A)),)
215,258✔
1533
dataids(A::Array) = (UInt(pointer(A)),)
11,513,800✔
1534
dataids(::AbstractRange) = ()
71,739✔
1535
dataids(x) = ()
56,615✔
1536

1537
## get (getindex with a default value) ##
1538

1539
RangeVecIntList{A<:AbstractVector{Int}} = Union{Tuple{Vararg{Union{AbstractRange, AbstractVector{Int}}}},
1540
    AbstractVector{UnitRange{Int}}, AbstractVector{AbstractRange{Int}}, AbstractVector{A}}
1541

1542
get(A::AbstractArray, i::Integer, default) = checkbounds(Bool, A, i) ? A[i] : default
11✔
1543
get(A::AbstractArray, I::Tuple{}, default) = checkbounds(Bool, A) ? A[] : default
8✔
1544
get(A::AbstractArray, I::Dims, default) = checkbounds(Bool, A, I...) ? A[I...] : default
16✔
1545
get(f::Callable, A::AbstractArray, i::Integer) = checkbounds(Bool, A, i) ? A[i] : f()
4✔
1546
get(f::Callable, A::AbstractArray, I::Tuple{}) = checkbounds(Bool, A) ? A[] : f()
8✔
1547
get(f::Callable, A::AbstractArray, I::Dims) = checkbounds(Bool, A, I...) ? A[I...] : f()
9✔
1548

1549
function get!(X::AbstractVector{T}, A::AbstractVector, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T
×
1550
    # 1d is not linear indexing
1551
    ind = findall(in(axes1(A)), I)
×
1552
    X[ind] = A[I[ind]]
×
1553
    Xind = axes1(X)
×
1554
    X[first(Xind):first(ind)-1] = default
×
1555
    X[last(ind)+1:last(Xind)] = default
×
1556
    X
×
1557
end
1558
function get!(X::AbstractArray{T}, A::AbstractArray, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T
1✔
1559
    # Linear indexing
1560
    ind = findall(in(1:length(A)), I)
1✔
1561
    X[ind] = A[I[ind]]
5✔
1562
    fill!(view(X, 1:first(ind)-1), default)
6✔
1563
    fill!(view(X, last(ind)+1:length(X)), default)
1✔
1564
    X
1✔
1565
end
1566

1567
get(A::AbstractArray, I::AbstractRange, default) = get!(similar(A, typeof(default), index_shape(I)), A, I, default)
1✔
1568

1569
function get!(X::AbstractArray{T}, A::AbstractArray, I::RangeVecIntList, default::T) where T
2✔
1570
    fill!(X, default)
72✔
1571
    dst, src = indcopy(size(A), I)
2✔
1572
    X[dst...] = A[src...]
2✔
1573
    X
2✔
1574
end
1575

1576
get(A::AbstractArray, I::RangeVecIntList, default) =
2✔
1577
    get!(similar(A, typeof(default), index_shape(I...)), A, I, default)
1578

1579
## structured matrix methods ##
1580
replace_in_print_matrix(A::AbstractMatrix,i::Integer,j::Integer,s::AbstractString) = s
23,920✔
1581
replace_in_print_matrix(A::AbstractVector,i::Integer,j::Integer,s::AbstractString) = s
5,601✔
1582

1583
## Concatenation ##
1584
eltypeof(x) = typeof(x)
21,814✔
1585
eltypeof(x::AbstractArray) = eltype(x)
14,302✔
1586

1587
promote_eltypeof() = Bottom
×
1588
promote_eltypeof(v1, vs...) = promote_type(eltypeof(v1), promote_eltypeof(vs...))
36,116✔
1589

1590
promote_eltype() = Bottom
3,176✔
1591
promote_eltype(v1, vs...) = promote_type(eltype(v1), promote_eltype(vs...))
10,647✔
1592

1593
#TODO: ERROR CHECK
1594
_cat(catdim::Int) = Vector{Any}()
1✔
1595

1596
typed_vcat(::Type{T}) where {T} = Vector{T}()
1✔
1597
typed_hcat(::Type{T}) where {T} = Vector{T}()
1✔
1598

1599
## cat: special cases
1600
vcat(X::T...) where {T}         = T[ X[i] for i=1:length(X) ]
150✔
1601
vcat(X::T...) where {T<:Number} = T[ X[i] for i=1:length(X) ]
300✔
1602
hcat(X::T...) where {T}         = T[ X[j] for i=1:1, j=1:length(X) ]
97✔
1603
hcat(X::T...) where {T<:Number} = T[ X[j] for i=1:1, j=1:length(X) ]
542✔
1604

1605
vcat(X::Number...) = hvcat_fill!(Vector{promote_typeof(X...)}(undef, length(X)), X)
1✔
1606
hcat(X::Number...) = hvcat_fill!(Matrix{promote_typeof(X...)}(undef, 1,length(X)), X)
2✔
1607
typed_vcat(::Type{T}, X::Number...) where {T} = hvcat_fill!(Vector{T}(undef, length(X)), X)
10✔
1608
typed_hcat(::Type{T}, X::Number...) where {T} = hvcat_fill!(Matrix{T}(undef, 1,length(X)), X)
61✔
1609

1610
vcat(V::AbstractVector...) = typed_vcat(promote_eltype(V...), V...)
3✔
1611
vcat(V::AbstractVector{T}...) where {T} = typed_vcat(T, V...)
3✔
1612

1613
# FIXME: this alias would better be Union{AbstractVector{T}, Tuple{Vararg{T}}}
1614
# and method signatures should do AbstractVecOrTuple{<:T} when they want covariance,
1615
# but that solution currently fails (see #27188 and #27224)
1616
AbstractVecOrTuple{T} = Union{AbstractVector{<:T}, Tuple{Vararg{T}}}
1617

1618
_typed_vcat_similar(V, ::Type{T}, n) where T = similar(V[1], T, n)
791,925✔
1619
_typed_vcat(::Type{T}, V::AbstractVecOrTuple{AbstractVector}) where T =
813,927✔
1620
    _typed_vcat!(_typed_vcat_similar(V, T, sum(map(length, V))), V)
1621

1622
function _typed_vcat!(a::AbstractVector{T}, V::AbstractVecOrTuple{AbstractVector}) where T
791,925✔
1623
    pos = 1
791,925✔
1624
    for k=1:Int(length(V))::Int
791,930✔
1625
        Vk = V[k]
792,347✔
1626
        p1 = pos + Int(length(Vk))::Int - 1
792,360✔
1627
        a[pos:p1] = Vk
5,703,800✔
1628
        pos = p1+1
792,347✔
1629
    end
792,769✔
1630
    a
791,925✔
1631
end
1632

1633
typed_hcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_hcat(T, A)
412✔
1634

1635
# Catch indexing errors like v[i +1] (instead of v[i+1] or v[i + 1]), where indexing is
1636
# interpreted as a typed concatenation. (issue #49676)
1637
typed_hcat(::AbstractArray, other...) = throw(ArgumentError("It is unclear whether you \
3✔
1638
    intend to perform an indexing operation or typed concatenation. If you intend to \
1639
    perform indexing (v[1 + 2]), adjust spacing or insert missing operator to clarify. \
1640
    If you intend to perform typed concatenation (T[1 2]), ensure that T is a type."))
1641

1642

1643
hcat(A::AbstractVecOrMat...) = typed_hcat(promote_eltype(A...), A...)
177✔
1644
hcat(A::AbstractVecOrMat{T}...) where {T} = typed_hcat(T, A...)
229✔
1645

1646
function _typed_hcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
418✔
1647
    nargs = length(A)
418✔
1648
    nrows = size(A[1], 1)
419✔
1649
    ncols = 0
418✔
1650
    dense = true
418✔
1651
    for j = 1:nargs
424✔
1652
        Aj = A[j]
872✔
1653
        if size(Aj, 1) != nrows
1,117✔
1654
            throw(DimensionMismatch("number of rows of each array must match (got $(map(x->size(x,1), A)))"))
3✔
1655
        end
1656
        dense &= isa(Aj,Array)
871✔
1657
        nd = ndims(Aj)
1,113✔
1658
        ncols += (nd==2 ? size(Aj,2) : 1)
1,056✔
1659
    end
1,325✔
1660
    B = similar(A[1], T, nrows, ncols)
417✔
1661
    pos = 1
417✔
1662
    if dense
417✔
1663
        for k=1:nargs
274✔
1664
            Ak = A[k]
571✔
1665
            n = length(Ak)
691✔
1666
            copyto!(B, pos, Ak, 1, n)
689✔
1667
            pos += n
571✔
1668
        end
870✔
1669
    else
1670
        for k=1:nargs
149✔
1671
            Ak = A[k]
299✔
1672
            p1 = pos+(isa(Ak,AbstractMatrix) ? size(Ak, 2) : 1)-1
374✔
1673
            B[:, pos:p1] = Ak
299✔
1674
            pos = p1+1
299✔
1675
        end
299✔
1676
    end
1677
    return B
417✔
1678
end
1679

1680
vcat(A::AbstractVecOrMat...) = typed_vcat(promote_eltype(A...), A...)
53✔
1681
vcat(A::AbstractVecOrMat{T}...) where {T} = typed_vcat(T, A...)
185✔
1682

1683
function _typed_vcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
385✔
1684
    nargs = length(A)
385✔
1685
    nrows = sum(a->size(a, 1), A)::Int
1,268✔
1686
    ncols = size(A[1], 2)
385✔
1687
    for j = 2:nargs
386✔
1688
        if size(A[j], 2) != ncols
455✔
1689
            throw(DimensionMismatch("number of columns of each array must match (got $(map(x->size(x,2), A)))"))
3✔
1690
        end
1691
    end
526✔
1692
    B = similar(A[1], T, nrows, ncols)
384✔
1693
    pos = 1
384✔
1694
    for k=1:nargs
385✔
1695
        Ak = A[k]
831✔
1696
        p1 = pos+size(Ak,1)::Int-1
935✔
1697
        B[pos:p1, :] = Ak
831✔
1698
        pos = p1+1
831✔
1699
    end
1,278✔
1700
    return B
384✔
1701
end
1702

1703
typed_vcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_vcat(T, A)
813,389✔
1704

1705
reduce(::typeof(vcat), A::AbstractVector{<:AbstractVecOrMat}) =
6✔
1706
    _typed_vcat(mapreduce(eltype, promote_type, A), A)
1707

1708
reduce(::typeof(hcat), A::AbstractVector{<:AbstractVecOrMat}) =
6✔
1709
    _typed_hcat(mapreduce(eltype, promote_type, A), A)
1710

1711
## cat: general case
1712

1713
# helper functions
1714
cat_size(A) = (1,)
22,353✔
1715
cat_size(A::AbstractArray) = size(A)
15,375✔
1716
cat_size(A, d) = 1
22,768✔
1717
cat_size(A::AbstractArray, d) = size(A, d)
22,921✔
1718

1719
cat_length(::Any) = 1
100✔
1720
cat_length(a::AbstractArray) = length(a)
472✔
1721

1722
cat_ndims(a) = 0
183✔
1723
cat_ndims(a::AbstractArray) = ndims(a)
684✔
1724

1725
cat_indices(A, d) = OneTo(1)
22,356✔
1726
cat_indices(A::AbstractArray, d) = axes(A, d)
16,324✔
1727

1728
cat_similar(A, ::Type{T}, shape::Tuple) where T = Array{T}(undef, shape)
7,361✔
1729
cat_similar(A, ::Type{T}, shape::Vector) where T = Array{T}(undef, shape...)
4✔
1730
cat_similar(A::Array, ::Type{T}, shape::Tuple) where T = Array{T}(undef, shape)
977✔
1731
cat_similar(A::Array, ::Type{T}, shape::Vector) where T = Array{T}(undef, shape...)
45✔
1732
cat_similar(A::AbstractArray, T::Type, shape::Tuple) = similar(A, T, shape)
291✔
1733
cat_similar(A::AbstractArray, T::Type, shape::Vector) = similar(A, T, shape...)
2✔
1734

1735
# These are for backwards compatibility (even though internal)
1736
cat_shape(dims, shape::Tuple{Vararg{Int}}) = shape
×
1737
function cat_shape(dims, shapes::Tuple)
4✔
1738
    out_shape = ()
4✔
1739
    for s in shapes
4✔
1740
        out_shape = _cshp(1, dims, out_shape, s)
18✔
1741
    end
15✔
1742
    return out_shape
4✔
1743
end
1744
# The new way to compute the shape (more inferable than combining cat_size & cat_shape, due to Varargs + issue#36454)
1745
cat_size_shape(dims) = ntuple(zero, Val(length(dims)))
×
1746
@inline cat_size_shape(dims, X, tail...) = _cat_size_shape(dims, _cshp(1, dims, (), cat_size(X)), tail...)
8,582✔
1747
_cat_size_shape(dims, shape) = shape
1,022✔
1748
@inline _cat_size_shape(dims, shape, X, tail...) = _cat_size_shape(dims, _cshp(1, dims, shape, cat_size(X)), tail...)
29,181✔
1749

1750
_cshp(ndim::Int, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ()
×
1751
_cshp(ndim::Int, ::Tuple{}, ::Tuple{}, nshape) = nshape
20✔
1752
_cshp(ndim::Int, dims, ::Tuple{}, ::Tuple{}) = ntuple(Returns(1), Val(length(dims)))
443✔
1753
@inline _cshp(ndim::Int, dims, shape, ::Tuple{}) =
412✔
1754
    (shape[1] + dims[1], _cshp(ndim + 1, tail(dims), tail(shape), ())...)
1755
@inline _cshp(ndim::Int, dims, ::Tuple{}, nshape) =
9,063✔
1756
    (nshape[1], _cshp(ndim + 1, tail(dims), (), tail(nshape))...)
1757
@inline function _cshp(ndim::Int, ::Tuple{}, shape, ::Tuple{})
20✔
1758
    _cs(ndim, shape[1], 1)
21✔
1759
    (1, _cshp(ndim + 1, (), tail(shape), ())...)
19✔
1760
end
1761
@inline function _cshp(ndim::Int, ::Tuple{}, shape, nshape)
116✔
1762
    next = _cs(ndim, shape[1], nshape[1])
116✔
1763
    (next, _cshp(ndim + 1, (), tail(shape), tail(nshape))...)
116✔
1764
end
1765
@inline function _cshp(ndim::Int, dims, shape, nshape)
29,718✔
1766
    a = shape[1]
29,718✔
1767
    b = nshape[1]
29,718✔
1768
    next = dims[1] ? a + b : _cs(ndim, a, b)
30,107✔
1769
    (next, _cshp(ndim + 1, tail(dims), tail(shape), tail(nshape))...)
29,751✔
1770
end
1771

1772
_cs(d, a, b) = (a == b ? a : throw(DimensionMismatch(
933✔
1773
    "mismatch in dimension $d (expected $a got $b)")))
1774

1775
dims2cat(::Val{dims}) where dims = dims2cat(dims)
432✔
1776
function dims2cat(dims)
948✔
1777
    if any(≤(0), dims)
1,937✔
1778
        throw(ArgumentError("All cat dimensions must be positive integers, but got $dims"))
2✔
1779
    end
1780
    ntuple(in(dims), maximum(dims))
988✔
1781
end
1782

1783
_cat(dims, X...) = _cat_t(dims, promote_eltypeof(X...), X...)
7,858✔
1784

1785
@inline function _cat_t(dims, ::Type{T}, X...) where {T}
8,580✔
1786
    catdims = dims2cat(dims)
8,618✔
1787
    shape = cat_size_shape(catdims, X...)
8,582✔
1788
    A = cat_similar(X[1], T, shape)
8,579✔
1789
    if count(!iszero, catdims)::Int > 1
8,576✔
1790
        fill!(A, zero(T))
488✔
1791
    end
1792
    return __cat(A, shape, catdims, X...)
9,104✔
1793
end
1794
# this version of `cat_t` is not very kind for inference and so its usage should be avoided,
1795
# nevertheless it is here just for compat after https://github.com/JuliaLang/julia/pull/45028
1796
@inline cat_t(::Type{T}, X...; dims) where {T} = _cat_t(dims, T, X...)
×
1797

1798
# Why isn't this called `__cat!`?
1799
__cat(A, shape, catdims, X...) = __cat_offset!(A, shape, catdims, ntuple(zero, length(shape)), X...)
9,108✔
1800

1801
function __cat_offset!(A, shape, catdims, offsets, x, X...)
37,721✔
1802
    # splitting the "work" on x from X... may reduce latency (fewer costly specializations)
1803
    newoffsets = __cat_offset1!(A, shape, catdims, offsets, x)
38,250✔
1804
    return __cat_offset!(A, shape, catdims, newoffsets, X...)
37,723✔
1805
end
1806
__cat_offset!(A, shape, catdims, offsets) = A
8,578✔
1807

1808
function __cat_offset1!(A, shape, catdims, offsets, x)
37,721✔
1809
    inds = ntuple(length(offsets)) do i
37,872✔
1810
        (i <= length(catdims) && catdims[i]) ? offsets[i] .+ cat_indices(x, i) : 1:shape[i]
40,504✔
1811
    end
1812
    if x isa AbstractArray
37,718✔
1813
        A[inds...] = x
106,284✔
1814
    else
1815
        fill!(view(A, inds...), x)
23,239✔
1816
    end
1817
    newoffsets = ntuple(length(offsets)) do i
37,723✔
1818
        (i <= length(catdims) && catdims[i]) ? offsets[i] + cat_size(x, i) : offsets[i]
41,546✔
1819
    end
1820
    return newoffsets
37,723✔
1821
end
1822

1823
"""
1824
    vcat(A...)
1825

1826
Concatenate arrays or numbers vertically. Equivalent to [`cat`](@ref)`(A...; dims=1)`,
1827
and to the syntax `[a; b; c]`.
1828

1829
To concatenate a large vector of arrays, `reduce(vcat, A)` calls an efficient method
1830
when `A isa AbstractVector{<:AbstractVecOrMat}`, rather than working pairwise.
1831

1832
See also [`hcat`](@ref), [`Iterators.flatten`](@ref), [`stack`](@ref).
1833

1834
# Examples
1835
```jldoctest
1836
julia> v = vcat([1,2], [3,4])
1837
4-element Vector{Int64}:
1838
 1
1839
 2
1840
 3
1841
 4
1842

1843
julia> v == vcat(1, 2, [3,4])  # accepts numbers
1844
true
1845

1846
julia> v == [1; 2; [3,4]]  # syntax for the same operation
1847
true
1848

1849
julia> summary(ComplexF64[1; 2; [3,4]])  # syntax for supplying the element type
1850
"4-element Vector{ComplexF64}"
1851

1852
julia> vcat(range(1, 2, length=3))  # collects lazy ranges
1853
3-element Vector{Float64}:
1854
 1.0
1855
 1.5
1856
 2.0
1857

1858
julia> two = ([10, 20, 30]', Float64[4 5 6; 7 8 9])  # row vector and a matrix
1859
([10 20 30], [4.0 5.0 6.0; 7.0 8.0 9.0])
1860

1861
julia> vcat(two...)
1862
3×3 Matrix{Float64}:
1863
 10.0  20.0  30.0
1864
  4.0   5.0   6.0
1865
  7.0   8.0   9.0
1866

1867
julia> vs = [[1, 2], [3, 4], [5, 6]];
1868

1869
julia> reduce(vcat, vs)  # more efficient than vcat(vs...)
1870
6-element Vector{Int64}:
1871
 1
1872
 2
1873
 3
1874
 4
1875
 5
1876
 6
1877

1878
julia> ans == collect(Iterators.flatten(vs))
1879
true
1880
```
1881
"""
1882
vcat(X...) = cat(X...; dims=Val(1))
383✔
1883
"""
1884
    hcat(A...)
1885

1886
Concatenate arrays or numbers horizontally. Equivalent to [`cat`](@ref)`(A...; dims=2)`,
1887
and to the syntax `[a b c]` or `[a;; b;; c]`.
1888

1889
For a large vector of arrays, `reduce(hcat, A)` calls an efficient method
1890
when `A isa AbstractVector{<:AbstractVecOrMat}`.
1891
For a vector of vectors, this can also be written [`stack`](@ref)`(A)`.
1892

1893
See also [`vcat`](@ref), [`hvcat`](@ref).
1894

1895
# Examples
1896
```jldoctest
1897
julia> hcat([1,2], [3,4], [5,6])
1898
2×3 Matrix{Int64}:
1899
 1  3  5
1900
 2  4  6
1901

1902
julia> hcat(1, 2, [30 40], [5, 6, 7]')  # accepts numbers
1903
1×7 Matrix{Int64}:
1904
 1  2  30  40  5  6  7
1905

1906
julia> ans == [1 2 [30 40] [5, 6, 7]']  # syntax for the same operation
1907
true
1908

1909
julia> Float32[1 2 [30 40] [5, 6, 7]']  # syntax for supplying the eltype
1910
1×7 Matrix{Float32}:
1911
 1.0  2.0  30.0  40.0  5.0  6.0  7.0
1912

1913
julia> ms = [zeros(2,2), [1 2; 3 4], [50 60; 70 80]];
1914

1915
julia> reduce(hcat, ms)  # more efficient than hcat(ms...)
1916
2×6 Matrix{Float64}:
1917
 0.0  0.0  1.0  2.0  50.0  60.0
1918
 0.0  0.0  3.0  4.0  70.0  80.0
1919

1920
julia> stack(ms) |> summary  # disagrees on a vector of matrices
1921
"2×2×3 Array{Float64, 3}"
1922

1923
julia> hcat(Int[], Int[], Int[])  # empty vectors, each of size (0,)
1924
0×3 Matrix{Int64}
1925

1926
julia> hcat([1.1, 9.9], Matrix(undef, 2, 0))  # hcat with empty 2×0 Matrix
1927
2×1 Matrix{Any}:
1928
 1.1
1929
 9.9
1930
```
1931
"""
1932
hcat(X...) = cat(X...; dims=Val(2))
9✔
1933

1934
typed_vcat(::Type{T}, X...) where T = _cat_t(Val(1), T, X...)
165✔
1935
typed_hcat(::Type{T}, X...) where T = _cat_t(Val(2), T, X...)
323✔
1936

1937
"""
1938
    cat(A...; dims)
1939

1940
Concatenate the input arrays along the dimensions specified in `dims`.
1941

1942
Along a dimension `d in dims`, the size of the output array is `sum(size(a,d) for
1943
a in A)`.
1944
Along other dimensions, all input arrays should have the same size,
1945
which will also be the size of the output array along those dimensions.
1946

1947
If `dims` is a single number, the different arrays are tightly packed along that dimension.
1948
If `dims` is an iterable containing several dimensions, the positions along these dimensions
1949
are increased simultaneously for each input array, filling with zero elsewhere.
1950
This allows one to construct block-diagonal matrices as `cat(matrices...; dims=(1,2))`,
1951
and their higher-dimensional analogues.
1952

1953
The special case `dims=1` is [`vcat`](@ref), and `dims=2` is [`hcat`](@ref).
1954
See also [`hvcat`](@ref), [`hvncat`](@ref), [`stack`](@ref), [`repeat`](@ref).
1955

1956
The keyword also accepts `Val(dims)`.
1957

1958
!!! compat "Julia 1.8"
1959
    For multiple dimensions `dims = Val(::Tuple)` was added in Julia 1.8.
1960

1961
# Examples
1962
```jldoctest
1963
julia> cat([1 2; 3 4], [pi, pi], fill(10, 2,3,1); dims=2)  # same as hcat
1964
2×6×1 Array{Float64, 3}:
1965
[:, :, 1] =
1966
 1.0  2.0  3.14159  10.0  10.0  10.0
1967
 3.0  4.0  3.14159  10.0  10.0  10.0
1968

1969
julia> cat(true, trues(2,2), trues(4)', dims=(1,2))  # block-diagonal
1970
4×7 Matrix{Bool}:
1971
 1  0  0  0  0  0  0
1972
 0  1  1  0  0  0  0
1973
 0  1  1  0  0  0  0
1974
 0  0  0  1  1  1  1
1975

1976
julia> cat(1, [2], [3;;]; dims=Val(2))
1977
1×3 Matrix{Int64}:
1978
 1  2  3
1979
```
1980
"""
1981
@inline cat(A...; dims) = _cat(dims, A...)
16,216✔
1982
# `@constprop :aggressive` allows `catdims` to be propagated as constant improving return type inference
1983
@constprop :aggressive _cat(catdims, A::AbstractArray{T}...) where {T} = _cat_t(catdims, T, A...)
147✔
1984

1985
# The specializations for 1 and 2 inputs are important
1986
# especially when running with --inline=no, see #11158
1987
vcat(A::AbstractArray) = cat(A; dims=Val(1))
1✔
1988
vcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(1))
5✔
1989
vcat(A::AbstractArray...) = cat(A...; dims=Val(1))
×
1990
vcat(A::Union{AbstractArray,Number}...) = cat(A...; dims=Val(1))
6,983✔
1991
hcat(A::AbstractArray) = cat(A; dims=Val(2))
1✔
1992
hcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(2))
1✔
1993
hcat(A::AbstractArray...) = cat(A...; dims=Val(2))
1✔
1994
hcat(A::Union{AbstractArray,Number}...) = cat(A...; dims=Val(2))
6✔
1995

1996
typed_vcat(T::Type, A::AbstractArray) = _cat_t(Val(1), T, A)
1✔
1997
typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = _cat_t(Val(1), T, A, B)
3✔
1998
typed_vcat(T::Type, A::AbstractArray...) = _cat_t(Val(1), T, A...)
1✔
1999
typed_hcat(T::Type, A::AbstractArray) = _cat_t(Val(2), T, A)
3✔
2000
typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = _cat_t(Val(2), T, A, B)
2✔
2001
typed_hcat(T::Type, A::AbstractArray...) = _cat_t(Val(2), T, A...)
2✔
2002

2003
# 2d horizontal and vertical concatenation
2004

2005
# these are produced in lowering if splatting occurs inside hvcat
2006
hvcat_rows(rows::Tuple...) = hvcat(map(length, rows), (rows...)...)
3✔
2007
typed_hvcat_rows(T::Type, rows::Tuple...) = typed_hvcat(T, map(length, rows), (rows...)...)
3✔
2008

2009
function hvcat(nbc::Int, as...)
10✔
2010
    # nbc = # of block columns
2011
    n = length(as)
10✔
2012
    mod(n,nbc) != 0 &&
20✔
2013
        throw(ArgumentError("number of arrays $n is not a multiple of the requested number of block columns $nbc"))
2014
    nbr = div(n,nbc)
9✔
2015
    hvcat(ntuple(Returns(nbc), nbr), as...)
9✔
2016
end
2017

2018
"""
2019
    hvcat(blocks_per_row::Union{Tuple{Vararg{Int}}, Int}, values...)
2020

2021
Horizontal and vertical concatenation in one call. This function is called for block matrix
2022
syntax. The first argument specifies the number of arguments to concatenate in each block
2023
row. If the first argument is a single integer `n`, then all block rows are assumed to have `n`
2024
block columns.
2025

2026
# Examples
2027
```jldoctest
2028
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
2029
(1, 2, 3, 4, 5, 6)
2030

2031
julia> [a b c; d e f]
2032
2×3 Matrix{Int64}:
2033
 1  2  3
2034
 4  5  6
2035

2036
julia> hvcat((3,3), a,b,c,d,e,f)
2037
2×3 Matrix{Int64}:
2038
 1  2  3
2039
 4  5  6
2040

2041
julia> [a b; c d; e f]
2042
3×2 Matrix{Int64}:
2043
 1  2
2044
 3  4
2045
 5  6
2046

2047
julia> hvcat((2,2,2), a,b,c,d,e,f)
2048
3×2 Matrix{Int64}:
2049
 1  2
2050
 3  4
2051
 5  6
2052
julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)
2053
true
2054
```
2055
"""
2056
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractArray...) = typed_hvcat(promote_eltype(xs...), rows, xs...)
200✔
2057
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractArray{T}...) where {T} = typed_hvcat(T, rows, xs...)
473✔
2058

2059
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as::AbstractVecOrMat...) where T
679✔
2060
    nbr = length(rows)  # number of block rows
679✔
2061

2062
    nc = 0
679✔
2063
    for i=1:rows[1]
1,358✔
2064
        nc += size(as[i],2)
1,326✔
2065
    end
1,973✔
2066

2067
    nr = 0
679✔
2068
    a = 1
679✔
2069
    for i = 1:nbr
679✔
2070
        nr += size(as[a],1)
1,181✔
2071
        a += rows[i]
1,181✔
2072
    end
1,683✔
2073

2074
    out = similar(as[1], T, nr, nc)
679✔
2075

2076
    a = 1
679✔
2077
    r = 1
679✔
2078
    for i = 1:nbr
679✔
2079
        c = 1
1,181✔
2080
        szi = size(as[a],1)
1,181✔
2081
        for j = 1:rows[i]
2,362✔
2082
            Aj = as[a+j-1]
2,209✔
2083
            szj = size(Aj,2)
2,209✔
2084
            if size(Aj,1) != szi
2,209✔
2085
                throw(DimensionMismatch("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))"))
1✔
2086
            end
2087
            if c-1+szj > nc
3,103✔
2088
                throw(DimensionMismatch("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))"))
1✔
2089
            end
2090
            out[r:r-1+szi, c:c-1+szj] = Aj
3,423✔
2091
            c += szj
2,207✔
2092
        end
3,235✔
2093
        if c != nc+1
1,179✔
2094
            throw(DimensionMismatch("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))"))
1✔
2095
        end
2096
        r += szi
1,178✔
2097
        a += rows[i]
1,178✔
2098
    end
1,680✔
2099
    out
676✔
2100
end
2101

2102
hvcat(rows::Tuple{Vararg{Int}}) = []
1✔
2103
typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}) where {T} = Vector{T}()
×
2104

2105
function hvcat(rows::Tuple{Vararg{Int}}, xs::T...) where T<:Number
1,295✔
2106
    nr = length(rows)
495✔
2107
    nc = rows[1]
1,295✔
2108

2109
    a = Matrix{T}(undef, nr, nc)
1,295✔
2110
    if length(a) != length(xs)
1,295✔
2111
        throw(ArgumentError("argument count does not match specified shape (expected $(length(a)), got $(length(xs)))"))
2✔
2112
    end
2113
    k = 1
495✔
2114
    @inbounds for i=1:nr
1,293✔
2115
        if nc != rows[i]
3,505✔
2116
            throw(DimensionMismatch("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
1✔
2117
        end
2118
        for j=1:nc
7,008✔
2119
            a[i,j] = xs[k]
9,635✔
2120
            k += 1
9,635✔
2121
        end
15,766✔
2122
    end
5,716✔
2123
    a
1,292✔
2124
end
2125

2126
function hvcat_fill!(a::Array, xs::Tuple)
474✔
2127
    nr, nc = size(a,1), size(a,2)
474✔
2128
    len = length(xs)
474✔
2129
    if nr*nc != len
474✔
2130
        throw(ArgumentError("argument count $(len) does not match specified shape $((nr,nc))"))
1✔
2131
    end
2132
    k = 1
473✔
2133
    for i=1:nr
946✔
2134
        @inbounds for j=1:nc
2,542✔
2135
            a[i,j] = xs[k]
9,333✔
2136
            k += 1
8,653✔
2137
        end
16,035✔
2138
    end
2,069✔
2139
    a
473✔
2140
end
2141

2142
hvcat(rows::Tuple{Vararg{Int}}, xs::Number...) = typed_hvcat(promote_typeof(xs...), rows, xs...)
175✔
2143
hvcat(rows::Tuple{Vararg{Int}}, xs...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
138✔
2144
# the following method is needed to provide a more specific one compared to LinearAlgebra/uniformscaling.jl
2145
hvcat(rows::Tuple{Vararg{Int}}, xs::Union{AbstractArray,Number}...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
3✔
2146

2147
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, xs::Number...) where T
402✔
2148
    nr = length(rows)
402✔
2149
    nc = rows[1]
402✔
2150
    for i = 2:nr
402✔
2151
        if nc != rows[i]
787✔
2152
            throw(DimensionMismatch("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
2✔
2153
        end
2154
    end
1,170✔
2155
    hvcat_fill!(Matrix{T}(undef, nr, nc), xs)
400✔
2156
end
2157

2158
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as...) where T
148✔
2159
    nbr = length(rows)  # number of block rows
148✔
2160
    rs = Vector{Any}(undef, nbr)
148✔
2161
    a = 1
148✔
2162
    for i = 1:nbr
148✔
2163
        rs[i] = typed_hcat(T, as[a:a-1+rows[i]]...)
535✔
2164
        a += rows[i]
366✔
2165
    end
584✔
2166
    T[rs...;]
148✔
2167
end
2168

2169
## N-dimensional concatenation ##
2170

2171
"""
2172
    hvncat(dim::Int, row_first, values...)
2173
    hvncat(dims::Tuple{Vararg{Int}}, row_first, values...)
2174
    hvncat(shape::Tuple{Vararg{Tuple}}, row_first, values...)
2175

2176
Horizontal, vertical, and n-dimensional concatenation of many `values` in one call.
2177

2178
This function is called for block matrix syntax. The first argument either specifies the
2179
shape of the concatenation, similar to `hvcat`, as a tuple of tuples, or the dimensions that
2180
specify the key number of elements along each axis, and is used to determine the output
2181
dimensions. The `dims` form is more performant, and is used by default when the concatenation
2182
operation has the same number of elements along each axis (e.g., [a b; c d;;; e f ; g h]).
2183
The `shape` form is used when the number of elements along each axis is unbalanced
2184
(e.g., [a b ; c]). Unbalanced syntax needs additional validation overhead. The `dim` form
2185
is an optimization for concatenation along just one dimension. `row_first` indicates how
2186
`values` are ordered. The meaning of the first and second elements of `shape` are also
2187
swapped based on `row_first`.
2188

2189
# Examples
2190
```jldoctest
2191
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
2192
(1, 2, 3, 4, 5, 6)
2193

2194
julia> [a b c;;; d e f]
2195
1×3×2 Array{Int64, 3}:
2196
[:, :, 1] =
2197
 1  2  3
2198

2199
[:, :, 2] =
2200
 4  5  6
2201

2202
julia> hvncat((2,1,3), false, a,b,c,d,e,f)
2203
2×1×3 Array{Int64, 3}:
2204
[:, :, 1] =
2205
 1
2206
 2
2207

2208
[:, :, 2] =
2209
 3
2210
 4
2211

2212
[:, :, 3] =
2213
 5
2214
 6
2215

2216
julia> [a b;;; c d;;; e f]
2217
1×2×3 Array{Int64, 3}:
2218
[:, :, 1] =
2219
 1  2
2220

2221
[:, :, 2] =
2222
 3  4
2223

2224
[:, :, 3] =
2225
 5  6
2226

2227
julia> hvncat(((3, 3), (3, 3), (6,)), true, a, b, c, d, e, f)
2228
1×3×2 Array{Int64, 3}:
2229
[:, :, 1] =
2230
 1  2  3
2231

2232
[:, :, 2] =
2233
 4  5  6
2234
```
2235

2236
# Examples for construction of the arguments
2237
```
2238
[a b c ; d e f ;;;
2239
 g h i ; j k l ;;;
2240
 m n o ; p q r ;;;
2241
 s t u ; v w x]
2242
⇒ dims = (2, 3, 4)
2243

2244
[a b ; c ;;; d ;;;;]
2245
 ___   _     _
2246
 2     1     1 = elements in each row (2, 1, 1)
2247
 _______     _
2248
 3           1 = elements in each column (3, 1)
2249
 _____________
2250
 4             = elements in each 3d slice (4,)
2251
 _____________
2252
 4             = elements in each 4d slice (4,)
2253
⇒ shape = ((2, 1, 1), (3, 1), (4,), (4,)) with `row_first` = true
2254
```
2255
"""
2256
hvncat(dimsshape::Tuple, row_first::Bool, xs...) = _hvncat(dimsshape, row_first, xs...)
262✔
2257
hvncat(dim::Int, xs...) = _hvncat(dim, true, xs...)
77✔
2258

2259
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool) = _typed_hvncat(Any, dimsshape, row_first)
29✔
2260
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs...) = _typed_hvncat(promote_eltypeof(xs...), dimsshape, row_first, xs...)
91✔
2261
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::T...) where T<:Number = _typed_hvncat(T, dimsshape, row_first, xs...)
88✔
2262
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::Number...) = _typed_hvncat(promote_typeof(xs...), dimsshape, row_first, xs...)
×
2263
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::AbstractArray...) = _typed_hvncat(promote_eltype(xs...), dimsshape, row_first, xs...)
×
2264
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::AbstractArray{T}...) where T = _typed_hvncat(T, dimsshape, row_first, xs...)
132✔
2265

2266

2267
typed_hvncat(T::Type, dimsshape::Tuple, row_first::Bool, xs...) = _typed_hvncat(T, dimsshape, row_first, xs...)
17✔
2268
typed_hvncat(T::Type, dim::Int, xs...) = _typed_hvncat(T, Val(dim), xs...)
14✔
2269

2270
# 1-dimensional hvncat methods
2271

2272
_typed_hvncat(::Type, ::Val{0}) = _typed_hvncat_0d_only_one()
4✔
2273
_typed_hvncat(T::Type, ::Val{0}, x) = fill(convert(T, x))
×
2274
_typed_hvncat(T::Type, ::Val{0}, x::Number) = fill(convert(T, x))
4✔
2275
_typed_hvncat(T::Type, ::Val{0}, x::AbstractArray) = convert.(T, x)
4✔
2276
_typed_hvncat(::Type, ::Val{0}, ::Any...) = _typed_hvncat_0d_only_one()
×
2277
_typed_hvncat(::Type, ::Val{0}, ::Number...) = _typed_hvncat_0d_only_one()
4✔
2278
_typed_hvncat(::Type, ::Val{0}, ::AbstractArray...) = _typed_hvncat_0d_only_one()
×
2279

2280
_typed_hvncat_0d_only_one() =
8✔
2281
    throw(ArgumentError("a 0-dimensional array may only contain exactly one element"))
2282

2283
# `@constprop :aggressive` here to form constant `Val(dim)` type to get type stability
2284
@constprop :aggressive _typed_hvncat(T::Type, dim::Int, ::Bool, xs...) = _typed_hvncat(T, Val(dim), xs...) # catches from _hvncat type promoters
77✔
2285

2286
function _typed_hvncat(::Type{T}, ::Val{N}) where {T, N}
15✔
2287
    N < 0 &&
15✔
2288
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2289
    return Array{T, N}(undef, ntuple(x -> 0, Val(N)))
40✔
2290
end
2291

2292
function _typed_hvncat(T::Type, ::Val{N}, xs::Number...) where N
38✔
2293
    N < 0 &&
38✔
2294
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2295
    A = cat_similar(xs[1], T, (ntuple(x -> 1, Val(N - 1))..., length(xs)))
83✔
2296
    hvncat_fill!(A, false, xs)
37✔
2297
    return A
37✔
2298
end
2299

2300
function _typed_hvncat(::Type{T}, ::Val{N}, as::AbstractArray...) where {T, N}
25✔
2301
    # optimization for arrays that can be concatenated by copying them linearly into the destination
2302
    # conditions: the elements must all have 1-length dimensions above N
2303
    length(as) > 0 ||
25✔
2304
        throw(ArgumentError("must have at least one element"))
2305
    N < 0 &&
25✔
2306
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2307
    for a ∈ as
23✔
2308
        ndims(a) <= N || all(x -> size(a, x) == 1, (N + 1):ndims(a)) ||
54✔
2309
            return _typed_hvncat(T, (ntuple(x -> 1, Val(N - 1))..., length(as), 1), false, as...)
9✔
2310
            # the extra 1 is to avoid an infinite cycle
2311
    end
46✔
2312

2313
    nd = N
17✔
2314

2315
    Ndim = 0
17✔
2316
    for i ∈ eachindex(as)
18✔
2317
        Ndim += cat_size(as[i], N)
38✔
2318
        nd = max(nd, cat_ndims(as[i]))
38✔
2319
        for d ∈ 1:N - 1
32✔
2320
            cat_size(as[1], d) == cat_size(as[i], d) || throw(DimensionMismatch("mismatched size along axis $d in element $i"))
39✔
2321
        end
44✔
2322
    end
43✔
2323

2324
    A = cat_similar(as[1], T, (ntuple(d -> size(as[1], d), N - 1)..., Ndim, ntuple(x -> 1, nd - N)...))
28✔
2325
    k = 1
13✔
2326
    for a ∈ as
13✔
2327
        for i ∈ eachindex(a)
44✔
2328
            A[k] = a[i]
36✔
2329
            k += 1
34✔
2330
        end
47✔
2331
    end
34✔
2332
    return A
13✔
2333
end
2334

2335
function _typed_hvncat(::Type{T}, ::Val{N}, as...) where {T, N}
14✔
2336
    length(as) > 0 ||
14✔
2337
        throw(ArgumentError("must have at least one element"))
2338
    N < 0 &&
14✔
2339
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2340
    nd = N
12✔
2341
    Ndim = 0
12✔
2342
    for i ∈ eachindex(as)
14✔
2343
        Ndim += cat_size(as[i], N)
30✔
2344
        nd = max(nd, cat_ndims(as[i]))
30✔
2345
        for d ∈ 1:N-1
20✔
2346
            cat_size(as[i], d) == 1 ||
36✔
2347
                throw(DimensionMismatch("all dimensions of element $i other than $N must be of length 1"))
2348
        end
28✔
2349
    end
20✔
2350

2351
    A = Array{T, nd}(undef, ntuple(x -> 1, Val(N - 1))..., Ndim, ntuple(x -> 1, nd - N)...)
15✔
2352

2353
    k = 1
4✔
2354
    for a ∈ as
4✔
2355
        if a isa AbstractArray
12✔
2356
            lena = length(a)
2✔
2357
            copyto!(A, k, a, 1, lena)
2✔
2358
            k += lena
2✔
2359
        else
2360
            A[k] = a
10✔
2361
            k += 1
10✔
2362
        end
2363
    end
16✔
2364
    return A
4✔
2365
end
2366

2367
# 0-dimensional cases for balanced and unbalanced hvncat method
2368

2369
_typed_hvncat(T::Type, ::Tuple{}, ::Bool, x...) = _typed_hvncat(T, Val(0), x...)
2✔
2370
_typed_hvncat(T::Type, ::Tuple{}, ::Bool, x::Number...) = _typed_hvncat(T, Val(0), x...)
6✔
2371

2372

2373
# balanced dimensions hvncat methods
2374

2375
_typed_hvncat(T::Type, dims::Tuple{Int}, ::Bool, as...) = _typed_hvncat_1d(T, dims[1], Val(false), as...)
2✔
2376
_typed_hvncat(T::Type, dims::Tuple{Int}, ::Bool, as::Number...) = _typed_hvncat_1d(T, dims[1], Val(false), as...)
8✔
2377

2378
function _typed_hvncat_1d(::Type{T}, ds::Int, ::Val{row_first}, as...) where {T, row_first}
22✔
2379
    lengthas = length(as)
22✔
2380
    ds > 0 ||
22✔
2381
        throw(ArgumentError("`dimsshape` argument must consist of positive integers"))
2382
    lengthas == ds ||
30✔
2383
        throw(ArgumentError("number of elements does not match `dimshape` argument; expected $ds, got $lengthas"))
2384
    if row_first
14✔
2385
        return _typed_hvncat(T, Val(2), as...)
4✔
2386
    else
2387
        return _typed_hvncat(T, Val(1), as...)
10✔
2388
    end
2389
end
2390

2391
function _typed_hvncat(::Type{T}, dims::NTuple{N, Int}, row_first::Bool, xs::Number...) where {T, N}
44✔
2392
    all(>(0), dims) ||
60✔
2393
        throw(ArgumentError("`dims` argument must contain positive integers"))
2394
    A = Array{T, N}(undef, dims...)
28✔
2395
    lengtha = length(A)  # Necessary to store result because throw blocks are being deoptimized right now, which leads to excessive allocations
28✔
2396
    lengthx = length(xs) # Cuts from 3 allocations to 1.
28✔
2397
    if lengtha != lengthx
28✔
2398
       throw(ArgumentError("argument count does not match specified shape (expected $lengtha, got $lengthx)"))
×
2399
    end
2400
    hvncat_fill!(A, row_first, xs)
28✔
2401
    return A
28✔
2402
end
2403

2404
function hvncat_fill!(A::Array, row_first::Bool, xs::Tuple)
65✔
2405
    nr, nc = size(A, 1), size(A, 2)
65✔
2406
    na = prod(size(A)[3:end])
65✔
2407
    len = length(xs)
65✔
2408
    nrc = nr * nc
65✔
2409
    if nrc * na != len
65✔
2410
        throw(ArgumentError("argument count $(len) does not match specified shape $(size(A))"))
×
2411
    end
2412
    # putting these in separate functions leads to unnecessary allocations
2413
    if row_first
65✔
2414
        k = 1
17✔
2415
        for d ∈ 1:na
34✔
2416
            dd = nrc * (d - 1)
31✔
2417
            for i ∈ 1:nr
62✔
2418
                Ai = dd + i
42✔
2419
                for j ∈ 1:nc
84✔
2420
                    @inbounds A[Ai] = xs[k]
95✔
2421
                    k += 1
95✔
2422
                    Ai += nr
95✔
2423
                end
148✔
2424
            end
53✔
2425
        end
31✔
2426
    else
2427
        for k ∈ eachindex(xs)
48✔
2428
            @inbounds A[k] = xs[k]
95✔
2429
        end
95✔
2430
    end
2431
end
2432

2433
function _typed_hvncat(T::Type, dims::NTuple{N, Int}, row_first::Bool, as...) where {N}
90✔
2434
    # function barrier after calculating the max is necessary for high performance
2435
    nd = max(maximum(cat_ndims(a) for a ∈ as), N)
90✔
2436
    return _typed_hvncat_dims(T, (dims..., ntuple(x -> 1, nd - N)...), row_first, as)
124✔
2437
end
2438

2439
function _typed_hvncat_dims(::Type{T}, dims::NTuple{N, Int}, row_first::Bool, as::Tuple) where {T, N}
90✔
2440
    length(as) > 0 ||
90✔
2441
        throw(ArgumentError("must have at least one element"))
2442
    all(>(0), dims) ||
122✔
2443
        throw(ArgumentError("`dims` argument must contain positive integers"))
2444

2445
    d1 = row_first ? 2 : 1
58✔
2446
    d2 = row_first ? 1 : 2
58✔
2447

2448
    outdims = zeros(Int, N)
203✔
2449

2450
    # validate shapes for lowest level of concatenation
2451
    d = findfirst(>(1), dims)
86✔
2452
    if d !== nothing # all dims are 1
58✔
2453
        if row_first && d < 3
57✔
2454
            d = d == 1 ? 2 : 1
32✔
2455
        end
2456
        nblocks = length(as) ÷ dims[d]
57✔
2457
        for b ∈ 1:nblocks
114✔
2458
            offset = ((b - 1) * dims[d])
175✔
2459
            startelementi = offset + 1
175✔
2460
            for i ∈ offset .+ (2:dims[d])
262✔
2461
                for dd ∈ 1:N
111✔
2462
                    dd == d && continue
316✔
2463
                    if cat_size(as[startelementi], dd) != cat_size(as[i], dd)
217✔
2464
                        throw(DimensionMismatch("incompatible shape in element $i"))
6✔
2465
                    end
2466
                end
515✔
2467
            end
129✔
2468
        end
287✔
2469
    end
2470

2471
    # discover number of rows or columns
2472
    for i ∈ 1:dims[d1]
104✔
2473
        outdims[d1] += cat_size(as[i], d1)
140✔
2474
    end
164✔
2475

2476
    currentdims = zeros(Int, N)
176✔
2477
    blockcount = 0
52✔
2478
    elementcount = 0
52✔
2479
    for i ∈ eachindex(as)
52✔
2480
        elementcount += cat_length(as[i])
309✔
2481
        currentdims[d1] += cat_size(as[i], d1)
309✔
2482
        if currentdims[d1] == outdims[d1]
259✔
2483
            currentdims[d1] = 0
129✔
2484
            for d ∈ (d2, 3:N...)
129✔
2485
                currentdims[d] += cat_size(as[i], d)
258✔
2486
                if outdims[d] == 0 # unfixed dimension
203✔
2487
                    blockcount += 1
167✔
2488
                    if blockcount == dims[d]
167✔
2489
                        outdims[d] = currentdims[d]
88✔
2490
                        currentdims[d] = 0
88✔
2491
                        blockcount = 0
88✔
2492
                    else
2493
                        break
167✔
2494
                    end
2495
                else # fixed dimension
2496
                    if currentdims[d] == outdims[d] # end of dimension
36✔
2497
                        currentdims[d] = 0
23✔
2498
                    elseif currentdims[d] < outdims[d] # dimension in progress
13✔
2499
                        break
13✔
2500
                    else # exceeded dimension
2501
                        throw(DimensionMismatch("argument $i has too many elements along axis $d"))
×
2502
                    end
2503
                end
2504
            end
142✔
2505
        elseif currentdims[d1] > outdims[d1] # exceeded dimension
130✔
2506
            throw(DimensionMismatch("argument $i has too many elements along axis $d1"))
16✔
2507
        end
2508
    end
450✔
2509

2510
    outlen = prod(outdims)
72✔
2511
    elementcount == outlen ||
36✔
2512
        throw(DimensionMismatch("mismatched number of elements; expected $(outlen), got $(elementcount)"))
2513

2514
    # copy into final array
2515
    A = cat_similar(as[1], T, outdims)
36✔
2516
    # @assert all(==(0), currentdims)
2517
    outdims .= 0
108✔
2518
    hvncat_fill!(A, currentdims, outdims, d1, d2, as)
36✔
2519
    return A
36✔
2520
end
2521

2522

2523
# unbalanced dimensions hvncat methods
2524

2525
function _typed_hvncat(T::Type, shape::Tuple{Tuple}, row_first::Bool, xs...)
19✔
2526
    length(shape[1]) > 0 ||
19✔
2527
        throw(ArgumentError("each level of `shape` argument must have at least one value"))
2528
    return _typed_hvncat_1d(T, shape[1][1], Val(row_first), xs...)
13✔
2529
end
2530

2531
function _typed_hvncat(T::Type, shape::NTuple{N, Tuple}, row_first::Bool, as...) where {N}
115✔
2532
    # function barrier after calculating the max is necessary for high performance
2533
    nd = max(maximum(cat_ndims(a) for a ∈ as), N)
115✔
2534
    return _typed_hvncat_shape(T, (shape..., ntuple(x -> shape[end], nd - N)...), row_first, as)
134✔
2535
end
2536

2537
function _typed_hvncat_shape(::Type{T}, shape::NTuple{N, Tuple}, row_first, as::Tuple) where {T, N}
107✔
2538
    length(as) > 0 ||
107✔
2539
        throw(ArgumentError("must have at least one element"))
2540
    all(>(0), tuple((shape...)...)) ||
147✔
2541
        throw(ArgumentError("`shape` argument must consist of positive integers"))
2542

2543
    d1 = row_first ? 2 : 1
67✔
2544
    d2 = row_first ? 1 : 2
67✔
2545

2546
    shapev = collect(shape) # saves allocations later
67✔
2547
    all(!isempty, shapev) ||
134✔
2548
        throw(ArgumentError("each level of `shape` argument must have at least one value"))
2549
    length(shapev[end]) == 1 ||
70✔
2550
        throw(ArgumentError("last level of shape must contain only one integer"))
2551
    shapelength = shapev[end][1]
64✔
2552
    lengthas = length(as)
64✔
2553
    shapelength == lengthas || throw(ArgumentError("number of elements does not match shape; expected $(shapelength), got $lengthas)"))
64✔
2554
    # discover dimensions
2555
    nd = max(N, cat_ndims(as[1]))
64✔
2556
    outdims = fill(-1, nd)
210✔
2557
    currentdims = zeros(Int, nd)
210✔
2558
    blockcounts = zeros(Int, nd)
210✔
2559
    shapepos = ones(Int, nd)
210✔
2560

2561
    elementcount = 0
64✔
2562
    for i ∈ eachindex(as)
64✔
2563
        elementcount += cat_length(as[i])
355✔
2564
        wasstartblock = false
313✔
2565
        for d ∈ 1:N
313✔
2566
            ad = (d < 3 && row_first) ? (d == 1 ? 2 : 1) : d
907✔
2567
            dsize = cat_size(as[i], ad)
1,048✔
2568
            blockcounts[d] += 1
907✔
2569

2570
            if d == 1 || i == 1 || wasstartblock
1,501✔
2571
                currentdims[d] += dsize
623✔
2572
            elseif dsize != cat_size(as[i - 1], ad)
302✔
2573
                throw(DimensionMismatch("argument $i has a mismatched number of elements along axis $ad; \
8✔
2574
                                         expected $(cat_size(as[i - 1], ad)), got $dsize"))
2575
            end
2576

2577
            wasstartblock = blockcounts[d] == 1 # remember for next dimension
899✔
2578

2579
            isendblock = blockcounts[d] == shapev[d][shapepos[d]]
899✔
2580
            if isendblock
899✔
2581
                if outdims[d] == -1
269✔
2582
                    outdims[d] = currentdims[d]
138✔
2583
                elseif outdims[d] != currentdims[d]
131✔
2584
                    throw(DimensionMismatch("argument $i has a mismatched number of elements along axis $ad; \
40✔
2585
                                             expected $(abs(outdims[d] - (currentdims[d] - dsize))), got $dsize"))
2586
                end
2587
                currentdims[d] = 0
229✔
2588
                blockcounts[d] = 0
229✔
2589
                shapepos[d] += 1
229✔
2590
                d > 1 && (blockcounts[d - 1] == 0 ||
230✔
2591
                    throw(DimensionMismatch("shape in level $d is inconsistent; level counts must nest \
2592
                                             evenly into each other")))
2593
            end
2594
        end
1,452✔
2595
    end
513✔
2596

2597
    outlen = prod(outdims)
30✔
2598
    elementcount == outlen ||
15✔
2599
        throw(ArgumentError("mismatched number of elements; expected $(outlen), got $(elementcount)"))
2600

2601
    if row_first
15✔
2602
        outdims[1], outdims[2] = outdims[2], outdims[1]
11✔
2603
    end
2604

2605
    # @assert all(==(0), currentdims)
2606
    # @assert all(==(0), blockcounts)
2607

2608
    # copy into final array
2609
    A = cat_similar(as[1], T, outdims)
15✔
2610
    hvncat_fill!(A, currentdims, blockcounts, d1, d2, as)
15✔
2611
    return A
15✔
2612
end
2613

2614
function hvncat_fill!(A::AbstractArray{T, N}, scratch1::Vector{Int}, scratch2::Vector{Int},
51✔
2615
                              d1::Int, d2::Int, as::Tuple) where {T, N}
2616
    N > 1 || throw(ArgumentError("dimensions of the destination array must be at least 2"))
51✔
2617
    length(scratch1) == length(scratch2) == N ||
51✔
2618
        throw(ArgumentError("scratch vectors must have as many elements as the destination array has dimensions"))
2619
    0 < d1 < 3 &&
51✔
2620
    0 < d2 < 3 &&
2621
    d1 != d2 ||
2622
        throw(ArgumentError("d1 and d2 must be either 1 or 2, exclusive."))
2623
    outdims = size(A)
51✔
2624
    offsets = scratch1
51✔
2625
    inneroffsets = scratch2
51✔
2626
    for a ∈ as
51✔
2627
        if isa(a, AbstractArray)
270✔
2628
            for ai ∈ a
266✔
2629
                @inbounds Ai = hvncat_calcindex(offsets, inneroffsets, outdims, N)
7,046✔
2630
                A[Ai] = ai
1,888✔
2631

2632
                @inbounds for j ∈ 1:N
1,888✔
2633
                    inneroffsets[j] += 1
4,152✔
2634
                    inneroffsets[j] < cat_size(a, j) && break
4,221✔
2635
                    inneroffsets[j] = 0
2,490✔
2636
                end
2,490✔
2637
            end
2,118✔
2638
        else
2639
            @inbounds Ai = hvncat_calcindex(offsets, inneroffsets, outdims, N)
52✔
2640
            A[Ai] = a
30✔
2641
        end
2642

2643
        @inbounds for j ∈ (d1, d2, 3:N...)
270✔
2644
            offsets[j] += cat_size(a, j)
599✔
2645
            offsets[j] < outdims[j] && break
518✔
2646
            offsets[j] = 0
304✔
2647
        end
304✔
2648
    end
270✔
2649
end
2650

2651
@propagate_inbounds function hvncat_calcindex(offsets::Vector{Int}, inneroffsets::Vector{Int},
1,915✔
2652
                                              outdims::Tuple{Vararg{Int}}, nd::Int)
2653
    Ai = inneroffsets[1] + offsets[1] + 1
1,915✔
2654
    for j ∈ 2:nd
1,915✔
2655
        increment = inneroffsets[j] + offsets[j]
7,098✔
2656
        for k ∈ 1:j-1
14,168✔
2657
            increment *= outdims[k]
17,209✔
2658
        end
27,320✔
2659
        Ai += increment
7,098✔
2660
    end
12,281✔
2661
    Ai
1,915✔
2662
end
2663

2664
"""
2665
    stack(iter; [dims])
2666

2667
Combine a collection of arrays (or other iterable objects) of equal size
2668
into one larger array, by arranging them along one or more new dimensions.
2669

2670
By default the axes of the elements are placed first,
2671
giving `size(result) = (size(first(iter))..., size(iter)...)`.
2672
This has the same order of elements as [`Iterators.flatten`](@ref)`(iter)`.
2673

2674
With keyword `dims::Integer`, instead the `i`th element of `iter` becomes the slice
2675
[`selectdim`](@ref)`(result, dims, i)`, so that `size(result, dims) == length(iter)`.
2676
In this case `stack` reverses the action of [`eachslice`](@ref) with the same `dims`.
2677

2678
The various [`cat`](@ref) functions also combine arrays. However, these all
2679
extend the arrays' existing (possibly trivial) dimensions, rather than placing
2680
the arrays along new dimensions.
2681
They also accept arrays as separate arguments, rather than a single collection.
2682

2683
!!! compat "Julia 1.9"
2684
    This function requires at least Julia 1.9.
2685

2686
# Examples
2687
```jldoctest
2688
julia> vecs = (1:2, [30, 40], Float32[500, 600]);
2689

2690
julia> mat = stack(vecs)
2691
2×3 Matrix{Float32}:
2692
 1.0  30.0  500.0
2693
 2.0  40.0  600.0
2694

2695
julia> mat == hcat(vecs...) == reduce(hcat, collect(vecs))
2696
true
2697

2698
julia> vec(mat) == vcat(vecs...) == reduce(vcat, collect(vecs))
2699
true
2700

2701
julia> stack(zip(1:4, 10:99))  # accepts any iterators of iterators
2702
2×4 Matrix{Int64}:
2703
  1   2   3   4
2704
 10  11  12  13
2705

2706
julia> vec(ans) == collect(Iterators.flatten(zip(1:4, 10:99)))
2707
true
2708

2709
julia> stack(vecs; dims=1)  # unlike any cat function, 1st axis of vecs[1] is 2nd axis of result
2710
3×2 Matrix{Float32}:
2711
   1.0    2.0
2712
  30.0   40.0
2713
 500.0  600.0
2714

2715
julia> x = rand(3,4);
2716

2717
julia> x == stack(eachcol(x)) == stack(eachrow(x), dims=1)  # inverse of eachslice
2718
true
2719
```
2720

2721
Higher-dimensional examples:
2722

2723
```jldoctest
2724
julia> A = rand(5, 7, 11);
2725

2726
julia> E = eachslice(A, dims=2);  # a vector of matrices
2727

2728
julia> (element = size(first(E)), container = size(E))
2729
(element = (5, 11), container = (7,))
2730

2731
julia> stack(E) |> size
2732
(5, 11, 7)
2733

2734
julia> stack(E) == stack(E; dims=3) == cat(E...; dims=3)
2735
true
2736

2737
julia> A == stack(E; dims=2)
2738
true
2739

2740
julia> M = (fill(10i+j, 2, 3) for i in 1:5, j in 1:7);
2741

2742
julia> (element = size(first(M)), container = size(M))
2743
(element = (2, 3), container = (5, 7))
2744

2745
julia> stack(M) |> size  # keeps all dimensions
2746
(2, 3, 5, 7)
2747

2748
julia> stack(M; dims=1) |> size  # vec(container) along dims=1
2749
(35, 2, 3)
2750

2751
julia> hvcat(5, M...) |> size  # hvcat puts matrices next to each other
2752
(14, 15)
2753
```
2754
"""
2755
stack(iter; dims=:) = _stack(dims, iter)
250✔
2756

2757
"""
2758
    stack(f, args...; [dims])
2759

2760
Apply a function to each element of a collection, and `stack` the result.
2761
Or to several collections, [`zip`](@ref)ped together.
2762

2763
The function should return arrays (or tuples, or other iterators) all of the same size.
2764
These become slices of the result, each separated along `dims` (if given) or by default
2765
along the last dimensions.
2766

2767
See also [`mapslices`](@ref), [`eachcol`](@ref).
2768

2769
# Examples
2770
```jldoctest
2771
julia> stack(c -> (c, c-32), "julia")
2772
2×5 Matrix{Char}:
2773
 'j'  'u'  'l'  'i'  'a'
2774
 'J'  'U'  'L'  'I'  'A'
2775

2776
julia> stack(eachrow([1 2 3; 4 5 6]), (10, 100); dims=1) do row, n
2777
         vcat(row, row .* n, row ./ n)
2778
       end
2779
2×9 Matrix{Float64}:
2780
 1.0  2.0  3.0   10.0   20.0   30.0  0.1   0.2   0.3
2781
 4.0  5.0  6.0  400.0  500.0  600.0  0.04  0.05  0.06
2782
```
2783
"""
2784
stack(f, iter; dims=:) = _stack(dims, f(x) for x in iter)
12✔
2785
stack(f, xs, yzs...; dims=:) = _stack(dims, f(xy...) for xy in zip(xs, yzs...))
2✔
2786

2787
_stack(dims::Union{Integer, Colon}, iter) = _stack(dims, IteratorSize(iter), iter)
165✔
2788

2789
_stack(dims, ::IteratorSize, iter) = _stack(dims, collect(iter))
21✔
2790

2791
function _stack(dims, ::Union{HasShape, HasLength}, iter)
122✔
2792
    S = @default_eltype iter
122✔
2793
    T = S != Union{} ? eltype(S) : Any  # Union{} occurs for e.g. stack(1,2), postpone the error
126✔
2794
    if isconcretetype(T)
122✔
2795
        _typed_stack(dims, T, S, iter)
103✔
2796
    else  # Need to look inside, but shouldn't run an expensive iterator twice:
2797
        array = iter isa Union{Tuple, AbstractArray} ? iter : collect(iter)
42✔
2798
        isempty(array) && return _empty_stack(dims, T, S, iter)
38✔
2799
        T2 = mapreduce(eltype, promote_type, array)
42✔
2800
        _typed_stack(dims, T2, eltype(array), array)
36✔
2801
    end
2802
end
2803

2804
function _typed_stack(::Colon, ::Type{T}, ::Type{S}, A, Aax=_iterator_axes(A)) where {T, S}
184✔
2805
    xit = iterate(A)
210✔
2806
    nothing === xit && return _empty_stack(:, T, S, A)
94✔
2807
    x1, _ = xit
94✔
2808
    ax1 = _iterator_axes(x1)
98✔
2809
    B = similar(_ensure_array(x1), T, ax1..., Aax...)
106✔
2810
    off = firstindex(B)
93✔
2811
    len = length(x1)
97✔
2812
    while xit !== nothing
2,563✔
2813
        x, state = xit
2,476✔
2814
        _stack_size_check(x, ax1)
4,654✔
2815
        copyto!(B, off, x)
2,474✔
2816
        off += len
2,470✔
2817
        xit = iterate(A, state)
3,798✔
2818
    end
2,470✔
2819
    B
87✔
2820
end
2821

2822
_iterator_axes(x) = _iterator_axes(x, IteratorSize(x))
9,238✔
2823
_iterator_axes(x, ::HasLength) = (OneTo(length(x)),)
462✔
2824
_iterator_axes(x, ::IteratorSize) = axes(x)
8,776✔
2825

2826
# For some dims values, stack(A; dims) == stack(vec(A)), and the : path will be faster
2827
_typed_stack(dims::Integer, ::Type{T}, ::Type{S}, A) where {T,S} =
51✔
2828
    _typed_stack(dims, T, S, IteratorSize(S), A)
2829
_typed_stack(dims::Integer, ::Type{T}, ::Type{S}, ::HasLength, A) where {T,S} =
13✔
2830
    _typed_stack(dims, T, S, HasShape{1}(), A)
2831
function _typed_stack(dims::Integer, ::Type{T}, ::Type{S}, ::HasShape{N}, A) where {T,S,N}
27✔
2832
    if dims == N+1
27✔
2833
        _typed_stack(:, T, S, A, (_vec_axis(A),))
4✔
2834
    else
2835
        _dim_stack(dims, T, S, A)
23✔
2836
    end
2837
end
2838
_typed_stack(dims::Integer, ::Type{T}, ::Type{S}, ::IteratorSize, A) where {T,S} =
2✔
2839
    _dim_stack(dims, T, S, A)
2840

2841
_vec_axis(A, ax=_iterator_axes(A)) = length(ax) == 1 ? only(ax) : OneTo(prod(length, ax; init=1))
50✔
2842

2843
@constprop :aggressive function _dim_stack(dims::Integer, ::Type{T}, ::Type{S}, A) where {T,S}
25✔
2844
    xit = Iterators.peel(A)
48✔
2845
    nothing === xit && return _empty_stack(dims, T, S, A)
25✔
2846
    x1, xrest = xit
25✔
2847
    ax1 = _iterator_axes(x1)
25✔
2848
    N1 = length(ax1)+1
24✔
2849
    dims in 1:N1 || throw(ArgumentError(LazyString("cannot stack slices ndims(x) = ", N1-1, " along dims = ", dims)))
27✔
2850

2851
    newaxis = _vec_axis(A)
21✔
2852
    outax = ntuple(d -> d==dims ? newaxis : ax1[d - (d>dims)], N1)
141✔
2853
    B = similar(_ensure_array(x1), T, outax...)
23✔
2854

2855
    if dims == 1
21✔
2856
        _dim_stack!(Val(1), B, x1, xrest)
13✔
2857
    elseif dims == 2
8✔
2858
        _dim_stack!(Val(2), B, x1, xrest)
4✔
2859
    else
2860
        _dim_stack!(Val(dims), B, x1, xrest)
4✔
2861
    end
2862
    B
18✔
2863
end
2864

2865
function _dim_stack!(::Val{dims}, B::AbstractArray, x1, xrest) where {dims}
21✔
2866
    before = ntuple(d -> Colon(), dims - 1)
33✔
2867
    after = ntuple(d -> Colon(), ndims(B) - dims)
49✔
2868

2869
    i = firstindex(B, dims)
21✔
2870
    copyto!(view(B, before..., i, after...), x1)
41✔
2871

2872
    for x in xrest
29✔
2873
        _stack_size_check(x, _iterator_axes(x1))
6,422✔
2874
        i += 1
3,261✔
2875
        @inbounds copyto!(view(B, before..., i, after...), x)
6,514✔
2876
    end
3,261✔
2877
end
2878

2879
@inline function _stack_size_check(x, ax1::Tuple)
5,740✔
2880
    if _iterator_axes(x) != ax1
11,107✔
2881
        uax1 = map(UnitRange, ax1)
9✔
2882
        uaxN = map(UnitRange, axes(x))
9✔
2883
        throw(DimensionMismatch(
9✔
2884
            LazyString("stack expects uniform slices, got axes(x) == ", uaxN, " while first had ", uax1)))
2885
    end
2886
end
2887

2888
_ensure_array(x::AbstractArray) = x
85✔
2889
_ensure_array(x) = 1:0  # passed to similar, makes stack's output an Array
29✔
2890

2891
_empty_stack(_...) = throw(ArgumentError("`stack` on an empty collection is not allowed"))
3✔
2892

2893

2894
## Reductions and accumulates ##
2895

2896
function isequal(A::AbstractArray, B::AbstractArray)
245,779✔
2897
    if A === B return true end
246,038✔
2898
    if axes(A) != axes(B)
487,543✔
2899
        return false
3,479✔
2900
    end
2901
    for (a, b) in zip(A, B)
483,501✔
2902
        if !isequal(a, b)
90,912,063✔
2903
            return false
566✔
2904
        end
2905
    end
181,378,130✔
2906
    return true
241,475✔
2907
end
2908

2909
function cmp(A::AbstractVector, B::AbstractVector)
291✔
2910
    for (a, b) in zip(A, B)
582✔
2911
        if !isequal(a, b)
712✔
2912
            return isless(a, b) ? -1 : 1
276✔
2913
        end
2914
    end
857✔
2915
    return cmp(length(A), length(B))
15✔
2916
end
2917

2918
"""
2919
    isless(A::AbstractVector, B::AbstractVector)
2920

2921
Return `true` when `A` is less than `B` in lexicographic order.
2922
"""
2923
isless(A::AbstractVector, B::AbstractVector) = cmp(A, B) < 0
282✔
2924

2925
function (==)(A::AbstractArray, B::AbstractArray)
6,561,727✔
2926
    if axes(A) != axes(B)
13,120,082✔
2927
        return false
3,546✔
2928
    end
2929
    anymissing = false
6,554,242✔
2930
    for (a, b) in zip(A, B)
12,230,023✔
2931
        eq = (a == b)
316,027,882✔
2932
        if ismissing(eq)
281,524,823✔
2933
            anymissing = true
24✔
2934
        elseif !eq
315,139,503✔
2935
            return false
2,497✔
2936
        end
2937
    end
624,604,792✔
2938
    return anymissing ? missing : true
6,555,811✔
2939
end
2940

2941
# _sub2ind and _ind2sub
2942
# fallbacks
2943
function _sub2ind(A::AbstractArray, I...)
785,915✔
2944
    @inline
785,915✔
2945
    _sub2ind(axes(A), I...)
2,169,206✔
2946
end
2947

2948
function _ind2sub(A::AbstractArray, ind)
417,357✔
2949
    @inline
417,357✔
2950
    _ind2sub(axes(A), ind)
417,357✔
2951
end
2952

2953
# 0-dimensional arrays and indexing with []
2954
_sub2ind(::Tuple{}) = 1
18✔
2955
_sub2ind(::DimsInteger) = 1
2✔
2956
_sub2ind(::Indices) = 1
×
2957
_sub2ind(::Tuple{}, I::Integer...) = (@inline; _sub2ind_recurse((), 1, 1, I...))
5✔
2958

2959
# Generic cases
2960
_sub2ind(dims::DimsInteger, I::Integer...) = (@inline; _sub2ind_recurse(dims, 1, 1, I...))
2,804,533,524✔
2961
_sub2ind(inds::Indices, I::Integer...) = (@inline; _sub2ind_recurse(inds, 1, 1, I...))
2,287,362✔
2962
# In 1d, there's a question of whether we're doing cartesian indexing
2963
# or linear indexing. Support only the former.
2964
_sub2ind(inds::Indices{1}, I::Integer...) =
1✔
2965
    throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
2966
_sub2ind(inds::Tuple{OneTo}, I::Integer...) = (@inline; _sub2ind_recurse(inds, 1, 1, I...)) # only OneTo is safe
×
2967
_sub2ind(inds::Tuple{OneTo}, i::Integer)    = i
×
2968

2969
_sub2ind_recurse(::Any, L, ind) = ind
1,914,010✔
2970
function _sub2ind_recurse(::Tuple{}, L, ind, i::Integer, I::Integer...)
1,804✔
2971
    @inline
867✔
2972
    _sub2ind_recurse((), L, ind+(i-1)*L, I...)
12,157✔
2973
end
2974
function _sub2ind_recurse(inds, L, ind, i::Integer, I::Integer...)
3,298,081✔
2975
    @inline
2,718,449✔
2976
    r1 = inds[1]
2,757,415✔
2977
    _sub2ind_recurse(tail(inds), nextL(L, r1), ind+offsetin(i, r1)*L, I...)
2,809,796,596✔
2978
end
2979

2980
nextL(L, l::Integer) = L*l
2,102,976✔
2981
nextL(L, r::AbstractUnitRange) = L*length(r)
2,800,540✔
2982
nextL(L, r::Slice) = L*length(r.indices)
×
2983
offsetin(i, l::Integer) = i-1
2,804,663,985✔
2984
offsetin(i, r::AbstractUnitRange) = i-first(r)
4,968,588✔
2985

2986
_ind2sub(::Tuple{}, ind::Integer) = (@inline; ind == 1 ? () : throw(BoundsError()))
×
2987
_ind2sub(dims::DimsInteger, ind::Integer) = (@inline; _ind2sub_recurse(dims, ind-1))
950✔
2988
_ind2sub(inds::Indices, ind::Integer)     = (@inline; _ind2sub_recurse(inds, ind-1))
417,342✔
2989
_ind2sub(inds::Indices{1}, ind::Integer) =
1✔
2990
    throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
2991
_ind2sub(inds::Tuple{OneTo}, ind::Integer) = (ind,)
39✔
2992

2993
_ind2sub_recurse(::Tuple{}, ind) = (ind+1,)
×
2994
function _ind2sub_recurse(indslast::NTuple{1}, ind)
418,292✔
2995
    @inline
418,292✔
2996
    (_lookup(ind, indslast[1]),)
418,292✔
2997
end
2998
function _ind2sub_recurse(inds, ind)
764,187✔
2999
    @inline
764,187✔
3000
    r1 = inds[1]
764,187✔
3001
    indnext, f, l = _div(ind, r1)
764,187✔
3002
    (ind-l*indnext+f, _ind2sub_recurse(tail(inds), indnext)...)
764,187✔
3003
end
3004

3005
_lookup(ind, d::Integer) = ind+1
950✔
3006
_lookup(ind, r::AbstractUnitRange) = ind+first(r)
417,342✔
3007
_div(ind, d::Integer) = div(ind, d), 1, d
950✔
3008
_div(ind, r::AbstractUnitRange) = (d = length(r); (div(ind, d), first(r), d))
1,526,474✔
3009

3010
# Vectorized forms
3011
function _sub2ind(inds::Indices{1}, I1::AbstractVector{T}, I::AbstractVector{T}...) where T<:Integer
×
3012
    throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
×
3013
end
3014
_sub2ind(inds::Tuple{OneTo}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} =
×
3015
    _sub2ind_vecs(inds, I1, I...)
3016
_sub2ind(inds::Union{DimsInteger,Indices}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} =
×
3017
    _sub2ind_vecs(inds, I1, I...)
3018
function _sub2ind_vecs(inds, I::AbstractVector...)
×
3019
    I1 = I[1]
×
3020
    Iinds = axes1(I1)
×
3021
    for j = 2:length(I)
×
3022
        axes1(I[j]) == Iinds || throw(DimensionMismatch("indices of I[1] ($(Iinds)) does not match indices of I[$j] ($(axes1(I[j])))"))
×
3023
    end
×
3024
    Iout = similar(I1)
×
3025
    _sub2ind!(Iout, inds, Iinds, I)
×
3026
    Iout
×
3027
end
3028

3029
function _sub2ind!(Iout, inds, Iinds, I)
×
3030
    @noinline
×
3031
    for i in Iinds
×
3032
        # Iout[i] = _sub2ind(inds, map(Ij -> Ij[i], I)...)
3033
        Iout[i] = sub2ind_vec(inds, i, I)
×
3034
    end
×
3035
    Iout
×
3036
end
3037

3038
sub2ind_vec(inds, i, I) = (@inline; _sub2ind(inds, _sub2ind_vec(i, I...)...))
×
3039
_sub2ind_vec(i, I1, I...) = (@inline; (I1[i], _sub2ind_vec(i, I...)...))
×
3040
_sub2ind_vec(i) = ()
×
3041

3042
function _ind2sub(inds::Union{DimsInteger{N},Indices{N}}, ind::AbstractVector{<:Integer}) where N
×
3043
    M = length(ind)
×
3044
    t = ntuple(n->similar(ind),Val(N))
×
3045
    for (i,idx) in pairs(IndexLinear(), ind)
×
3046
        sub = _ind2sub(inds, idx)
×
3047
        for j = 1:N
×
3048
            t[j][i] = sub[j]
×
3049
        end
×
3050
    end
×
3051
    t
×
3052
end
3053

3054
## iteration utilities ##
3055

3056
"""
3057
    foreach(f, c...) -> Nothing
3058

3059
Call function `f` on each element of iterable `c`.
3060
For multiple iterable arguments, `f` is called elementwise, and iteration stops when
3061
any iterator is finished.
3062

3063
`foreach` should be used instead of [`map`](@ref) when the results of `f` are not
3064
needed, for example in `foreach(println, array)`.
3065

3066
# Examples
3067
```jldoctest
3068
julia> tri = 1:3:7; res = Int[];
3069

3070
julia> foreach(x -> push!(res, x^2), tri)
3071

3072
julia> res
3073
3-element Vector{$(Int)}:
3074
  1
3075
 16
3076
 49
3077

3078
julia> foreach((x, y) -> println(x, " with ", y), tri, 'a':'z')
3079
1 with a
3080
4 with b
3081
7 with c
3082
```
3083
"""
3084
foreach(f) = (f(); nothing)
2✔
3085
foreach(f, itr) = (for x in itr; f(x); end; nothing)
258,578,164✔
3086
foreach(f, itrs...) = (for z in zip(itrs...); f(z...); end; nothing)
11✔
3087

3088
## map over arrays ##
3089

3090
## transform any set of dimensions
3091
## dims specifies which dimensions will be transformed. for example
3092
## dims==1:2 will call f on all slices A[:,:,...]
3093
"""
3094
    mapslices(f, A; dims)
3095

3096
Transform the given dimensions of array `A` by applying a function `f` on each slice
3097
of the form `A[..., :, ..., :, ...]`, with a colon at each `d` in `dims`. The results are
3098
concatenated along the remaining dimensions.
3099

3100
For example, if `dims = [1,2]` and `A` is 4-dimensional, then `f` is called on `x = A[:,:,i,j]`
3101
for all `i` and `j`, and `f(x)` becomes `R[:,:,i,j]` in the result `R`.
3102

3103
See also [`eachcol`](@ref) or [`eachslice`](@ref), used with [`map`](@ref) or [`stack`](@ref).
3104

3105
# Examples
3106
```jldoctest
3107
julia> A = reshape(1:30,(2,5,3))
3108
2×5×3 reshape(::UnitRange{$Int}, 2, 5, 3) with eltype $Int:
3109
[:, :, 1] =
3110
 1  3  5  7   9
3111
 2  4  6  8  10
3112

3113
[:, :, 2] =
3114
 11  13  15  17  19
3115
 12  14  16  18  20
3116

3117
[:, :, 3] =
3118
 21  23  25  27  29
3119
 22  24  26  28  30
3120

3121
julia> f(x::Matrix) = fill(x[1,1], 1,4);  # returns a 1×4 matrix
3122

3123
julia> B = mapslices(f, A, dims=(1,2))
3124
1×4×3 Array{$Int, 3}:
3125
[:, :, 1] =
3126
 1  1  1  1
3127

3128
[:, :, 2] =
3129
 11  11  11  11
3130

3131
[:, :, 3] =
3132
 21  21  21  21
3133

3134
julia> f2(x::AbstractMatrix) = fill(x[1,1], 1,4);
3135

3136
julia> B == stack(f2, eachslice(A, dims=3))
3137
true
3138

3139
julia> g(x) = x[begin] // x[end-1];  # returns a number
3140

3141
julia> mapslices(g, A, dims=[1,3])
3142
1×5×1 Array{Rational{$Int}, 3}:
3143
[:, :, 1] =
3144
 1//21  3//23  1//5  7//27  9//29
3145

3146
julia> map(g, eachslice(A, dims=2))
3147
5-element Vector{Rational{$Int}}:
3148
 1//21
3149
 3//23
3150
 1//5
3151
 7//27
3152
 9//29
3153

3154
julia> mapslices(sum, A; dims=(1,3)) == sum(A; dims=(1,3))
3155
true
3156
```
3157

3158
Notice that in `eachslice(A; dims=2)`, the specified dimension is the
3159
one *without* a colon in the slice. This is `view(A,:,i,:)`, whereas
3160
`mapslices(f, A; dims=(1,3))` uses `A[:,i,:]`. The function `f` may mutate
3161
values in the slice without affecting `A`.
3162
"""
3163
function mapslices(f, A::AbstractArray; dims)
892✔
3164
    isempty(dims) && return map(f, A)
446✔
3165

3166
    for d in dims
566✔
3167
        d isa Integer || throw(ArgumentError("mapslices: dimension must be an integer, got $d"))
881✔
3168
        d >= 1 || throw(ArgumentError("mapslices: dimension must be ≥ 1, got $d"))
882✔
3169
        # Indexing a matrix M[:,1,:] produces a 1-column matrix, but dims=(1,3) here
3170
        # would otherwise ignore 3, and slice M[:,i]. Previously this gave error:
3171
        # BoundsError: attempt to access 2-element Vector{Any} at index [3]
3172
        d > ndims(A) && throw(ArgumentError("mapslices does not accept dimensions > ndims(A) = $(ndims(A)), got $d"))
880✔
3173
    end
1,176✔
3174
    dim_mask = ntuple(d -> d in dims, ndims(A))
4,233✔
3175

3176
    # Apply the function to the first slice in order to determine the next steps
3177
    idx1 = ntuple(d -> d in dims ? (:) : firstindex(A,d), ndims(A))
3,156✔
3178
    Aslice = A[idx1...]
829✔
3179
    r1 = f(Aslice)
532✔
3180

3181
    res1 = if r1 isa AbstractArray && ndims(r1) > 0
447✔
3182
        n = sum(dim_mask)
29✔
3183
        if ndims(r1) > n && any(ntuple(d -> size(r1,d+n)>1, ndims(r1)-n))
33✔
3184
            s = size(r1)[1:n]
1✔
3185
            throw(DimensionMismatch("mapslices cannot assign slice f(x) of size $(size(r1)) into output of size $s"))
1✔
3186
        end
3187
        r1
28✔
3188
    else
3189
        # If the result of f on a single slice is a scalar then we add singleton
3190
        # dimensions. When adding the dimensions, we have to respect the
3191
        # index type of the input array (e.g. in the case of OffsetArrays)
3192
        _res1 = similar(Aslice, typeof(r1), reduced_indices(Aslice, 1:ndims(Aslice)))
432✔
3193
        _res1[begin] = r1
414✔
3194
        _res1
813✔
3195
    end
3196

3197
    # Determine result size and allocate. We always pad ndims(res1) out to length(dims):
3198
    din = Ref(0)
442✔
3199
    Rsize = ntuple(ndims(A)) do d
442✔
3200
        if d in dims
3,237✔
3201
            axes(res1, din[] += 1)
875✔
3202
        else
3203
            axes(A,d)
805✔
3204
        end
3205
    end
3206
    R = similar(res1, Rsize)
459✔
3207

3208
    # Determine iteration space. It will be convenient in the loop to mask N-dimensional
3209
    # CartesianIndices, with some trivial dimensions:
3210
    itershape = ntuple(d -> d in dims ? Base.OneTo(1) : axes(A,d), ndims(A))
3,151✔
3211
    indices = Iterators.drop(CartesianIndices(itershape), 1)
442✔
3212

3213
    # That skips the first element, which we already have:
3214
    ridx = ntuple(d -> d in dims ? Slice(axes(R,d)) : firstindex(A,d), ndims(A))
2,488✔
3215
    concatenate_setindex!(R, res1, ridx...)
455✔
3216

3217
    # In some cases, we can re-use the first slice for a dramatic performance
3218
    # increase. The slice itself must be mutable and the result cannot contain
3219
    # any mutable containers. The following errs on the side of being overly
3220
    # strict (#18570 & #21123).
3221
    safe_for_reuse = isa(Aslice, StridedArray) &&
448✔
3222
                     (isa(r1, Number) || (isa(r1, AbstractArray) && eltype(r1) <: Number))
3223

3224
    _inner_mapslices!(R, indices, f, A, dim_mask, Aslice, safe_for_reuse)
458✔
3225
    return R
442✔
3226
end
3227

3228
@noinline function _inner_mapslices!(R, indices, f, A, dim_mask, Aslice, safe_for_reuse)
442✔
3229
    must_extend = any(dim_mask .& size(R) .> 1)
2,010✔
3230
    if safe_for_reuse
442✔
3231
        # when f returns an array, R[ridx...] = f(Aslice) line copies elements,
3232
        # so we can reuse Aslice
3233
        for I in indices
418✔
3234
            idx = ifelse.(dim_mask, Slice.(axes(A)), Tuple(I))
11,173✔
3235
            _unsafe_getindex!(Aslice, A, idx...)
11,173✔
3236
            r = f(Aslice)
15,359✔
3237
            if r isa AbstractArray || must_extend
11,173✔
3238
                ridx = ifelse.(dim_mask, Slice.(axes(R)), Tuple(I))
65✔
3239
                R[ridx...] = r
104✔
3240
            else
3241
                ridx = ifelse.(dim_mask, first.(axes(R)), Tuple(I))
11,108✔
3242
                R[ridx...] = r
11,108✔
3243
            end
3244
        end
11,173✔
3245
    else
3246
        # we can't guarantee safety (#18524), so allocate new storage for each slice
3247
        for I in indices
74✔
3248
            idx = ifelse.(dim_mask, Slice.(axes(A)), Tuple(I))
1,857✔
3249
            ridx = ifelse.(dim_mask, Slice.(axes(R)), Tuple(I))
1,857✔
3250
            concatenate_setindex!(R, f(A[idx...]), ridx...)
1,870✔
3251
        end
1,857✔
3252
    end
3253
end
3254

3255
concatenate_setindex!(R, v, I...) = (R[I...] .= (v,); R)
3,702✔
3256
concatenate_setindex!(R, X::AbstractArray, I...) = (R[I...] = X)
448✔
3257

3258
## 0 arguments
3259

3260
map(f) = f()
1✔
3261

3262
## 1 argument
3263

3264
function map!(f::F, dest::AbstractArray, A::AbstractArray) where F
3,390✔
3265
    for (i,j) in zip(eachindex(dest),eachindex(A))
296,616,589✔
3266
        val = f(@inbounds A[j])
299,392,523✔
3267
        @inbounds dest[i] = val
178,564,461✔
3268
    end
221,190,852✔
3269
    return dest
160,880,717✔
3270
end
3271

3272
# map on collections
3273
map(f, A::AbstractArray) = collect_similar(A, Generator(f,A))
105,552✔
3274

3275
mapany(f, A::AbstractArray) = map!(f, Vector{Any}(undef, length(A)), A)
2,726✔
3276
mapany(f, itr) = Any[f(x) for x in itr]
×
3277

3278
"""
3279
    map(f, c...) -> collection
3280

3281
Transform collection `c` by applying `f` to each element. For multiple collection arguments,
3282
apply `f` elementwise, and stop when any of them is exhausted.
3283

3284
See also [`map!`](@ref), [`foreach`](@ref), [`mapreduce`](@ref), [`mapslices`](@ref), [`zip`](@ref), [`Iterators.map`](@ref).
3285

3286
# Examples
3287
```jldoctest
3288
julia> map(x -> x * 2, [1, 2, 3])
3289
3-element Vector{Int64}:
3290
 2
3291
 4
3292
 6
3293

3294
julia> map(+, [1, 2, 3], [10, 20, 30, 400, 5000])
3295
3-element Vector{Int64}:
3296
 11
3297
 22
3298
 33
3299
```
3300
"""
3301
map(f, A) = collect(Generator(f,A)) # default to returning an Array for `map` on general iterators
405✔
3302

3303
map(f, ::AbstractDict) = error("map is not defined on dictionaries")
1✔
3304
map(f, ::AbstractSet) = error("map is not defined on sets")
1✔
3305

3306
## 2 argument
3307
function map!(f::F, dest::AbstractArray, A::AbstractArray, B::AbstractArray) where F
370✔
3308
    for (i, j, k) in zip(eachindex(dest), eachindex(A), eachindex(B))
727✔
3309
        @inbounds a, b = A[j], B[k]
387,545✔
3310
        val = f(a, b)
338,222✔
3311
        @inbounds dest[i] = val
338,222✔
3312
    end
676,087✔
3313
    return dest
370✔
3314
end
3315

3316
## N argument
3317

3318
@inline ith_all(i, ::Tuple{}) = ()
4,030✔
3319
function ith_all(i, as)
12,090✔
3320
    @_propagate_inbounds_meta
12,090✔
3321
    return (as[1][i], ith_all(i, tail(as))...)
18,930✔
3322
end
3323

3324
function map_n!(f::F, dest::AbstractArray, As) where F
46✔
3325
    idxs1 = LinearIndices(As[1])
46✔
3326
    @boundscheck LinearIndices(dest) == idxs1 && all(x -> LinearIndices(x) == idxs1, As)
368✔
3327
    for i = idxs1
92✔
3328
        @inbounds I = ith_all(i, As)
6,550✔
3329
        val = f(I...)
4,030✔
3330
        @inbounds dest[i] = val
4,030✔
3331
    end
8,014✔
3332
    return dest
46✔
3333
end
3334

3335
"""
3336
    map!(function, destination, collection...)
3337

3338
Like [`map`](@ref), but stores the result in `destination` rather than a new
3339
collection. `destination` must be at least as large as the smallest collection.
3340

3341
See also: [`map`](@ref), [`foreach`](@ref), [`zip`](@ref), [`copyto!`](@ref).
3342

3343
# Examples
3344
```jldoctest
3345
julia> a = zeros(3);
3346

3347
julia> map!(x -> x * 2, a, [1, 2, 3]);
3348

3349
julia> a
3350
3-element Vector{Float64}:
3351
 2.0
3352
 4.0
3353
 6.0
3354

3355
julia> map!(+, zeros(Int, 5), 100:999, 1:3)
3356
5-element Vector{$(Int)}:
3357
 101
3358
 103
3359
 105
3360
   0
3361
   0
3362
```
3363
"""
3364
function map!(f::F, dest::AbstractArray, As::AbstractArray...) where {F}
47✔
3365
    isempty(As) && throw(ArgumentError(
47✔
3366
        """map! requires at least one "source" argument"""))
3367
    map_n!(f, dest, As)
46✔
3368
end
3369

3370
"""
3371
    map(f, A::AbstractArray...) -> N-array
3372

3373
When acting on multi-dimensional arrays of the same [`ndims`](@ref),
3374
they must all have the same [`axes`](@ref), and the answer will too.
3375

3376
See also [`broadcast`](@ref), which allows mismatched sizes.
3377

3378
# Examples
3379
```
3380
julia> map(//, [1 2; 3 4], [4 3; 2 1])
3381
2×2 Matrix{Rational{$Int}}:
3382
 1//4  2//3
3383
 3//2  4//1
3384

3385
julia> map(+, [1 2; 3 4], zeros(2,1))
3386
ERROR: DimensionMismatch
3387

3388
julia> map(+, [1 2; 3 4], [1,10,100,1000], zeros(3,1))  # iterates until 3rd is exhausted
3389
3-element Vector{Float64}:
3390
   2.0
3391
  13.0
3392
 102.0
3393
```
3394
"""
3395
map(f, iters...) = collect(Generator(f, iters...))
1,248✔
3396

3397
# multi-item push!, pushfirst! (built on top of type-specific 1-item version)
3398
# (note: must not cause a dispatch loop when 1-item case is not defined)
3399
push!(A, a, b) = push!(push!(A, a), b)
959✔
3400
push!(A, a, b, c...) = push!(push!(A, a, b), c...)
2✔
3401
pushfirst!(A, a, b) = pushfirst!(pushfirst!(A, b), a)
×
3402
pushfirst!(A, a, b, c...) = pushfirst!(pushfirst!(A, c...), a, b)
2✔
3403

3404
## hashing AbstractArray ##
3405

3406
const hash_abstractarray_seed = UInt === UInt64 ? 0x7e2d6fb6448beb77 : 0xd4514ce5
3407
function hash(A::AbstractArray, h::UInt)
13,779✔
3408
    h += hash_abstractarray_seed
13,779✔
3409
    # Axes are themselves AbstractArrays, so hashing them directly would stack overflow
3410
    # Instead hash the tuple of firsts and lasts along each dimension
3411
    h = hash(map(first, axes(A)), h)
13,836✔
3412
    h = hash(map(last, axes(A)), h)
13,836✔
3413

3414
    # For short arrays, it's not worth doing anything complicated
3415
    if length(A) < 8192
13,836✔
3416
        for x in A
18,186✔
3417
            h = hash(x, h)
384,744✔
3418
        end
434,608✔
3419
        return h
13,775✔
3420
    end
3421

3422
    # Goal: Hash approximately log(N) entries with a higher density of hashed elements
3423
    # weighted towards the end and special consideration for repeated values. Colliding
3424
    # hashes will often subsequently be compared by equality -- and equality between arrays
3425
    # works elementwise forwards and is short-circuiting. This means that a collision
3426
    # between arrays that differ by elements at the beginning is cheaper than one where the
3427
    # difference is towards the end. Furthermore, choosing `log(N)` arbitrary entries from a
3428
    # sparse array will likely only choose the same element repeatedly (zero in this case).
3429

3430
    # To achieve this, we work backwards, starting by hashing the last element of the
3431
    # array. After hashing each element, we skip `fibskip` elements, where `fibskip`
3432
    # is pulled from the Fibonacci sequence -- Fibonacci was chosen as a simple
3433
    # ~O(log(N)) algorithm that ensures we don't hit a common divisor of a dimension
3434
    # and only end up hashing one slice of the array (as might happen with powers of
3435
    # two). Finally, we find the next distinct value from the one we just hashed.
3436

3437
    # This is a little tricky since skipping an integer number of values inherently works
3438
    # with linear indices, but `findprev` uses `keys`. Hoist out the conversion "maps":
3439
    ks = keys(A)
4✔
3440
    key_to_linear = LinearIndices(ks) # Index into this map to compute the linear index
4✔
3441
    linear_to_key = vec(ks)           # And vice-versa
4✔
3442

3443
    # Start at the last index
3444
    keyidx = last(ks)
4✔
3445
    linidx = key_to_linear[keyidx]
4✔
3446
    fibskip = prevfibskip = oneunit(linidx)
4✔
3447
    first_linear = first(LinearIndices(linear_to_key))
4✔
3448
    n = 0
4✔
3449
    while true
28,192✔
3450
        n += 1
28,192✔
3451
        # Hash the element
3452
        elt = A[keyidx]
28,192✔
3453
        h = hash(keyidx=>elt, h)
28,192✔
3454

3455
        # Skip backwards a Fibonacci number of indices -- this is a linear index operation
3456
        linidx = key_to_linear[keyidx]
28,192✔
3457
        linidx < fibskip + first_linear && break
28,192✔
3458
        linidx -= fibskip
28,188✔
3459
        keyidx = linear_to_key[linidx]
28,188✔
3460

3461
        # Only increase the Fibonacci skip once every N iterations. This was chosen
3462
        # to be big enough that all elements of small arrays get hashed while
3463
        # obscenely large arrays are still tractable. With a choice of N=4096, an
3464
        # entirely-distinct 8000-element array will have ~75% of its elements hashed,
3465
        # with every other element hashed in the first half of the array. At the same
3466
        # time, hashing a `typemax(Int64)`-length Float64 range takes about a second.
3467
        if rem(n, 4096) == 0
28,188✔
3468
            fibskip, prevfibskip = fibskip + prevfibskip, fibskip
4✔
3469
        end
3470

3471
        # Find a key index with a value distinct from `elt` -- might be `keyidx` itself
3472
        keyidx = findprev(!isequal(elt), A, keyidx)
56,376✔
3473
        keyidx === nothing && break
28,188✔
3474
    end
28,188✔
3475

3476
    return h
4✔
3477
end
3478

3479
# The semantics of `collect` are weird. Better to write our own
3480
function rest(a::AbstractArray{T}, state...) where {T}
11✔
3481
    v = Vector{T}(undef, 0)
11✔
3482
    # assume only very few items are taken from the front
3483
    sizehint!(v, length(a))
11✔
3484
    return foldl(push!, Iterators.rest(a, state...), init=v)
11✔
3485
end
3486

3487

3488
## keepat! ##
3489

3490
# NOTE: since these use `@inbounds`, they are actually only intended for Vector and BitVector
3491

3492
function _keepat!(a::AbstractVector, inds)
11✔
3493
    local prev
11✔
3494
    i = firstindex(a)
11✔
3495
    for k in inds
19✔
3496
        if @isdefined(prev)
34✔
3497
            prev < k || throw(ArgumentError("indices must be unique and sorted"))
27✔
3498
        end
3499
        ak = a[k] # must happen even when i==k for bounds checking
32✔
3500
        if i != k
29✔
3501
            @inbounds a[i] = ak # k > i, so a[i] is inbounds
13✔
3502
        end
3503
        prev = k
29✔
3504
        i = nextind(a, i)
29✔
3505
    end
51✔
3506
    deleteat!(a, i:lastindex(a))
11✔
3507
    return a
6✔
3508
end
3509

3510
function _keepat!(a::AbstractVector, m::AbstractVector{Bool})
5✔
3511
    length(m) == length(a) || throw(BoundsError(a, m))
7✔
3512
    j = firstindex(a)
3✔
3513
    for i in eachindex(a, m)
5✔
3514
        @inbounds begin
20✔
3515
            if m[i]
20✔
3516
                i == j || (a[j] = a[i])
18✔
3517
                j = nextind(a, j)
10✔
3518
            end
3519
        end
3520
    end
38✔
3521
    deleteat!(a, j:lastindex(a))
3✔
3522
end
3523

3524
## 1-d circshift ##
3525
function circshift!(a::AbstractVector, shift::Integer)
1,119✔
3526
    n = length(a)
1,119✔
3527
    n == 0 && return
1,119✔
3528
    shift = mod(shift, n)
2,238✔
3529
    shift == 0 && return
1,119✔
3530
    l = lastindex(a)
753✔
3531
    reverse!(a, firstindex(a), l-shift)
753✔
3532
    reverse!(a, l-shift+1, lastindex(a))
753✔
3533
    reverse!(a)
753✔
3534
    return a
753✔
3535
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc