• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

JuliaLang / julia / #37575

pending completion
#37575

push

local

web-flow
Name LLVM variables from codegen (#50094)

72701 of 84227 relevant lines covered (86.32%)

33561253.47 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

92.05
/base/abstractarray.jl
1
# This file is a part of Julia. License is MIT: https://julialang.org/license
2

3
## Basic functions ##
4

5
"""
6
    AbstractArray{T,N}
7

8
Supertype for `N`-dimensional arrays (or array-like types) with elements of type `T`.
9
[`Array`](@ref) and other types are subtypes of this. See the manual section on the
10
[`AbstractArray` interface](@ref man-interface-array).
11

12
See also: [`AbstractVector`](@ref), [`AbstractMatrix`](@ref), [`eltype`](@ref), [`ndims`](@ref).
13
"""
14
AbstractArray
15

16
convert(::Type{T}, a::T) where {T<:AbstractArray} = a
62,888✔
17
convert(::Type{AbstractArray{T}}, a::AbstractArray) where {T} = AbstractArray{T}(a)::AbstractArray{T}
11,585✔
18
convert(::Type{AbstractArray{T,N}}, a::AbstractArray{<:Any,N}) where {T,N} = AbstractArray{T,N}(a)::AbstractArray{T,N}
13,371✔
19

20
"""
21
    size(A::AbstractArray, [dim])
22

23
Return a tuple containing the dimensions of `A`. Optionally you can specify a
24
dimension to just get the length of that dimension.
25

26
Note that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref)
27
may be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices).
28

29
See also: [`length`](@ref), [`ndims`](@ref), [`eachindex`](@ref), [`sizeof`](@ref).
30

31
# Examples
32
```jldoctest
33
julia> A = fill(1, (2,3,4));
34

35
julia> size(A)
36
(2, 3, 4)
37

38
julia> size(A, 2)
39
3
40
```
41
"""
42
size(t::AbstractArray{T,N}, d) where {T,N} = d::Integer <= N ? size(t)[d] : 1
1,016,586✔
43

44
"""
45
    axes(A, d)
46

47
Return the valid range of indices for array `A` along dimension `d`.
48

49
See also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices).
50

51
# Examples
52

53
```jldoctest
54
julia> A = fill(1, (5,6,7));
55

56
julia> axes(A, 2)
57
Base.OneTo(6)
58

59
julia> axes(A, 4) == 1:1  # all dimensions d > ndims(A) have size 1
60
true
61
```
62

63
# Usage note
64

65
Each of the indices has to be an `AbstractUnitRange{<:Integer}`, but at the same time can be
66
a type that uses custom indices. So, for example, if you need a subset, use generalized
67
indexing constructs like `begin`/`end` or [`firstindex`](@ref)/[`lastindex`](@ref):
68

69
```julia
70
ix = axes(v, 1)
71
ix[2:end]          # will work for eg Vector, but may fail in general
72
ix[(begin+1):end]  # works for generalized indexes
73
```
74
"""
75
function axes(A::AbstractArray{T,N}, d) where {T,N}
888,923✔
76
    @inline
887,411✔
77
    d::Integer <= N ? axes(A)[d] : OneTo(1)
895,212✔
78
end
79

80
"""
81
    axes(A)
82

83
Return the tuple of valid indices for array `A`.
84

85
See also: [`size`](@ref), [`keys`](@ref), [`eachindex`](@ref).
86

87
# Examples
88

89
```jldoctest
90
julia> A = fill(1, (5,6,7));
91

92
julia> axes(A)
93
(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))
94
```
95
"""
96
function axes(A)
207,009,869✔
97
    @inline
106,963,856✔
98
    map(oneto, size(A))
4,823,404,074✔
99
end
100

101
"""
102
    has_offset_axes(A)
103
    has_offset_axes(A, B, ...)
104

105
Return `true` if the indices of `A` start with something other than 1 along any axis.
106
If multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`.
107

108
See also [`require_one_based_indexing`](@ref).
109
"""
110
has_offset_axes(A) = _any_tuple(x->Int(first(x))::Int != 1, false, axes(A)...)
830,917✔
111
has_offset_axes(A::AbstractVector) = Int(firstindex(A))::Int != 1 # improve performance of a common case (ranges)
254,416✔
112
# Use `_any_tuple` to avoid unneeded invoke.
113
# note: this could call `any` directly if the compiler can infer it
114
has_offset_axes(As...) = _any_tuple(has_offset_axes, false, As...)
501,198✔
115
has_offset_axes(::Colon) = false
67✔
116
has_offset_axes(::Array) = false
549,451✔
117

118
"""
119
    require_one_based_indexing(A::AbstractArray)
120
    require_one_based_indexing(A,B...)
121

122
Throw an `ArgumentError` if the indices of any argument start with something other than `1` along any axis.
123
See also [`has_offset_axes`](@ref).
124

125
!!! compat "Julia 1.2"
126
     This function requires at least Julia 1.2.
127
"""
128
require_one_based_indexing(A...) = !has_offset_axes(A...) || throw(ArgumentError("offset arrays are not supported but got an array with index other than 1"))
1,404,930✔
129

130
# Performance optimization: get rid of a branch on `d` in `axes(A, d)`
131
# for d=1. 1d arrays are heavily used, and the first dimension comes up
132
# in other applications.
133
axes1(A::AbstractArray{<:Any,0}) = OneTo(1)
×
134
axes1(A::AbstractArray) = (@inline; axes(A)[1])
4,909,602,756✔
135
axes1(iter) = oneto(length(iter))
1✔
136

137
"""
138
    keys(a::AbstractArray)
139

140
Return an efficient array describing all valid indices for `a` arranged in the shape of `a` itself.
141

142
The keys of 1-dimensional arrays (vectors) are integers, whereas all other N-dimensional
143
arrays use [`CartesianIndex`](@ref) to describe their locations.  Often the special array
144
types [`LinearIndices`](@ref) and [`CartesianIndices`](@ref) are used to efficiently
145
represent these arrays of integers and `CartesianIndex`es, respectively.
146

147
Note that the `keys` of an array might not be the most efficient index type; for maximum
148
performance use  [`eachindex`](@ref) instead.
149

150
# Examples
151
```jldoctest
152
julia> keys([4, 5, 6])
153
3-element LinearIndices{1, Tuple{Base.OneTo{Int64}}}:
154
 1
155
 2
156
 3
157

158
julia> keys([4 5; 6 7])
159
CartesianIndices((2, 2))
160
```
161
"""
162
keys(a::AbstractArray) = CartesianIndices(axes(a))
29,071✔
163
keys(a::AbstractVector) = LinearIndices(a)
45,257,342✔
164

165
"""
166
    keytype(T::Type{<:AbstractArray})
167
    keytype(A::AbstractArray)
168

169
Return the key type of an array. This is equal to the
170
[`eltype`](@ref) of the result of `keys(...)`, and is provided
171
mainly for compatibility with the dictionary interface.
172

173
# Examples
174
```jldoctest
175
julia> keytype([1, 2, 3]) == Int
176
true
177

178
julia> keytype([1 2; 3 4])
179
CartesianIndex{2}
180
```
181

182
!!! compat "Julia 1.2"
183
     For arrays, this function requires at least Julia 1.2.
184
"""
185
keytype(a::AbstractArray) = keytype(typeof(a))
21,597,992✔
186
keytype(::Type{Union{}}, slurp...) = eltype(Union{})
×
187

188
keytype(A::Type{<:AbstractArray}) = CartesianIndex{ndims(A)}
2✔
189
keytype(A::Type{<:AbstractVector}) = Int
21,597,992✔
190

191
valtype(a::AbstractArray) = valtype(typeof(a))
15✔
192
valtype(::Type{Union{}}, slurp...) = eltype(Union{})
×
193

194
"""
195
    valtype(T::Type{<:AbstractArray})
196
    valtype(A::AbstractArray)
197

198
Return the value type of an array. This is identical to [`eltype`](@ref) and is
199
provided mainly for compatibility with the dictionary interface.
200

201
# Examples
202
```jldoctest
203
julia> valtype(["one", "two", "three"])
204
String
205
```
206

207
!!! compat "Julia 1.2"
208
     For arrays, this function requires at least Julia 1.2.
209
"""
210
valtype(A::Type{<:AbstractArray}) = eltype(A)
17✔
211

212
prevind(::AbstractArray, i::Integer) = Int(i)-1
146,725✔
213
nextind(::AbstractArray, i::Integer) = Int(i)+1
178,039,162✔
214

215

216
"""
217
    eltype(type)
218

219
Determine the type of the elements generated by iterating a collection of the given `type`.
220
For dictionary types, this will be a `Pair{KeyType,ValType}`. The definition
221
`eltype(x) = eltype(typeof(x))` is provided for convenience so that instances can be passed
222
instead of types. However the form that accepts a type argument should be defined for new
223
types.
224

225
See also: [`keytype`](@ref), [`typeof`](@ref).
226

227
# Examples
228
```jldoctest
229
julia> eltype(fill(1f0, (2,2)))
230
Float32
231

232
julia> eltype(fill(0x1, (2,2)))
233
UInt8
234
```
235
"""
236
eltype(::Type) = Any
13,934✔
237
eltype(::Type{Bottom}, slurp...) = throw(ArgumentError("Union{} does not have elements"))
5✔
238
eltype(x) = eltype(typeof(x))
4,671,161✔
239
eltype(::Type{<:AbstractArray{E}}) where {E} = @isdefined(E) ? E : Any
2,727,421✔
240

241
"""
242
    elsize(type)
243

244
Compute the memory stride in bytes between consecutive elements of [`eltype`](@ref)
245
stored inside the given `type`, if the array elements are stored densely with a
246
uniform linear stride.
247

248
# Examples
249
```jldoctest
250
julia> Base.elsize(rand(Float32, 10))
251
4
252
```
253
"""
254
elsize(A::AbstractArray) = elsize(typeof(A))
1,686,225✔
255

256
"""
257
    ndims(A::AbstractArray) -> Integer
258

259
Return the number of dimensions of `A`.
260

261
See also: [`size`](@ref), [`axes`](@ref).
262

263
# Examples
264
```jldoctest
265
julia> A = fill(1, (3,4,5));
266

267
julia> ndims(A)
268
3
269
```
270
"""
271
ndims(::AbstractArray{T,N}) where {T,N} = N
864,297✔
272
ndims(::Type{<:AbstractArray{<:Any,N}}) where {N} = N
57✔
273
ndims(::Type{Union{}}, slurp...) = throw(ArgumentError("Union{} does not have elements"))
×
274

275
"""
276
    length(collection) -> Integer
277

278
Return the number of elements in the collection.
279

280
Use [`lastindex`](@ref) to get the last valid index of an indexable collection.
281

282
See also: [`size`](@ref), [`ndims`](@ref), [`eachindex`](@ref).
283

284
# Examples
285
```jldoctest
286
julia> length(1:5)
287
5
288

289
julia> length([1, 2, 3, 4])
290
4
291

292
julia> length([1 2; 3 4])
293
4
294
```
295
"""
296
length
297

298
"""
299
    length(A::AbstractArray)
300

301
Return the number of elements in the array, defaults to `prod(size(A))`.
302

303
# Examples
304
```jldoctest
305
julia> length([1, 2, 3, 4])
306
4
307

308
julia> length([1 2; 3 4])
309
4
310
```
311
"""
312
length(t::AbstractArray) = (@inline; prod(size(t)))
15,664,229✔
313

314
# `eachindex` is mostly an optimization of `keys`
315
eachindex(itrs...) = keys(itrs...)
255✔
316

317
# eachindex iterates over all indices. IndexCartesian definitions are later.
318
eachindex(A::AbstractVector) = (@inline(); axes1(A))
887,276,105✔
319

320

321
@noinline function throw_eachindex_mismatch_indices(::IndexLinear, inds...)
1✔
322
    throw(DimensionMismatch("all inputs to eachindex must have the same indices, got $(join(inds, ", ", " and "))"))
1✔
323
end
324
@noinline function throw_eachindex_mismatch_indices(::IndexCartesian, inds...)
1✔
325
    throw(DimensionMismatch("all inputs to eachindex must have the same axes, got $(join(inds, ", ", " and "))"))
1✔
326
end
327

328
"""
329
    eachindex(A...)
330
    eachindex(::IndexStyle, A::AbstractArray...)
331

332
Create an iterable object for visiting each index of an `AbstractArray` `A` in an efficient
333
manner. For array types that have opted into fast linear indexing (like `Array`), this is
334
simply the range `1:length(A)` if they use 1-based indexing.
335
For array types that have not opted into fast linear indexing, a specialized Cartesian
336
range is typically returned to efficiently index into the array with indices specified
337
for every dimension.
338

339
In general `eachindex` accepts arbitrary iterables, including strings and dictionaries, and returns
340
an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
341

342
If `A` is `AbstractArray` it is possible to explicitly specify the style of the indices that
343
should be returned by `eachindex` by passing a value having `IndexStyle` type as its first argument
344
(typically `IndexLinear()` if linear indices are required or `IndexCartesian()` if Cartesian
345
range is wanted).
346

347
If you supply more than one `AbstractArray` argument, `eachindex` will create an
348
iterable object that is fast for all arguments (typically a [`UnitRange`](@ref)
349
if all inputs have fast linear indexing, a [`CartesianIndices`](@ref) otherwise).
350
If the arrays have different sizes and/or dimensionalities, a `DimensionMismatch` exception
351
will be thrown.
352

353
See also [`pairs`](@ref)`(A)` to iterate over indices and values together,
354
and [`axes`](@ref)`(A, 2)` for valid indices along one dimension.
355

356
# Examples
357
```jldoctest
358
julia> A = [10 20; 30 40];
359

360
julia> for i in eachindex(A) # linear indexing
361
           println("A[", i, "] == ", A[i])
362
       end
363
A[1] == 10
364
A[2] == 30
365
A[3] == 20
366
A[4] == 40
367

368
julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing
369
           println(i)
370
       end
371
CartesianIndex(1, 1)
372
CartesianIndex(2, 1)
373
```
374
"""
375
eachindex(A::AbstractArray) = (@inline(); eachindex(IndexStyle(A), A))
135,626✔
376

377
function eachindex(A::AbstractArray, B::AbstractArray)
37✔
378
    @inline
37✔
379
    eachindex(IndexStyle(A,B), A, B)
37✔
380
end
381
function eachindex(A::AbstractArray, B::AbstractArray...)
×
382
    @inline
×
383
    eachindex(IndexStyle(A,B...), A, B...)
×
384
end
385
eachindex(::IndexLinear, A::AbstractArray) = (@inline; oneto(length(A)))
11,688,988✔
386
eachindex(::IndexLinear, A::AbstractVector) = (@inline; axes1(A))
3,822,718,287✔
387
function eachindex(::IndexLinear, A::AbstractArray, B::AbstractArray...)
34✔
388
    @inline
34✔
389
    indsA = eachindex(IndexLinear(), A)
34✔
390
    _all_match_first(X->eachindex(IndexLinear(), X), indsA, B...) ||
69✔
391
        throw_eachindex_mismatch_indices(IndexLinear(), eachindex(A), eachindex.(B)...)
392
    indsA
33✔
393
end
394
function _all_match_first(f::F, inds, A, B...) where F<:Function
39✔
395
    @inline
39✔
396
    (inds == f(A)) & _all_match_first(f, inds, B...)
43✔
397
end
398
_all_match_first(f::F, inds) where F<:Function = true
39✔
399

400
# keys with an IndexStyle
401
keys(s::IndexStyle, A::AbstractArray, B::AbstractArray...) = eachindex(s, A, B...)
×
402

403
"""
404
    lastindex(collection) -> Integer
405
    lastindex(collection, d) -> Integer
406

407
Return the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`.
408

409
The syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and
410
`A[lastindex(A, 1), lastindex(A, 2)]`, respectively.
411

412
See also: [`axes`](@ref), [`firstindex`](@ref), [`eachindex`](@ref), [`prevind`](@ref).
413

414
# Examples
415
```jldoctest
416
julia> lastindex([1,2,4])
417
3
418

419
julia> lastindex(rand(3,4,5), 2)
420
4
421
```
422
"""
423
lastindex(a::AbstractArray) = (@inline; last(eachindex(IndexLinear(), a)))
1,185,294,092✔
424
lastindex(a, d) = (@inline; last(axes(a, d)))
3,437✔
425

426
"""
427
    firstindex(collection) -> Integer
428
    firstindex(collection, d) -> Integer
429

430
Return the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`.
431

432
The syntaxes `A[begin]` and `A[1, begin]` lower to `A[firstindex(A)]` and
433
`A[1, firstindex(A, 2)]`, respectively.
434

435
See also: [`first`](@ref), [`axes`](@ref), [`lastindex`](@ref), [`nextind`](@ref).
436

437
# Examples
438
```jldoctest
439
julia> firstindex([1,2,4])
440
1
441

442
julia> firstindex(rand(3,4,5), 2)
443
1
444
```
445
"""
446
firstindex(a::AbstractArray) = (@inline; first(eachindex(IndexLinear(), a)))
1,973,010✔
447
firstindex(a, d) = (@inline; first(axes(a, d)))
2,677✔
448

449
first(a::AbstractArray) = a[first(eachindex(a))]
1,139,427✔
450

451
"""
452
    first(coll)
453

454
Get the first element of an iterable collection. Return the start point of an
455
[`AbstractRange`](@ref) even if it is empty.
456

457
See also: [`only`](@ref), [`firstindex`](@ref), [`last`](@ref).
458

459
# Examples
460
```jldoctest
461
julia> first(2:2:10)
462
2
463

464
julia> first([1; 2; 3; 4])
465
1
466
```
467
"""
468
function first(itr)
3,141,057✔
469
    x = iterate(itr)
6,278,831✔
470
    x === nothing && throw(ArgumentError("collection must be non-empty"))
3,141,058✔
471
    x[1]
3,141,057✔
472
end
473

474
"""
475
    first(itr, n::Integer)
476

477
Get the first `n` elements of the iterable collection `itr`, or fewer elements if `itr` is not
478
long enough.
479

480
See also: [`startswith`](@ref), [`Iterators.take`](@ref).
481

482
!!! compat "Julia 1.6"
483
    This method requires at least Julia 1.6.
484

485
# Examples
486
```jldoctest
487
julia> first(["foo", "bar", "qux"], 2)
488
2-element Vector{String}:
489
 "foo"
490
 "bar"
491

492
julia> first(1:6, 10)
493
1:6
494

495
julia> first(Bool[], 1)
496
Bool[]
497
```
498
"""
499
first(itr, n::Integer) = collect(Iterators.take(itr, n))
34✔
500
# Faster method for vectors
501
function first(v::AbstractVector, n::Integer)
1,490✔
502
    n < 0 && throw(ArgumentError("Number of elements must be nonnegative"))
1,490✔
503
    v[range(begin, length=min(n, checked_length(v)))]
1,488✔
504
end
505

506
"""
507
    last(coll)
508

509
Get the last element of an ordered collection, if it can be computed in O(1) time. This is
510
accomplished by calling [`lastindex`](@ref) to get the last index. Return the end
511
point of an [`AbstractRange`](@ref) even if it is empty.
512

513
See also [`first`](@ref), [`endswith`](@ref).
514

515
# Examples
516
```jldoctest
517
julia> last(1:2:10)
518
9
519

520
julia> last([1; 2; 3; 4])
521
4
522
```
523
"""
524
last(a) = a[end]
25,768,122✔
525

526
"""
527
    last(itr, n::Integer)
528

529
Get the last `n` elements of the iterable collection `itr`, or fewer elements if `itr` is not
530
long enough.
531

532
!!! compat "Julia 1.6"
533
    This method requires at least Julia 1.6.
534

535
# Examples
536
```jldoctest
537
julia> last(["foo", "bar", "qux"], 2)
538
2-element Vector{String}:
539
 "bar"
540
 "qux"
541

542
julia> last(1:6, 10)
543
1:6
544

545
julia> last(Float64[], 1)
546
Float64[]
547
```
548
"""
549
last(itr, n::Integer) = reverse!(collect(Iterators.take(Iterators.reverse(itr), n)))
57✔
550
# Faster method for arrays
551
function last(v::AbstractVector, n::Integer)
1,873✔
552
    n < 0 && throw(ArgumentError("Number of elements must be nonnegative"))
1,873✔
553
    v[range(stop=lastindex(v), length=min(n, checked_length(v)))]
1,871✔
554
end
555

556
"""
557
    strides(A)
558

559
Return a tuple of the memory strides in each dimension.
560

561
See also: [`stride`](@ref).
562

563
# Examples
564
```jldoctest
565
julia> A = fill(1, (3,4,5));
566

567
julia> strides(A)
568
(1, 3, 12)
569
```
570
"""
571
function strides end
572

573
"""
574
    stride(A, k::Integer)
575

576
Return the distance in memory (in number of elements) between adjacent elements in dimension `k`.
577

578
See also: [`strides`](@ref).
579

580
# Examples
581
```jldoctest
582
julia> A = fill(1, (3,4,5));
583

584
julia> stride(A,2)
585
3
586

587
julia> stride(A,3)
588
12
589
```
590
"""
591
function stride(A::AbstractArray, k::Integer)
483✔
592
    st = strides(A)
483✔
593
    k ≤ ndims(A) && return st[k]
477✔
594
    ndims(A) == 0 && return 1
7✔
595
    sz = size(A)
7✔
596
    s = st[1] * sz[1]
7✔
597
    for i in 2:ndims(A)
7✔
598
        s += st[i] * sz[i]
2✔
599
    end
2✔
600
    return s
7✔
601
end
602

603
@inline size_to_strides(s, d, sz...) = (s, size_to_strides(s * d, sz...)...)
307,273✔
604
size_to_strides(s, d) = (s,)
107✔
605
size_to_strides(s) = ()
×
606

607
function isstored(A::AbstractArray{<:Any,N}, I::Vararg{Integer,N}) where {N}
4✔
608
    @boundscheck checkbounds(A, I...)
7✔
609
    return true
1✔
610
end
611

612
# used to compute "end" for last index
613
function trailingsize(A, n)
×
614
    s = 1
×
615
    for i=n:ndims(A)
×
616
        s *= size(A,i)
×
617
    end
×
618
    return s
×
619
end
620
function trailingsize(inds::Indices, n)
×
621
    s = 1
×
622
    for i=n:length(inds)
×
623
        s *= length(inds[i])
×
624
    end
×
625
    return s
×
626
end
627
# This version is type-stable even if inds is heterogeneous
628
function trailingsize(inds::Indices)
×
629
    @inline
×
630
    prod(map(length, inds))
×
631
end
632

633
## Bounds checking ##
634

635
# The overall hierarchy is
636
#     `checkbounds(A, I...)` ->
637
#         `checkbounds(Bool, A, I...)` ->
638
#             `checkbounds_indices(Bool, IA, I)`, which recursively calls
639
#                 `checkindex` for each dimension
640
#
641
# See the "boundscheck" devdocs for more information.
642
#
643
# Note this hierarchy has been designed to reduce the likelihood of
644
# method ambiguities.  We try to make `checkbounds` the place to
645
# specialize on array type, and try to avoid specializations on index
646
# types; conversely, `checkindex` is intended to be specialized only
647
# on index type (especially, its last argument).
648

649
"""
650
    checkbounds(Bool, A, I...)
651

652
Return `true` if the specified indices `I` are in bounds for the given
653
array `A`. Subtypes of `AbstractArray` should specialize this method
654
if they need to provide custom bounds checking behaviors; however, in
655
many cases one can rely on `A`'s indices and [`checkindex`](@ref).
656

657
See also [`checkindex`](@ref).
658

659
# Examples
660
```jldoctest
661
julia> A = rand(3, 3);
662

663
julia> checkbounds(Bool, A, 2)
664
true
665

666
julia> checkbounds(Bool, A, 3, 4)
667
false
668

669
julia> checkbounds(Bool, A, 1:3)
670
true
671

672
julia> checkbounds(Bool, A, 1:3, 2:4)
673
false
674
```
675
"""
676
function checkbounds(::Type{Bool}, A::AbstractArray, I...)
95,556,133✔
677
    @inline
95,556,133✔
678
    checkbounds_indices(Bool, axes(A), I)
96,957,710✔
679
end
680

681
# Linear indexing is explicitly allowed when there is only one (non-cartesian) index
682
function checkbounds(::Type{Bool}, A::AbstractArray, i)
124,592,489✔
683
    @inline
116,998,629✔
684
    checkindex(Bool, eachindex(IndexLinear(), A), i)
2,662,194,117✔
685
end
686
# As a special extension, allow using logical arrays that match the source array exactly
687
function checkbounds(::Type{Bool}, A::AbstractArray{<:Any,N}, I::AbstractArray{Bool,N}) where N
88✔
688
    @inline
88✔
689
    axes(A) == axes(I)
143✔
690
end
691

692
"""
693
    checkbounds(A, I...)
694

695
Throw an error if the specified indices `I` are not in bounds for the given array `A`.
696
"""
697
function checkbounds(A::AbstractArray, I...)
662,874,162✔
698
    @inline
210,349,867✔
699
    checkbounds(Bool, A, I...) || throw_boundserror(A, I)
662,874,471✔
700
    nothing
662,873,156✔
701
end
702

703
"""
704
    checkbounds_indices(Bool, IA, I)
705

706
Return `true` if the "requested" indices in the tuple `I` fall within
707
the bounds of the "permitted" indices specified by the tuple
708
`IA`. This function recursively consumes elements of these tuples,
709
usually in a 1-for-1 fashion,
710

711
    checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &
712
                                                          checkbounds_indices(Bool, IA, I)
713

714
Note that [`checkindex`](@ref) is being used to perform the actual
715
bounds-check for a single dimension of the array.
716

717
There are two important exceptions to the 1-1 rule: linear indexing and
718
CartesianIndex{N}, both of which may "consume" more than one element
719
of `IA`.
720

721
See also [`checkbounds`](@ref).
722
"""
723
function checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple)
176,735,564✔
724
    @inline
11,707,172✔
725
    checkindex(Bool, IA[1], I[1])::Bool & checkbounds_indices(Bool, tail(IA), tail(I))
311,327,095✔
726
end
727
function checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple)
20,449✔
728
    @inline
3,565✔
729
    checkindex(Bool, OneTo(1), I[1])::Bool & checkbounds_indices(Bool, (), tail(I))
32,935✔
730
end
731
checkbounds_indices(::Type{Bool}, IA::Tuple, ::Tuple{}) = (@inline; all(x->length(x)==1, IA))
577,847✔
732
checkbounds_indices(::Type{Bool}, ::Tuple{}, ::Tuple{}) = true
×
733

734
throw_boundserror(A, I) = (@noinline; throw(BoundsError(A, I)))
566✔
735

736
# check along a single dimension
737
"""
738
    checkindex(Bool, inds::AbstractUnitRange, index)
739

740
Return `true` if the given `index` is within the bounds of
741
`inds`. Custom types that would like to behave as indices for all
742
arrays can extend this method in order to provide a specialized bounds
743
checking implementation.
744

745
See also [`checkbounds`](@ref).
746

747
# Examples
748
```jldoctest
749
julia> checkindex(Bool, 1:20, 8)
750
true
751

752
julia> checkindex(Bool, 1:20, 21)
753
false
754
```
755
"""
756
checkindex(::Type{Bool}, inds::AbstractUnitRange, i) =
×
757
    throw(ArgumentError("unable to check bounds for indices of type $(typeof(i))"))
758
checkindex(::Type{Bool}, inds::AbstractUnitRange, i::Real) = (first(inds) <= i) & (i <= last(inds))
6,017,283✔
759
checkindex(::Type{Bool}, inds::IdentityUnitRange, i::Real) = checkindex(Bool, inds.indices, i)
3,049,891✔
760
checkindex(::Type{Bool}, inds::OneTo{T}, i::T) where {T<:BitInteger} = unsigned(i - one(i)) < unsigned(last(inds))
3,300,388,950✔
761
checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Colon) = true
227✔
762
checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Slice) = true
75✔
763
function checkindex(::Type{Bool}, inds::AbstractUnitRange, r::AbstractRange)
8,259,940✔
764
    @_propagate_inbounds_meta
900,758✔
765
    isempty(r) | (checkindex(Bool, inds, first(r)) & checkindex(Bool, inds, last(r)))
326,799,446✔
766
end
767
checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractVector{Bool}) = indx == axes1(I)
2✔
768
checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractArray{Bool}) = false
1✔
769
function checkindex(::Type{Bool}, inds::AbstractUnitRange, I::AbstractArray)
3,102✔
770
    @inline
626✔
771
    b = true
626✔
772
    for i in I
6,337✔
773
        b &= checkindex(Bool, inds, i)
6,395,230✔
774
    end
6,423,943✔
775
    b
5,750✔
776
end
777

778
# See also specializations in multidimensional
779

780
## Constructors ##
781

782
# default arguments to similar()
783
"""
784
    similar(array, [element_type=eltype(array)], [dims=size(array)])
785

786
Create an uninitialized mutable array with the given element type and size, based upon the
787
given source array. The second and third arguments are both optional, defaulting to the
788
given array's `eltype` and `size`. The dimensions may be specified either as a single tuple
789
argument or as a series of integer arguments.
790

791
Custom AbstractArray subtypes may choose which specific array type is best-suited to return
792
for the given element type and dimensionality. If they do not specialize this method, the
793
default is an `Array{element_type}(undef, dims...)`.
794

795
For example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are
796
neither mutable nor support 2 dimensions:
797

798
```julia-repl
799
julia> similar(1:10, 1, 4)
800
1×4 Matrix{Int64}:
801
 4419743872  4374413872  4419743888  0
802
```
803

804
Conversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two
805
elements since `BitArray`s are both mutable and can support 1-dimensional arrays:
806

807
```julia-repl
808
julia> similar(trues(10,10), 2)
809
2-element BitVector:
810
 0
811
 0
812
```
813

814
Since `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a
815
different element type it will create a regular `Array` instead:
816

817
```julia-repl
818
julia> similar(falses(10), Float64, 2, 4)
819
2×4 Matrix{Float64}:
820
 2.18425e-314  2.18425e-314  2.18425e-314  2.18425e-314
821
 2.18425e-314  2.18425e-314  2.18425e-314  2.18425e-314
822
```
823

824
See also: [`undef`](@ref), [`isassigned`](@ref).
825
"""
826
similar(a::AbstractArray{T}) where {T}                             = similar(a, T)
3,432✔
827
similar(a::AbstractArray, ::Type{T}) where {T}                     = similar(a, T, to_shape(axes(a)))
3,114✔
828
similar(a::AbstractArray{T}, dims::Tuple) where {T}                = similar(a, T, to_shape(dims))
59,089,935✔
829
similar(a::AbstractArray{T}, dims::DimOrInd...) where {T}          = similar(a, T, to_shape(dims))
818✔
830
similar(a::AbstractArray, ::Type{T}, dims::DimOrInd...) where {T}  = similar(a, T, to_shape(dims))
5,805,561✔
831
# Similar supports specifying dims as either Integers or AbstractUnitRanges or any mixed combination
832
# thereof. Ideally, we'd just convert Integers to OneTos and then call a canonical method with the axes,
833
# but we don't want to require all AbstractArray subtypes to dispatch on Base.OneTo. So instead we
834
# define this method to convert supported axes to Ints, with the expectation that an offset array
835
# package will define a method with dims::Tuple{Union{Integer, UnitRange}, Vararg{Union{Integer, UnitRange}}}
836
similar(a::AbstractArray, ::Type{T}, dims::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T} = similar(a, T, to_shape(dims))
148,296✔
837
similar(a::AbstractArray, ::Type{T}, dims::Tuple{Integer, Vararg{Integer}}) where {T} = similar(a, T, to_shape(dims))
5✔
838
# similar creates an Array by default
839
similar(a::AbstractArray, ::Type{T}, dims::Dims{N}) where {T,N}    = Array{T,N}(undef, dims)
5,786,353✔
840

841
to_shape(::Tuple{}) = ()
18✔
842
to_shape(dims::Dims) = dims
5,572✔
843
to_shape(dims::DimsOrInds) = map(to_shape, dims)::DimsOrInds
6,798,597✔
844
# each dimension
845
to_shape(i::Int) = i
33✔
846
to_shape(i::Integer) = Int(i)
38✔
847
to_shape(r::OneTo) = Int(last(r))
40,621✔
848
to_shape(r::AbstractUnitRange) = r
196✔
849

850
"""
851
    similar(storagetype, axes)
852

853
Create an uninitialized mutable array analogous to that specified by
854
`storagetype`, but with `axes` specified by the last
855
argument.
856

857
**Examples**:
858

859
    similar(Array{Int}, axes(A))
860

861
creates an array that "acts like" an `Array{Int}` (and might indeed be
862
backed by one), but which is indexed identically to `A`. If `A` has
863
conventional indexing, this will be identical to
864
`Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the
865
indices of the result will match `A`.
866

867
    similar(BitArray, (axes(A, 2),))
868

869
would create a 1-dimensional logical array whose indices match those
870
of the columns of `A`.
871
"""
872
similar(::Type{T}, dims::DimOrInd...) where {T<:AbstractArray} = similar(T, dims)
49✔
873
similar(::Type{T}, shape::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T<:AbstractArray} = similar(T, to_shape(shape))
422,274,274✔
874
similar(::Type{T}, dims::Dims) where {T<:AbstractArray} = T(undef, dims)
422,274,310✔
875

876
"""
877
    empty(v::AbstractVector, [eltype])
878

879
Create an empty vector similar to `v`, optionally changing the `eltype`.
880

881
See also: [`empty!`](@ref), [`isempty`](@ref), [`isassigned`](@ref).
882

883
# Examples
884

885
```jldoctest
886
julia> empty([1.0, 2.0, 3.0])
887
Float64[]
888

889
julia> empty([1.0, 2.0, 3.0], String)
890
String[]
891
```
892
"""
893
empty(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}()
285✔
894

895
# like empty, but should return a mutable collection, a Vector by default
896
emptymutable(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}()
134✔
897
emptymutable(itr, ::Type{U}) where {U} = Vector{U}()
61✔
898

899
"""
900
    copy!(dst, src) -> dst
901

902
In-place [`copy`](@ref) of `src` into `dst`, discarding any pre-existing
903
elements in `dst`.
904
If `dst` and `src` are of the same type, `dst == src` should hold after
905
the call. If `dst` and `src` are multidimensional arrays, they must have
906
equal [`axes`](@ref).
907

908
See also [`copyto!`](@ref).
909

910
!!! compat "Julia 1.1"
911
    This method requires at least Julia 1.1. In Julia 1.0 this method
912
    is available from the `Future` standard library as `Future.copy!`.
913
"""
914
function copy!(dst::AbstractVector, src::AbstractVector)
32✔
915
    firstindex(dst) == firstindex(src) || throw(ArgumentError(
32✔
916
        "vectors must have the same offset for copy! (consider using `copyto!`)"))
917
    if length(dst) != length(src)
36,270,977✔
918
        resize!(dst, length(src))
36,270,921✔
919
    end
920
    copyto!(dst, src)
36,270,977✔
921
end
922

923
function copy!(dst::AbstractArray, src::AbstractArray)
15✔
924
    axes(dst) == axes(src) || throw(ArgumentError(
16✔
925
        "arrays must have the same axes for copy! (consider using `copyto!`)"))
926
    copyto!(dst, src)
14✔
927
end
928

929
## from general iterable to any array
930

931
# This is `Experimental.@max_methods 1 function copyto! end`, which is not
932
# defined at this point in bootstrap.
933
typeof(function copyto! end).name.max_methods = UInt8(1)
934

935
function copyto!(dest::AbstractArray, src)
3,892,098✔
936
    destiter = eachindex(dest)
3,892,137✔
937
    y = iterate(destiter)
5,310,075✔
938
    for x in src
6,445,575✔
939
        y === nothing &&
4,871,143✔
940
            throw(ArgumentError("destination has fewer elements than required"))
941
        dest[y[1]] = x
4,871,260✔
942
        y = iterate(destiter, y[2])
8,324,092✔
943
    end
7,840,279✔
944
    return dest
3,892,135✔
945
end
946

947
function copyto!(dest::AbstractArray, dstart::Integer, src)
276✔
948
    i = Int(dstart)
276✔
949
    if haslength(src) && length(dest) > 0
276✔
950
        @boundscheck checkbounds(dest, i:(i + length(src) - 1))
271✔
951
        for x in src
281✔
952
            @inbounds dest[i] = x
2,337✔
953
            i += 1
2,335✔
954
        end
2,803✔
955
    else
956
        for x in src
6✔
957
            dest[i] = x
6✔
958
            i += 1
3✔
959
        end
3✔
960
    end
961
    return dest
272✔
962
end
963

964
# copy from an some iterable object into an AbstractArray
965
function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer)
9✔
966
    if (sstart < 1)
9✔
967
        throw(ArgumentError(LazyString("source start offset (",sstart,") is < 1")))
1✔
968
    end
969
    y = iterate(src)
8✔
970
    for j = 1:(sstart-1)
11✔
971
        if y === nothing
5✔
972
            throw(ArgumentError(LazyString(
1✔
973
                "source has fewer elements than required, ",
974
                "expected at least ", sstart,", got ", j-1)))
975
        end
976
        y = iterate(src, y[2])
4✔
977
    end
6✔
978
    if y === nothing
7✔
979
        throw(ArgumentError(LazyString(
1✔
980
            "source has fewer elements than required, ",
981
            "expected at least ",sstart," got ", sstart-1)))
982
    end
983
    i = Int(dstart)
6✔
984
    while y !== nothing
12✔
985
        val, st = y
10✔
986
        dest[i] = val
11✔
987
        i += 1
6✔
988
        y = iterate(src, st)
7✔
989
    end
6✔
990
    return dest
2✔
991
end
992

993
# this method must be separate from the above since src might not have a length
994
function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer, n::Integer)
100,314✔
995
    n < 0 && throw(ArgumentError(LazyString("tried to copy n=",n,
100,314✔
996
        ", elements, but n should be nonnegative")))
997
    n == 0 && return dest
100,313✔
998
    dmax = dstart + n - 1
100,312✔
999
    inds = LinearIndices(dest)
100,312✔
1000
    if (dstart ∉ inds || dmax ∉ inds) | (sstart < 1)
200,622✔
1001
        sstart < 1 && throw(ArgumentError(LazyString("source start offset (",
4✔
1002
            sstart,") is < 1")))
1003
        throw(BoundsError(dest, dstart:dmax))
3✔
1004
    end
1005
    y = iterate(src)
100,308✔
1006
    for j = 1:(sstart-1)
200,606✔
1007
        if y === nothing
50,148,670,373✔
1008
            throw(ArgumentError(LazyString(
1✔
1009
                "source has fewer elements than required, ",
1010
                "expected at least ",sstart,", got ",j-1)))
1011
        end
1012
        y = iterate(src, y[2])
50,148,670,372✔
1013
    end
100,297,240,447✔
1014
    i = Int(dstart)
100,307✔
1015
    while i <= dmax && y !== nothing
9,100,311✔
1016
        val, st = y
9,000,004✔
1017
        @inbounds dest[i] = val
9,000,004✔
1018
        y = iterate(src, st)
9,000,013✔
1019
        i += 1
9,000,004✔
1020
    end
9,000,004✔
1021
    i <= dmax && throw(BoundsError(dest, i))
100,307✔
1022
    return dest
100,306✔
1023
end
1024

1025
## copy between abstract arrays - generally more efficient
1026
## since a single index variable can be used.
1027

1028
"""
1029
    copyto!(dest::AbstractArray, src) -> dest
1030

1031
Copy all elements from collection `src` to array `dest`, whose length must be greater than
1032
or equal to the length `n` of `src`. The first `n` elements of `dest` are overwritten,
1033
the other elements are left untouched.
1034

1035
See also [`copy!`](@ref Base.copy!), [`copy`](@ref).
1036

1037
# Examples
1038
```jldoctest
1039
julia> x = [1., 0., 3., 0., 5.];
1040

1041
julia> y = zeros(7);
1042

1043
julia> copyto!(y, x);
1044

1045
julia> y
1046
7-element Vector{Float64}:
1047
 1.0
1048
 0.0
1049
 3.0
1050
 0.0
1051
 5.0
1052
 0.0
1053
 0.0
1054
```
1055
"""
1056
function copyto!(dest::AbstractArray, src::AbstractArray)
2,749,934✔
1057
    isempty(src) && return dest
2,763,735✔
1058
    if dest isa BitArray
137,034✔
1059
        # avoid ambiguities with other copyto!(::AbstractArray, ::SourceArray) methods
1060
        return _copyto_bitarray!(dest, src)
1✔
1061
    end
1062
    src′ = unalias(dest, src)
2,797,403✔
1063
    copyto_unaliased!(IndexStyle(dest), dest, IndexStyle(src′), src′)
2,763,258✔
1064
end
1065

1066
function copyto!(deststyle::IndexStyle, dest::AbstractArray, srcstyle::IndexStyle, src::AbstractArray)
×
1067
    isempty(src) && return dest
×
1068
    src′ = unalias(dest, src)
×
1069
    copyto_unaliased!(deststyle, dest, srcstyle, src′)
×
1070
end
1071

1072
function copyto_unaliased!(deststyle::IndexStyle, dest::AbstractArray, srcstyle::IndexStyle, src::AbstractArray)
2,763,258✔
1073
    isempty(src) && return dest
2,763,258✔
1074
    destinds, srcinds = LinearIndices(dest), LinearIndices(src)
2,763,261✔
1075
    idf, isf = first(destinds), first(srcinds)
137,033✔
1076
    Δi = idf - isf
137,033✔
1077
    (checkbounds(Bool, destinds, isf+Δi) & checkbounds(Bool, destinds, last(srcinds)+Δi)) ||
2,763,259✔
1078
        throw(BoundsError(dest, srcinds))
1079
    if deststyle isa IndexLinear
137,032✔
1080
        if srcstyle isa IndexLinear
134,381✔
1081
            # Single-index implementation
1082
            @inbounds for i in srcinds
5,278,540✔
1083
                dest[i + Δi] = src[i]
35,770,541✔
1084
            end
68,893,755✔
1085
        else
1086
            # Dual-index implementation
1087
            i = idf - 1
120,792✔
1088
            @inbounds for a in src
242,627✔
1089
                dest[i+=1] = a
2,364,182✔
1090
            end
4,599,659✔
1091
        end
1092
    else
1093
        iterdest, itersrc = eachindex(dest), eachindex(src)
2,651✔
1094
        if iterdest == itersrc
2,651✔
1095
            # Shared-iterator implementation
1096
            for I in iterdest
576✔
1097
                @inbounds dest[I] = src[I]
6,020,141✔
1098
            end
12,017,932✔
1099
        else
1100
            # Dual-iterator implementation
1101
            ret = iterate(iterdest)
4,726✔
1102
            @inbounds for a in src
4,408✔
1103
                idx, state = ret::NTuple{2,Any}
2,009,483✔
1104
                dest[idx] = a
2,009,483✔
1105
                ret = iterate(iterdest, state)
2,011,847✔
1106
            end
4,008,133✔
1107
        end
1108
    end
1109
    return dest
2,763,257✔
1110
end
1111

1112
function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray)
20,498✔
1113
    copyto!(dest, dstart, src, first(LinearIndices(src)), length(src))
20,506✔
1114
end
1115

1116
function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray, sstart::Integer)
22✔
1117
    srcinds = LinearIndices(src)
22✔
1118
    checkbounds(Bool, srcinds, sstart) || throw(BoundsError(src, sstart))
31✔
1119
    copyto!(dest, dstart, src, sstart, last(srcinds)-sstart+1)
13✔
1120
end
1121

1122
function copyto!(dest::AbstractArray, dstart::Integer,
396,859✔
1123
               src::AbstractArray, sstart::Integer,
1124
               n::Integer)
1125
    n == 0 && return dest
396,859✔
1126
    n < 0 && throw(ArgumentError(LazyString("tried to copy n=",
396,857✔
1127
        n," elements, but n should be nonnegative")))
1128
    destinds, srcinds = LinearIndices(dest), LinearIndices(src)
396,856✔
1129
    (checkbounds(Bool, destinds, dstart) && checkbounds(Bool, destinds, dstart+n-1)) || throw(BoundsError(dest, dstart:dstart+n-1))
396,868✔
1130
    (checkbounds(Bool, srcinds, sstart)  && checkbounds(Bool, srcinds, sstart+n-1))  || throw(BoundsError(src,  sstart:sstart+n-1))
396,847✔
1131
    src′ = unalias(dest, src)
398,986✔
1132
    @inbounds for i = 0:n-1
793,682✔
1133
        dest[dstart+i] = src′[sstart+i]
19,849,994✔
1134
    end
39,303,147✔
1135
    return dest
396,841✔
1136
end
1137

1138
function copy(a::AbstractArray)
146,895✔
1139
    @_propagate_inbounds_meta
526✔
1140
    copymutable(a)
147,569✔
1141
end
1142

1143
function copyto!(B::AbstractVecOrMat{R}, ir_dest::AbstractRange{Int}, jr_dest::AbstractRange{Int},
2,761✔
1144
               A::AbstractVecOrMat{S}, ir_src::AbstractRange{Int}, jr_src::AbstractRange{Int}) where {R,S}
1145
    if length(ir_dest) != length(ir_src)
2,761✔
1146
        throw(ArgumentError(LazyString("source and destination must have same size (got ",
1✔
1147
            length(ir_src)," and ",length(ir_dest),")")))
1148
    end
1149
    if length(jr_dest) != length(jr_src)
2,760✔
1150
        throw(ArgumentError(LazyString("source and destination must have same size (got ",
×
1151
            length(jr_src)," and ",length(jr_dest),")")))
1152
    end
1153
    @boundscheck checkbounds(B, ir_dest, jr_dest)
2,760✔
1154
    @boundscheck checkbounds(A, ir_src, jr_src)
2,760✔
1155
    A′ = unalias(B, A)
5,518✔
1156
    jdest = first(jr_dest)
2,760✔
1157
    for jsrc in jr_src
5,520✔
1158
        idest = first(ir_dest)
19,547✔
1159
        for isrc in ir_src
39,094✔
1160
            @inbounds B[idest,jdest] = A′[isrc,jsrc]
196,700✔
1161
            idest += step(ir_dest)
196,540✔
1162
        end
373,533✔
1163
        jdest += step(jr_dest)
19,547✔
1164
    end
36,334✔
1165
    return B
2,760✔
1166
end
1167

1168
@noinline _checkaxs(axd, axs) = axd == axs || throw(DimensionMismatch("axes must agree, got $axd and $axs"))
53,624✔
1169

1170
function copyto_axcheck!(dest, src)
29,167✔
1171
    _checkaxs(axes(dest), axes(src))
32,841✔
1172
    copyto!(dest, src)
38,277✔
1173
end
1174

1175
"""
1176
    copymutable(a)
1177

1178
Make a mutable copy of an array or iterable `a`.  For `a::Array`,
1179
this is equivalent to `copy(a)`, but for other array types it may
1180
differ depending on the type of `similar(a)`.  For generic iterables
1181
this is equivalent to `collect(a)`.
1182

1183
# Examples
1184
```jldoctest
1185
julia> tup = (1, 2, 3)
1186
(1, 2, 3)
1187

1188
julia> Base.copymutable(tup)
1189
3-element Vector{Int64}:
1190
 1
1191
 2
1192
 3
1193
```
1194
"""
1195
function copymutable(a::AbstractArray)
3,899✔
1196
    @_propagate_inbounds_meta
1,354✔
1197
    copyto!(similar(a), a)
154,410✔
1198
end
1199
copymutable(itr) = collect(itr)
68✔
1200

1201
zero(x::AbstractArray{T}) where {T} = fill!(similar(x, typeof(zero(T))), zero(T))
14,307✔
1202

1203
## iteration support for arrays by iterating over `eachindex` in the array ##
1204
# Allows fast iteration by default for both IndexLinear and IndexCartesian arrays
1205

1206
# While the definitions for IndexLinear are all simple enough to inline on their
1207
# own, IndexCartesian's CartesianIndices is more complicated and requires explicit
1208
# inlining.
1209
function iterate(A::AbstractArray, state=(eachindex(A),))
109,775,103✔
1210
    y = iterate(state...)
134,665,914✔
1211
    y === nothing && return nothing
111,633,833✔
1212
    A[y[1]], (state[1], tail(y)...)
111,217,862✔
1213
end
1214

1215
isempty(a::AbstractArray) = (length(a) == 0)
2,723,520,904✔
1216

1217

1218
## range conversions ##
1219

1220
map(::Type{T}, r::StepRange) where {T<:Real} = T(r.start):T(r.step):T(last(r))
2✔
1221
map(::Type{T}, r::UnitRange) where {T<:Real} = T(r.start):T(last(r))
162✔
1222
map(::Type{T}, r::StepRangeLen) where {T<:AbstractFloat} = convert(StepRangeLen{T}, r)
6✔
1223
function map(::Type{T}, r::LinRange) where T<:AbstractFloat
1✔
1224
    LinRange(T(r.start), T(r.stop), length(r))
1✔
1225
end
1226

1227
## unsafe/pointer conversions ##
1228

1229
# note: the following type definitions don't mean any AbstractArray is convertible to
1230
# a data Ref. they just map the array element type to the pointer type for
1231
# convenience in cases that work.
1232
pointer(x::AbstractArray{T}) where {T} = unsafe_convert(Ptr{T}, x)
30,631,004✔
1233
function pointer(x::AbstractArray{T}, i::Integer) where T
8,611,711✔
1234
    @inline
5,180,313✔
1235
    unsafe_convert(Ptr{T}, x) + Int(_memory_offset(x, i))::Int
316,918,104✔
1236
end
1237

1238
# The distance from pointer(x) to the element at x[I...] in bytes
1239
_memory_offset(x::DenseArray, I::Vararg{Any,N}) where {N} = (_to_linear_index(x, I...) - first(LinearIndices(x)))*elsize(x)
272,688,524✔
1240
function _memory_offset(x::AbstractArray, I::Vararg{Any,N}) where {N}
69,877✔
1241
    J = _to_subscript_indices(x, I...)
69,877✔
1242
    return sum(map((i, s, o)->s*(i-o), J, strides(x), Tuple(first(CartesianIndices(x)))))*elsize(x)
270,335✔
1243
end
1244

1245
## Approach:
1246
# We only define one fallback method on getindex for all argument types.
1247
# That dispatches to an (inlined) internal _getindex function, where the goal is
1248
# to transform the indices such that we can call the only getindex method that
1249
# we require the type A{T,N} <: AbstractArray{T,N} to define; either:
1250
#       getindex(::A, ::Int) # if IndexStyle(A) == IndexLinear() OR
1251
#       getindex(::A{T,N}, ::Vararg{Int, N}) where {T,N} # if IndexCartesian()
1252
# If the subtype hasn't defined the required method, it falls back to the
1253
# _getindex function again where an error is thrown to prevent stack overflows.
1254
"""
1255
    getindex(A, inds...)
1256

1257
Return a subset of array `A` as specified by `inds`, where each `ind` may be,
1258
for example, an `Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref).
1259
See the manual section on [array indexing](@ref man-array-indexing) for details.
1260

1261
# Examples
1262
```jldoctest
1263
julia> A = [1 2; 3 4]
1264
2×2 Matrix{Int64}:
1265
 1  2
1266
 3  4
1267

1268
julia> getindex(A, 1)
1269
1
1270

1271
julia> getindex(A, [2, 1])
1272
2-element Vector{Int64}:
1273
 3
1274
 1
1275

1276
julia> getindex(A, 2:4)
1277
3-element Vector{Int64}:
1278
 3
1279
 2
1280
 4
1281
```
1282
"""
1283
function getindex(A::AbstractArray, I...)
113,194,586✔
1284
    @_propagate_inbounds_meta
110,191,754✔
1285
    error_if_canonical_getindex(IndexStyle(A), A, I...)
110,191,754✔
1286
    _getindex(IndexStyle(A), A, to_indices(A, I)...)
237,700,106✔
1287
end
1288
# To avoid invalidations from multidimensional.jl: getindex(A::Array, i1::Union{Integer, CartesianIndex}, I::Union{Integer, CartesianIndex}...)
1289
@propagate_inbounds getindex(A::Array, i1::Integer, I::Integer...) = A[to_indices(A, (i1, I...))...]
210,886,721✔
1290

1291
function unsafe_getindex(A::AbstractArray, I...)
262✔
1292
    @inline
262✔
1293
    @inbounds r = getindex(A, I...)
387✔
1294
    r
260✔
1295
end
1296

1297
struct CanonicalIndexError <: Exception
1298
    func::String
1299
    type::Any
1300
    CanonicalIndexError(func::String, @nospecialize(type)) = new(func, type)
14✔
1301
end
1302

1303
error_if_canonical_getindex(::IndexLinear, A::AbstractArray, ::Int) =
2✔
1304
    throw(CanonicalIndexError("getindex", typeof(A)))
1305
error_if_canonical_getindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} =
3✔
1306
    throw(CanonicalIndexError("getindex", typeof(A)))
1307
error_if_canonical_getindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing
110,190,376✔
1308

1309
## Internal definitions
1310
_getindex(::IndexStyle, A::AbstractArray, I...) =
×
1311
    error("getindex for $(typeof(A)) with types $(typeof(I)) is not supported")
1312

1313
## IndexLinear Scalar indexing: canonical method is one Int
1314
_getindex(::IndexLinear, A::AbstractVector, i::Int) = (@_propagate_inbounds_meta; getindex(A, i))  # ambiguity resolution in case packages specialize this (to be avoided if at all possible, but see Interpolations.jl)
18,939,873✔
1315
_getindex(::IndexLinear, A::AbstractArray, i::Int) = (@_propagate_inbounds_meta; getindex(A, i))
×
1316
function _getindex(::IndexLinear, A::AbstractArray, I::Vararg{Int,M}) where M
1,979,295✔
1317
    @inline
895,440✔
1318
    @boundscheck checkbounds(A, I...) # generally _to_linear_index requires bounds checking
38,830,752✔
1319
    @inbounds r = getindex(A, _to_linear_index(A, I...))
38,830,716✔
1320
    r
38,830,690✔
1321
end
1322
_to_linear_index(A::AbstractArray, i::Integer) = i
158,467✔
1323
_to_linear_index(A::AbstractVector, i::Integer, I::Integer...) = i
1,759,895✔
1324
_to_linear_index(A::AbstractArray) = first(LinearIndices(A))
289,002✔
1325
_to_linear_index(A::AbstractArray, I::Integer...) = (@inline; _sub2ind(A, I...))
2,112,458✔
1326

1327
## IndexCartesian Scalar indexing: Canonical method is full dimensionality of Ints
1328
function _getindex(::IndexCartesian, A::AbstractArray, I::Vararg{Int,M}) where M
157,964✔
1329
    @inline
157,964✔
1330
    @boundscheck checkbounds(A, I...) # generally _to_subscript_indices requires bounds checking
157,977✔
1331
    @inbounds r = getindex(A, _to_subscript_indices(A, I...)...)
161,741✔
1332
    r
157,950✔
1333
end
1334
function _getindex(::IndexCartesian, A::AbstractArray{T,N}, I::Vararg{Int, N}) where {T,N}
92,021,323✔
1335
    @_propagate_inbounds_meta
92,021,323✔
1336
    getindex(A, I...)
179,331,421✔
1337
end
1338
_to_subscript_indices(A::AbstractArray, i::Integer) = (@inline; _unsafe_ind2sub(A, i))
207,645✔
1339
_to_subscript_indices(A::AbstractArray{T,N}) where {T,N} = (@inline; fill_to_length((), 1, Val(N)))
2✔
1340
_to_subscript_indices(A::AbstractArray{T,0}) where {T} = ()
×
1341
_to_subscript_indices(A::AbstractArray{T,0}, i::Integer) where {T} = ()
5✔
1342
_to_subscript_indices(A::AbstractArray{T,0}, I::Integer...) where {T} = ()
×
1343
function _to_subscript_indices(A::AbstractArray{T,N}, I::Integer...) where {T,N}
1,819✔
1344
    @inline
1,819✔
1345
    J, Jrem = IteratorsMD.split(I, Val(N))
1,819✔
1346
    _to_subscript_indices(A, J, Jrem)
1,819✔
1347
end
1348
_to_subscript_indices(A::AbstractArray, J::Tuple, Jrem::Tuple{}) =
2✔
1349
    __to_subscript_indices(A, axes(A), J, Jrem)
1350
function __to_subscript_indices(A::AbstractArray,
2✔
1351
        ::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}}, J::Tuple, Jrem::Tuple{})
1352
    @inline
2✔
1353
    (J..., map(first, tail(_remaining_size(J, axes(A))))...)
2✔
1354
end
1355
_to_subscript_indices(A, J::Tuple, Jrem::Tuple) = J # already bounds-checked, safe to drop
1,817✔
1356
_to_subscript_indices(A::AbstractArray{T,N}, I::Vararg{Int,N}) where {T,N} = I
24,186✔
1357
_remaining_size(::Tuple{Any}, t::Tuple) = t
2✔
1358
_remaining_size(h::Tuple, t::Tuple) = (@inline; _remaining_size(tail(h), tail(t)))
2✔
1359
_unsafe_ind2sub(::Tuple{}, i) = () # _ind2sub may throw(BoundsError()) in this case
×
1360
_unsafe_ind2sub(sz, i) = (@inline; _ind2sub(sz, i))
207,645✔
1361

1362
## Setindex! is defined similarly. We first dispatch to an internal _setindex!
1363
# function that allows dispatch on array storage
1364

1365
"""
1366
    setindex!(A, X, inds...)
1367
    A[inds...] = X
1368

1369
Store values from array `X` within some subset of `A` as specified by `inds`.
1370
The syntax `A[inds...] = X` is equivalent to `(setindex!(A, X, inds...); X)`.
1371

1372
# Examples
1373
```jldoctest
1374
julia> A = zeros(2,2);
1375

1376
julia> setindex!(A, [10, 20], [1, 2]);
1377

1378
julia> A[[3, 4]] = [30, 40];
1379

1380
julia> A
1381
2×2 Matrix{Float64}:
1382
 10.0  30.0
1383
 20.0  40.0
1384
```
1385
"""
1386
function setindex!(A::AbstractArray, v, I...)
2,481,296✔
1387
    @_propagate_inbounds_meta
2,368,522✔
1388
    error_if_canonical_setindex(IndexStyle(A), A, I...)
2,368,522✔
1389
    _setindex!(IndexStyle(A), A, v, to_indices(A, I)...)
3,529,628✔
1390
end
1391
function unsafe_setindex!(A::AbstractArray, v, I...)
732✔
1392
    @inline
732✔
1393
    @inbounds r = setindex!(A, v, I...)
732✔
1394
    r
730✔
1395
end
1396

1397
error_if_canonical_setindex(::IndexLinear, A::AbstractArray, ::Int) =
7✔
1398
    throw(CanonicalIndexError("setindex!", typeof(A)))
1399
error_if_canonical_setindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} =
2✔
1400
    throw(CanonicalIndexError("setindex!", typeof(A)))
1401
error_if_canonical_setindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing
2,368,241✔
1402

1403
## Internal definitions
1404
_setindex!(::IndexStyle, A::AbstractArray, v, I...) =
×
1405
    error("setindex! for $(typeof(A)) with types $(typeof(I)) is not supported")
1406

1407
## IndexLinear Scalar indexing
1408
_setindex!(::IndexLinear, A::AbstractArray, v, i::Int) = (@_propagate_inbounds_meta; setindex!(A, v, i))
234,537✔
1409
function _setindex!(::IndexLinear, A::AbstractArray, v, I::Vararg{Int,M}) where M
155,651✔
1410
    @inline
107,029✔
1411
    @boundscheck checkbounds(A, I...)
162,578✔
1412
    @inbounds r = setindex!(A, v, _to_linear_index(A, I...))
162,541✔
1413
    r
162,540✔
1414
end
1415

1416
# IndexCartesian Scalar indexing
1417
function _setindex!(::IndexCartesian, A::AbstractArray{T,N}, v, I::Vararg{Int, N}) where {T,N}
2,200,662✔
1418
    @_propagate_inbounds_meta
2,200,662✔
1419
    setindex!(A, v, I...)
2,200,663✔
1420
end
1421
function _setindex!(::IndexCartesian, A::AbstractArray, v, I::Vararg{Int,M}) where M
3,080✔
1422
    @inline
3,080✔
1423
    @boundscheck checkbounds(A, I...)
3,085✔
1424
    @inbounds r = setindex!(A, v, _to_subscript_indices(A, I...)...)
3,075✔
1425
    r
3,075✔
1426
end
1427

1428
"""
1429
    parent(A)
1430

1431
Return the underlying parent object of the view. This parent of objects of types `SubArray`, `SubString`, `ReshapedArray`
1432
or `LinearAlgebra.Transpose` is what was passed as an argument to `view`, `reshape`, `transpose`, etc.
1433
during object creation. If the input is not a wrapped object, return the input itself. If the input is
1434
wrapped multiple times, only the outermost wrapper will be removed.
1435

1436
# Examples
1437
```jldoctest
1438
julia> A = [1 2; 3 4]
1439
2×2 Matrix{Int64}:
1440
 1  2
1441
 3  4
1442

1443
julia> V = view(A, 1:2, :)
1444
2×2 view(::Matrix{Int64}, 1:2, :) with eltype Int64:
1445
 1  2
1446
 3  4
1447

1448
julia> parent(V)
1449
2×2 Matrix{Int64}:
1450
 1  2
1451
 3  4
1452
```
1453
"""
1454
function parent end
1455

1456
parent(a::AbstractArray) = a
1,431✔
1457

1458
## rudimentary aliasing detection ##
1459
"""
1460
    Base.unalias(dest, A)
1461

1462
Return either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from
1463
affecting the returned object. No guarantees are provided.
1464

1465
Custom arrays that wrap or use fields containing arrays that might alias against other
1466
external objects should provide a [`Base.dataids`](@ref) implementation.
1467

1468
This function must return an object of exactly the same type as `A` for performance and type
1469
stability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should
1470
provide a [`Base.unaliascopy`](@ref) implementation.
1471

1472
See also [`Base.mightalias`](@ref).
1473
"""
1474
unalias(dest, A::AbstractArray) = mightalias(dest, A) ? unaliascopy(A) : A
8,603,362✔
1475
unalias(dest, A::AbstractRange) = A
2,841,548✔
1476
unalias(dest, A) = A
2,676,397✔
1477

1478
"""
1479
    Base.unaliascopy(A)
1480

1481
Make a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against
1482
another array in order to preserve consistent semantics as that other array is mutated.
1483

1484
This must return an object of the same type as `A` to preserve optimal performance in the
1485
much more common case where aliasing does not occur. By default,
1486
`unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where
1487
`copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of
1488
`Base.unaliascopy(A)`.
1489
"""
1490
unaliascopy(A::Array) = copy(A)
460✔
1491
unaliascopy(A::AbstractArray)::typeof(A) = (@noinline; _unaliascopy(A, copy(A)))
4✔
1492
_unaliascopy(A::T, C::T) where {T} = C
4✔
1493
_unaliascopy(A, C) = throw(ArgumentError("""
×
1494
    an array of type `$(typename(typeof(A)).wrapper)` shares memory with another argument
1495
    and must make a preventative copy of itself in order to maintain consistent semantics,
1496
    but `copy(::$(typeof(A)))` returns a new array of type `$(typeof(C))`.
1497
    To fix, implement:
1498
        `Base.unaliascopy(A::$(typename(typeof(A)).wrapper))::typeof(A)`"""))
1499
unaliascopy(A) = A
×
1500

1501
"""
1502
    Base.mightalias(A::AbstractArray, B::AbstractArray)
1503

1504
Perform a conservative test to check if arrays `A` and `B` might share the same memory.
1505

1506
By default, this simply checks if either of the arrays reference the same memory
1507
regions, as identified by their [`Base.dataids`](@ref).
1508
"""
1509
mightalias(A::AbstractArray, B::AbstractArray) = !isbits(A) && !isbits(B) && !_isdisjoint(dataids(A), dataids(B))
5,850,827✔
1510
mightalias(x, y) = false
×
1511

1512
_isdisjoint(as::Tuple{}, bs::Tuple{}) = true
×
1513
_isdisjoint(as::Tuple{}, bs::Tuple{UInt}) = true
×
1514
_isdisjoint(as::Tuple{}, bs::Tuple) = true
×
1515
_isdisjoint(as::Tuple{UInt}, bs::Tuple{}) = true
×
1516
_isdisjoint(as::Tuple{UInt}, bs::Tuple{UInt}) = as[1] != bs[1]
5,749,243✔
1517
_isdisjoint(as::Tuple{UInt}, bs::Tuple) = !(as[1] in bs)
59,562✔
1518
_isdisjoint(as::Tuple, bs::Tuple{}) = true
×
1519
_isdisjoint(as::Tuple, bs::Tuple{UInt}) = !(bs[1] in as)
2,027✔
1520
_isdisjoint(as::Tuple, bs::Tuple) = !(as[1] in bs) && _isdisjoint(tail(as), bs)
73,402✔
1521

1522
"""
1523
    Base.dataids(A::AbstractArray)
1524

1525
Return a tuple of `UInt`s that represent the mutable data segments of an array.
1526

1527
Custom arrays that would like to opt-in to aliasing detection of their component
1528
parts can specialize this method to return the concatenation of the `dataids` of
1529
their component parts.  A typical definition for an array that wraps a parent is
1530
`Base.dataids(C::CustomArray) = dataids(C.parent)`.
1531
"""
1532
dataids(A::AbstractArray) = (UInt(objectid(A)),)
209,306✔
1533
dataids(A::Array) = (UInt(pointer(A)),)
11,382,076✔
1534
dataids(::AbstractRange) = ()
56,723✔
1535
dataids(x) = ()
54,200✔
1536

1537
## get (getindex with a default value) ##
1538

1539
RangeVecIntList{A<:AbstractVector{Int}} = Union{Tuple{Vararg{Union{AbstractRange, AbstractVector{Int}}}},
1540
    AbstractVector{UnitRange{Int}}, AbstractVector{AbstractRange{Int}}, AbstractVector{A}}
1541

1542
get(A::AbstractArray, i::Integer, default) = checkbounds(Bool, A, i) ? A[i] : default
11✔
1543
get(A::AbstractArray, I::Tuple{}, default) = checkbounds(Bool, A) ? A[] : default
8✔
1544
get(A::AbstractArray, I::Dims, default) = checkbounds(Bool, A, I...) ? A[I...] : default
16✔
1545
get(f::Callable, A::AbstractArray, i::Integer) = checkbounds(Bool, A, i) ? A[i] : f()
4✔
1546
get(f::Callable, A::AbstractArray, I::Tuple{}) = checkbounds(Bool, A) ? A[] : f()
8✔
1547
get(f::Callable, A::AbstractArray, I::Dims) = checkbounds(Bool, A, I...) ? A[I...] : f()
9✔
1548

1549
function get!(X::AbstractVector{T}, A::AbstractVector, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T
×
1550
    # 1d is not linear indexing
1551
    ind = findall(in(axes1(A)), I)
×
1552
    X[ind] = A[I[ind]]
×
1553
    Xind = axes1(X)
×
1554
    X[first(Xind):first(ind)-1] = default
×
1555
    X[last(ind)+1:last(Xind)] = default
×
1556
    X
×
1557
end
1558
function get!(X::AbstractArray{T}, A::AbstractArray, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T
1✔
1559
    # Linear indexing
1560
    ind = findall(in(1:length(A)), I)
1✔
1561
    X[ind] = A[I[ind]]
5✔
1562
    fill!(view(X, 1:first(ind)-1), default)
6✔
1563
    fill!(view(X, last(ind)+1:length(X)), default)
1✔
1564
    X
1✔
1565
end
1566

1567
get(A::AbstractArray, I::AbstractRange, default) = get!(similar(A, typeof(default), index_shape(I)), A, I, default)
1✔
1568

1569
function get!(X::AbstractArray{T}, A::AbstractArray, I::RangeVecIntList, default::T) where T
2✔
1570
    fill!(X, default)
72✔
1571
    dst, src = indcopy(size(A), I)
2✔
1572
    X[dst...] = A[src...]
2✔
1573
    X
2✔
1574
end
1575

1576
get(A::AbstractArray, I::RangeVecIntList, default) =
2✔
1577
    get!(similar(A, typeof(default), index_shape(I...)), A, I, default)
1578

1579
## structured matrix methods ##
1580
replace_in_print_matrix(A::AbstractMatrix,i::Integer,j::Integer,s::AbstractString) = s
23,870✔
1581
replace_in_print_matrix(A::AbstractVector,i::Integer,j::Integer,s::AbstractString) = s
5,581✔
1582

1583
## Concatenation ##
1584
eltypeof(x) = typeof(x)
21,723✔
1585
eltypeof(x::AbstractArray) = eltype(x)
13,519✔
1586

1587
promote_eltypeof() = Bottom
×
1588
promote_eltypeof(v1, vs...) = promote_type(eltypeof(v1), promote_eltypeof(vs...))
35,242✔
1589

1590
promote_eltype() = Bottom
122✔
1591
promote_eltype(v1, vs...) = promote_type(eltype(v1), promote_eltype(vs...))
6,990✔
1592

1593
#TODO: ERROR CHECK
1594
_cat(catdim::Int) = Vector{Any}()
1✔
1595

1596
typed_vcat(::Type{T}) where {T} = Vector{T}()
1✔
1597
typed_hcat(::Type{T}) where {T} = Vector{T}()
1✔
1598

1599
## cat: special cases
1600
vcat(X::T...) where {T}         = T[ X[i] for i=1:length(X) ]
306✔
1601
vcat(X::T...) where {T<:Number} = T[ X[i] for i=1:length(X) ]
296✔
1602
hcat(X::T...) where {T}         = T[ X[j] for i=1:1, j=1:length(X) ]
97✔
1603
hcat(X::T...) where {T<:Number} = T[ X[j] for i=1:1, j=1:length(X) ]
539✔
1604

1605
vcat(X::Number...) = hvcat_fill!(Vector{promote_typeof(X...)}(undef, length(X)), X)
1✔
1606
hcat(X::Number...) = hvcat_fill!(Matrix{promote_typeof(X...)}(undef, 1,length(X)), X)
2✔
1607
typed_vcat(::Type{T}, X::Number...) where {T} = hvcat_fill!(Vector{T}(undef, length(X)), X)
10✔
1608
typed_hcat(::Type{T}, X::Number...) where {T} = hvcat_fill!(Matrix{T}(undef, 1,length(X)), X)
61✔
1609

1610
vcat(V::AbstractVector...) = typed_vcat(promote_eltype(V...), V...)
5✔
1611
vcat(V::AbstractVector{T}...) where {T} = typed_vcat(T, V...)
21✔
1612

1613
# FIXME: this alias would better be Union{AbstractVector{T}, Tuple{Vararg{T}}}
1614
# and method signatures should do AbstractVecOrTuple{<:T} when they want covariance,
1615
# but that solution currently fails (see #27188 and #27224)
1616
AbstractVecOrTuple{T} = Union{AbstractVector{<:T}, Tuple{Vararg{T}}}
1617

1618
_typed_vcat_similar(V, ::Type{T}, n) where T = similar(V[1], T, n)
793,135✔
1619
_typed_vcat(::Type{T}, V::AbstractVecOrTuple{AbstractVector}) where T =
819,392✔
1620
    _typed_vcat!(_typed_vcat_similar(V, T, sum(map(length, V))), V)
1621

1622
function _typed_vcat!(a::AbstractVector{T}, V::AbstractVecOrTuple{AbstractVector}) where T
793,135✔
1623
    pos = 1
793,135✔
1624
    for k=1:Int(length(V))::Int
793,140✔
1625
        Vk = V[k]
794,807✔
1626
        p1 = pos + Int(length(Vk))::Int - 1
795,312✔
1627
        a[pos:p1] = Vk
5,720,614✔
1628
        pos = p1+1
794,807✔
1629
    end
796,479✔
1630
    a
793,135✔
1631
end
1632

1633
typed_hcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_hcat(T, A)
441✔
1634

1635
# Catch indexing errors like v[i +1] (instead of v[i+1] or v[i + 1]), where indexing is
1636
# interpreted as a typed concatenation. (issue #49676)
1637
typed_hcat(::AbstractArray, other...) = throw(ArgumentError("It is unclear whether you \
3✔
1638
    intend to perform an indexing operation or typed concatenation. If you intend to \
1639
    perform indexing (v[1 + 2]), adjust spacing or insert missing operator to clarify. \
1640
    If you intend to perform typed concatenation (T[1 2]), ensure that T is a type."))
1641

1642

1643
hcat(A::AbstractVecOrMat...) = typed_hcat(promote_eltype(A...), A...)
17✔
1644
hcat(A::AbstractVecOrMat{T}...) where {T} = typed_hcat(T, A...)
20✔
1645

1646
function _typed_hcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
447✔
1647
    nargs = length(A)
447✔
1648
    nrows = size(A[1], 1)
448✔
1649
    ncols = 0
447✔
1650
    dense = true
447✔
1651
    for j = 1:nargs
453✔
1652
        Aj = A[j]
912✔
1653
        if size(Aj, 1) != nrows
1,178✔
1654
            throw(ArgumentError("number of rows of each array must match (got $(map(x->size(x,1), A)))"))
3✔
1655
        end
1656
        dense &= isa(Aj,Array)
911✔
1657
        nd = ndims(Aj)
1,176✔
1658
        ncols += (nd==2 ? size(Aj,2) : 1)
1,121✔
1659
    end
1,376✔
1660
    B = similar(A[1], T, nrows, ncols)
446✔
1661
    pos = 1
446✔
1662
    if dense
446✔
1663
        for k=1:nargs
185✔
1664
            Ak = A[k]
385✔
1665
            n = length(Ak)
405✔
1666
            copyto!(B, pos, Ak, 1, n)
405✔
1667
            pos += n
385✔
1668
        end
587✔
1669
    else
1670
        for k=1:nargs
267✔
1671
            Ak = A[k]
525✔
1672
            p1 = pos+(isa(Ak,AbstractMatrix) ? size(Ak, 2) : 1)-1
720✔
1673
            B[:, pos:p1] = Ak
525✔
1674
            pos = p1+1
525✔
1675
        end
525✔
1676
    end
1677
    return B
446✔
1678
end
1679

1680
vcat(A::AbstractVecOrMat...) = typed_vcat(promote_eltype(A...), A...)
12✔
1681
vcat(A::AbstractVecOrMat{T}...) where {T} = typed_vcat(T, A...)
16✔
1682

1683
function _typed_vcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
790✔
1684
    nargs = length(A)
790✔
1685
    nrows = sum(a->size(a, 1), A)::Int
2,478✔
1686
    ncols = size(A[1], 2)
790✔
1687
    for j = 2:nargs
791✔
1688
        if size(A[j], 2) != ncols
848✔
1689
            throw(ArgumentError("number of columns of each array must match (got $(map(x->size(x,2), A)))"))
3✔
1690
        end
1691
    end
921✔
1692
    B = similar(A[1], T, nrows, ncols)
789✔
1693
    pos = 1
789✔
1694
    for k=1:nargs
790✔
1695
        Ak = A[k]
1,636✔
1696
        p1 = pos+size(Ak,1)::Int-1
1,712✔
1697
        B[pos:p1, :] = Ak
1,636✔
1698
        pos = p1+1
1,636✔
1699
    end
2,483✔
1700
    return B
789✔
1701
end
1702

1703
typed_vcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_vcat(T, A)
815,004✔
1704

1705
reduce(::typeof(vcat), A::AbstractVector{<:AbstractVecOrMat}) =
6✔
1706
    _typed_vcat(mapreduce(eltype, promote_type, A), A)
1707

1708
reduce(::typeof(hcat), A::AbstractVector{<:AbstractVecOrMat}) =
6✔
1709
    _typed_hcat(mapreduce(eltype, promote_type, A), A)
1710

1711
## cat: general case
1712

1713
# helper functions
1714
cat_size(A) = (1,)
22,364✔
1715
cat_size(A::AbstractArray) = size(A)
16,621✔
1716
cat_size(A, d) = 1
22,777✔
1717
cat_size(A::AbstractArray, d) = size(A, d)
24,325✔
1718

1719
cat_length(::Any) = 1
100✔
1720
cat_length(a::AbstractArray) = length(a)
472✔
1721

1722
cat_ndims(a) = 0
183✔
1723
cat_ndims(a::AbstractArray) = ndims(a)
684✔
1724

1725
cat_indices(A, d) = OneTo(1)
22,365✔
1726
cat_indices(A::AbstractArray, d) = axes(A, d)
17,728✔
1727

1728
cat_similar(A, ::Type{T}, shape::Tuple) where T = Array{T}(undef, shape)
7,359✔
1729
cat_similar(A, ::Type{T}, shape::Vector) where T = Array{T}(undef, shape...)
4✔
1730
cat_similar(A::Array, ::Type{T}, shape::Tuple) where T = Array{T}(undef, shape)
1,135✔
1731
cat_similar(A::Array, ::Type{T}, shape::Vector) where T = Array{T}(undef, shape...)
45✔
1732
cat_similar(A::AbstractArray, T::Type, shape::Tuple) = similar(A, T, shape)
937✔
1733
cat_similar(A::AbstractArray, T::Type, shape::Vector) = similar(A, T, shape...)
2✔
1734

1735
# These are for backwards compatibility (even though internal)
1736
cat_shape(dims, shape::Tuple{Vararg{Int}}) = shape
×
1737
function cat_shape(dims, shapes::Tuple)
4✔
1738
    out_shape = ()
4✔
1739
    for s in shapes
4✔
1740
        out_shape = _cshp(1, dims, out_shape, s)
18✔
1741
    end
15✔
1742
    return out_shape
4✔
1743
end
1744
# The new way to compute the shape (more inferable than combining cat_size & cat_shape, due to Varargs + issue#36454)
1745
cat_size_shape(dims) = ntuple(zero, Val(length(dims)))
×
1746
@inline cat_size_shape(dims, X, tail...) = _cat_size_shape(dims, _cshp(1, dims, (), cat_size(X)), tail...)
9,386✔
1747
_cat_size_shape(dims, shape) = shape
1,795✔
1748
@inline _cat_size_shape(dims, shape, X, tail...) = _cat_size_shape(dims, _cshp(1, dims, shape, cat_size(X)), tail...)
29,731✔
1749

1750
_cshp(ndim::Int, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ()
×
1751
_cshp(ndim::Int, ::Tuple{}, ::Tuple{}, nshape) = nshape
18✔
1752
_cshp(ndim::Int, dims, ::Tuple{}, ::Tuple{}) = ntuple(Returns(1), Val(length(dims)))
568✔
1753
@inline _cshp(ndim::Int, dims, shape, ::Tuple{}) =
524✔
1754
    (shape[1] + dims[1], _cshp(ndim + 1, tail(dims), tail(shape), ())...)
1755
@inline _cshp(ndim::Int, dims, ::Tuple{}, nshape) =
10,407✔
1756
    (nshape[1], _cshp(ndim + 1, tail(dims), (), tail(nshape))...)
1757
@inline function _cshp(ndim::Int, ::Tuple{}, shape, ::Tuple{})
24✔
1758
    _cs(ndim, shape[1], 1)
26✔
1759
    (1, _cshp(ndim + 1, (), tail(shape), ())...)
22✔
1760
end
1761
@inline function _cshp(ndim::Int, ::Tuple{}, shape, nshape)
250✔
1762
    next = _cs(ndim, shape[1], nshape[1])
250✔
1763
    (next, _cshp(ndim + 1, (), tail(shape), tail(nshape))...)
250✔
1764
end
1765
@inline function _cshp(ndim::Int, dims, shape, nshape)
30,715✔
1766
    a = shape[1]
30,715✔
1767
    b = nshape[1]
30,715✔
1768
    next = dims[1] ? a + b : _cs(ndim, a, b)
31,600✔
1769
    (next, _cshp(ndim + 1, tail(dims), tail(shape), tail(nshape))...)
30,748✔
1770
end
1771

1772
_cs(d, a, b) = (a == b ? a : throw(DimensionMismatch(
1,655✔
1773
    "mismatch in dimension $d (expected $a got $b)")))
1774

1775
dims2cat(::Val{dims}) where dims = dims2cat(dims)
1,006✔
1776
function dims2cat(dims)
1,604✔
1777
    if any(≤(0), dims)
2,758✔
1778
        throw(ArgumentError("All cat dimensions must be positive integers, but got $dims"))
2✔
1779
    end
1780
    ntuple(in(dims), maximum(dims))
1,643✔
1781
end
1782

1783
_cat(dims, X...) = _cat_t(dims, promote_eltypeof(X...), X...)
7,332✔
1784

1785
@inline function _cat_t(dims, ::Type{T}, X...) where {T}
9,384✔
1786
    catdims = dims2cat(dims)
9,421✔
1787
    shape = cat_size_shape(catdims, X...)
9,386✔
1788
    A = cat_similar(X[1], T, shape)
9,381✔
1789
    if count(!iszero, catdims)::Int > 1
9,378✔
1790
        fill!(A, zero(T))
571✔
1791
    end
1792
    return __cat(A, shape, catdims, X...)
9,906✔
1793
end
1794
# this version of `cat_t` is not very kind for inference and so its usage should be avoided,
1795
# nevertheless it is here just for compat after https://github.com/JuliaLang/julia/pull/45028
1796
@inline cat_t(::Type{T}, X...; dims) where {T} = _cat_t(dims, T, X...)
×
1797

1798
# Why isn't this called `__cat!`?
1799
__cat(A, shape, catdims, X...) = __cat_offset!(A, shape, catdims, ntuple(zero, length(shape)), X...)
9,910✔
1800

1801
function __cat_offset!(A, shape, catdims, offsets, x, X...)
38,974✔
1802
    # splitting the "work" on x from X... may reduce latency (fewer costly specializations)
1803
    newoffsets = __cat_offset1!(A, shape, catdims, offsets, x)
39,503✔
1804
    return __cat_offset!(A, shape, catdims, newoffsets, X...)
38,976✔
1805
end
1806
__cat_offset!(A, shape, catdims, offsets) = A
9,380✔
1807

1808
function __cat_offset1!(A, shape, catdims, offsets, x)
38,974✔
1809
    inds = ntuple(length(offsets)) do i
39,129✔
1810
        (i <= length(catdims) && catdims[i]) ? offsets[i] .+ cat_indices(x, i) : 1:shape[i]
43,324✔
1811
    end
1812
    if x isa AbstractArray
38,971✔
1813
        A[inds...] = x
110,703✔
1814
    else
1815
        fill!(view(A, inds...), x)
23,240✔
1816
    end
1817
    newoffsets = ntuple(length(offsets)) do i
38,976✔
1818
        (i <= length(catdims) && catdims[i]) ? offsets[i] + cat_size(x, i) : offsets[i]
45,507✔
1819
    end
1820
    return newoffsets
38,976✔
1821
end
1822

1823
"""
1824
    vcat(A...)
1825

1826
Concatenate arrays or numbers vertically. Equivalent to [`cat`](@ref)`(A...; dims=1)`,
1827
and to the syntax `[a; b; c]`.
1828

1829
To concatenate a large vector of arrays, `reduce(vcat, A)` calls an efficient method
1830
when `A isa AbstractVector{<:AbstractVecOrMat}`, rather than working pairwise.
1831

1832
See also [`hcat`](@ref), [`Iterators.flatten`](@ref), [`stack`](@ref).
1833

1834
# Examples
1835
```jldoctest
1836
julia> v = vcat([1,2], [3,4])
1837
4-element Vector{Int64}:
1838
 1
1839
 2
1840
 3
1841
 4
1842

1843
julia> v == vcat(1, 2, [3,4])  # accepts numbers
1844
true
1845

1846
julia> v == [1; 2; [3,4]]  # syntax for the same operation
1847
true
1848

1849
julia> summary(ComplexF64[1; 2; [3,4]])  # syntax for supplying the element type
1850
"4-element Vector{ComplexF64}"
1851

1852
julia> vcat(range(1, 2, length=3))  # collects lazy ranges
1853
3-element Vector{Float64}:
1854
 1.0
1855
 1.5
1856
 2.0
1857

1858
julia> two = ([10, 20, 30]', Float64[4 5 6; 7 8 9])  # row vector and a matrix
1859
([10 20 30], [4.0 5.0 6.0; 7.0 8.0 9.0])
1860

1861
julia> vcat(two...)
1862
3×3 Matrix{Float64}:
1863
 10.0  20.0  30.0
1864
  4.0   5.0   6.0
1865
  7.0   8.0   9.0
1866

1867
julia> vs = [[1, 2], [3, 4], [5, 6]];
1868

1869
julia> reduce(vcat, vs)  # more efficient than vcat(vs...)
1870
6-element Vector{Int64}:
1871
 1
1872
 2
1873
 3
1874
 4
1875
 5
1876
 6
1877

1878
julia> ans == collect(Iterators.flatten(vs))
1879
true
1880
```
1881
"""
1882
vcat(X...) = cat(X...; dims=Val(1))
383✔
1883
"""
1884
    hcat(A...)
1885

1886
Concatenate arrays or numbers horizontally. Equivalent to [`cat`](@ref)`(A...; dims=2)`,
1887
and to the syntax `[a b c]` or `[a;; b;; c]`.
1888

1889
For a large vector of arrays, `reduce(hcat, A)` calls an efficient method
1890
when `A isa AbstractVector{<:AbstractVecOrMat}`.
1891
For a vector of vectors, this can also be written [`stack`](@ref)`(A)`.
1892

1893
See also [`vcat`](@ref), [`hvcat`](@ref).
1894

1895
# Examples
1896
```jldoctest
1897
julia> hcat([1,2], [3,4], [5,6])
1898
2×3 Matrix{Int64}:
1899
 1  3  5
1900
 2  4  6
1901

1902
julia> hcat(1, 2, [30 40], [5, 6, 7]')  # accepts numbers
1903
1×7 Matrix{Int64}:
1904
 1  2  30  40  5  6  7
1905

1906
julia> ans == [1 2 [30 40] [5, 6, 7]']  # syntax for the same operation
1907
true
1908

1909
julia> Float32[1 2 [30 40] [5, 6, 7]']  # syntax for supplying the eltype
1910
1×7 Matrix{Float32}:
1911
 1.0  2.0  30.0  40.0  5.0  6.0  7.0
1912

1913
julia> ms = [zeros(2,2), [1 2; 3 4], [50 60; 70 80]];
1914

1915
julia> reduce(hcat, ms)  # more efficient than hcat(ms...)
1916
2×6 Matrix{Float64}:
1917
 0.0  0.0  1.0  2.0  50.0  60.0
1918
 0.0  0.0  3.0  4.0  70.0  80.0
1919

1920
julia> stack(ms) |> summary  # disagrees on a vector of matrices
1921
"2×2×3 Array{Float64, 3}"
1922

1923
julia> hcat(Int[], Int[], Int[])  # empty vectors, each of size (0,)
1924
0×3 Matrix{Int64}
1925

1926
julia> hcat([1.1, 9.9], Matrix(undef, 2, 0))  # hcat with empty 2×0 Matrix
1927
2×1 Matrix{Any}:
1928
 1.1
1929
 9.9
1930
```
1931
"""
1932
hcat(X...) = cat(X...; dims=Val(2))
9✔
1933

1934
typed_vcat(::Type{T}, X...) where T = _cat_t(Val(1), T, X...)
167✔
1935
typed_hcat(::Type{T}, X...) where T = _cat_t(Val(2), T, X...)
319✔
1936

1937
"""
1938
    cat(A...; dims)
1939

1940
Concatenate the input arrays along the dimensions specified in `dims`.
1941

1942
Along a dimension `d in dims`, the size of the output array is `sum(size(a,d) for
1943
a in A)`.
1944
Along other dimensions, all input arrays should have the same size,
1945
which will also be the size of the output array along those dimensions.
1946

1947
If `dims` is a single number, the different arrays are tightly packed along that dimension.
1948
If `dims` is an iterable containing several dimensions, the positions along these dimensions
1949
are increased simultaneously for each input array, filling with zero elsewhere.
1950
This allows one to construct block-diagonal matrices as `cat(matrices...; dims=(1,2))`,
1951
and their higher-dimensional analogues.
1952

1953
The special case `dims=1` is [`vcat`](@ref), and `dims=2` is [`hcat`](@ref).
1954
See also [`hvcat`](@ref), [`hvncat`](@ref), [`stack`](@ref), [`repeat`](@ref).
1955

1956
The keyword also accepts `Val(dims)`.
1957

1958
!!! compat "Julia 1.8"
1959
    For multiple dimensions `dims = Val(::Tuple)` was added in Julia 1.8.
1960

1961
# Examples
1962
```jldoctest
1963
julia> cat([1 2; 3 4], [pi, pi], fill(10, 2,3,1); dims=2)  # same as hcat
1964
2×6×1 Array{Float64, 3}:
1965
[:, :, 1] =
1966
 1.0  2.0  3.14159  10.0  10.0  10.0
1967
 3.0  4.0  3.14159  10.0  10.0  10.0
1968

1969
julia> cat(true, trues(2,2), trues(4)', dims=(1,2))  # block-diagonal
1970
4×7 Matrix{Bool}:
1971
 1  0  0  0  0  0  0
1972
 0  1  1  0  0  0  0
1973
 0  1  1  0  0  0  0
1974
 0  0  0  1  1  1  1
1975

1976
julia> cat(1, [2], [3;;]; dims=Val(2))
1977
1×3 Matrix{Int64}:
1978
 1  2  3
1979
```
1980
"""
1981
@inline cat(A...; dims) = _cat(dims, A...)
17,828✔
1982
# `@constprop :aggressive` allows `catdims` to be propagated as constant improving return type inference
1983
@constprop :aggressive _cat(catdims, A::AbstractArray{T}...) where {T} = _cat_t(catdims, T, A...)
30✔
1984

1985
# The specializations for 1 and 2 inputs are important
1986
# especially when running with --inline=no, see #11158
1987
# The specializations for Union{AbstractVecOrMat,Number} are necessary
1988
# to have more specialized methods here than in LinearAlgebra/uniformscaling.jl
1989
vcat(A::AbstractArray) = cat(A; dims=Val(1))
1✔
1990
vcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(1))
3✔
1991
vcat(A::AbstractArray...) = cat(A...; dims=Val(1))
×
1992
vcat(A::Union{AbstractVecOrMat,Number}...) = cat(A...; dims=Val(1))
6,917✔
1993
hcat(A::AbstractArray) = cat(A; dims=Val(2))
1✔
1994
hcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(2))
1✔
1995
hcat(A::AbstractArray...) = cat(A...; dims=Val(2))
1✔
1996
hcat(A::Union{AbstractVecOrMat,Number}...) = cat(A...; dims=Val(2))
×
1997

1998
typed_vcat(T::Type, A::AbstractArray) = _cat_t(Val(1), T, A)
1✔
1999
typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = _cat_t(Val(1), T, A, B)
3✔
2000
typed_vcat(T::Type, A::AbstractArray...) = _cat_t(Val(1), T, A...)
1✔
2001
typed_hcat(T::Type, A::AbstractArray) = _cat_t(Val(2), T, A)
3✔
2002
typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = _cat_t(Val(2), T, A, B)
2✔
2003
typed_hcat(T::Type, A::AbstractArray...) = _cat_t(Val(2), T, A...)
2✔
2004

2005
# 2d horizontal and vertical concatenation
2006

2007
# these are produced in lowering if splatting occurs inside hvcat
2008
hvcat_rows(rows::Tuple...) = hvcat(map(length, rows), (rows...)...)
3✔
2009
typed_hvcat_rows(T::Type, rows::Tuple...) = typed_hvcat(T, map(length, rows), (rows...)...)
3✔
2010

2011
function hvcat(nbc::Int, as...)
10✔
2012
    # nbc = # of block columns
2013
    n = length(as)
10✔
2014
    mod(n,nbc) != 0 &&
20✔
2015
        throw(ArgumentError("number of arrays $n is not a multiple of the requested number of block columns $nbc"))
2016
    nbr = div(n,nbc)
9✔
2017
    hvcat(ntuple(Returns(nbc), nbr), as...)
9✔
2018
end
2019

2020
"""
2021
    hvcat(blocks_per_row::Union{Tuple{Vararg{Int}}, Int}, values...)
2022

2023
Horizontal and vertical concatenation in one call. This function is called for block matrix
2024
syntax. The first argument specifies the number of arguments to concatenate in each block
2025
row. If the first argument is a single integer `n`, then all block rows are assumed to have `n`
2026
block columns.
2027

2028
# Examples
2029
```jldoctest
2030
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
2031
(1, 2, 3, 4, 5, 6)
2032

2033
julia> [a b c; d e f]
2034
2×3 Matrix{Int64}:
2035
 1  2  3
2036
 4  5  6
2037

2038
julia> hvcat((3,3), a,b,c,d,e,f)
2039
2×3 Matrix{Int64}:
2040
 1  2  3
2041
 4  5  6
2042

2043
julia> [a b; c d; e f]
2044
3×2 Matrix{Int64}:
2045
 1  2
2046
 3  4
2047
 5  6
2048

2049
julia> hvcat((2,2,2), a,b,c,d,e,f)
2050
3×2 Matrix{Int64}:
2051
 1  2
2052
 3  4
2053
 5  6
2054
julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)
2055
true
2056
```
2057
"""
2058
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat...) = typed_hvcat(promote_eltype(xs...), rows, xs...)
16✔
2059
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat{T}...) where {T} = typed_hvcat(T, rows, xs...)
318✔
2060

2061
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as::AbstractVecOrMat...) where T
679✔
2062
    nbr = length(rows)  # number of block rows
679✔
2063

2064
    nc = 0
679✔
2065
    for i=1:rows[1]
1,358✔
2066
        nc += size(as[i],2)
1,326✔
2067
    end
1,973✔
2068

2069
    nr = 0
679✔
2070
    a = 1
679✔
2071
    for i = 1:nbr
679✔
2072
        nr += size(as[a],1)
1,181✔
2073
        a += rows[i]
1,181✔
2074
    end
1,683✔
2075

2076
    out = similar(as[1], T, nr, nc)
679✔
2077

2078
    a = 1
679✔
2079
    r = 1
679✔
2080
    for i = 1:nbr
679✔
2081
        c = 1
1,181✔
2082
        szi = size(as[a],1)
1,181✔
2083
        for j = 1:rows[i]
2,362✔
2084
            Aj = as[a+j-1]
2,209✔
2085
            szj = size(Aj,2)
2,209✔
2086
            if size(Aj,1) != szi
2,209✔
2087
                throw(ArgumentError("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))"))
1✔
2088
            end
2089
            if c-1+szj > nc
3,103✔
2090
                throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))"))
1✔
2091
            end
2092
            out[r:r-1+szi, c:c-1+szj] = Aj
3,423✔
2093
            c += szj
2,207✔
2094
        end
3,235✔
2095
        if c != nc+1
1,179✔
2096
            throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))"))
1✔
2097
        end
2098
        r += szi
1,178✔
2099
        a += rows[i]
1,178✔
2100
    end
1,680✔
2101
    out
676✔
2102
end
2103

2104
hvcat(rows::Tuple{Vararg{Int}}) = []
1✔
2105
typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}) where {T} = Vector{T}()
×
2106

2107
function hvcat(rows::Tuple{Vararg{Int}}, xs::T...) where T<:Number
1,279✔
2108
    nr = length(rows)
488✔
2109
    nc = rows[1]
1,279✔
2110

2111
    a = Matrix{T}(undef, nr, nc)
1,279✔
2112
    if length(a) != length(xs)
1,279✔
2113
        throw(ArgumentError("argument count does not match specified shape (expected $(length(a)), got $(length(xs)))"))
2✔
2114
    end
2115
    k = 1
488✔
2116
    @inbounds for i=1:nr
1,277✔
2117
        if nc != rows[i]
3,324✔
2118
            throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
1✔
2119
        end
2120
        for j=1:nc
6,646✔
2121
            a[i,j] = xs[k]
8,910✔
2122
            k += 1
8,910✔
2123
        end
14,497✔
2124
    end
5,370✔
2125
    a
1,276✔
2126
end
2127

2128
function hvcat_fill!(a::Array, xs::Tuple)
466✔
2129
    nr, nc = size(a,1), size(a,2)
466✔
2130
    len = length(xs)
466✔
2131
    if nr*nc != len
466✔
2132
        throw(ArgumentError("argument count $(len) does not match specified shape $((nr,nc))"))
1✔
2133
    end
2134
    k = 1
465✔
2135
    for i=1:nr
930✔
2136
        @inbounds for j=1:nc
2,486✔
2137
            a[i,j] = xs[k]
9,237✔
2138
            k += 1
8,553✔
2139
        end
15,863✔
2140
    end
2,021✔
2141
    a
465✔
2142
end
2143

2144
hvcat(rows::Tuple{Vararg{Int}}, xs::Number...) = typed_hvcat(promote_typeof(xs...), rows, xs...)
172✔
2145
hvcat(rows::Tuple{Vararg{Int}}, xs...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
138✔
2146
# the following method is needed to provide a more specific one compared to LinearAlgebra/uniformscaling.jl
2147
hvcat(rows::Tuple{Vararg{Int}}, xs::Union{AbstractVecOrMat,Number}...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
×
2148

2149
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, xs::Number...) where T
394✔
2150
    nr = length(rows)
394✔
2151
    nc = rows[1]
394✔
2152
    for i = 2:nr
394✔
2153
        if nc != rows[i]
767✔
2154
            throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
2✔
2155
        end
2156
    end
1,138✔
2157
    hvcat_fill!(Matrix{T}(undef, nr, nc), xs)
392✔
2158
end
2159

2160
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as...) where T
146✔
2161
    nbr = length(rows)  # number of block rows
146✔
2162
    rs = Vector{Any}(undef, nbr)
146✔
2163
    a = 1
146✔
2164
    for i = 1:nbr
146✔
2165
        rs[i] = typed_hcat(T, as[a:a-1+rows[i]]...)
527✔
2166
        a += rows[i]
362✔
2167
    end
578✔
2168
    T[rs...;]
146✔
2169
end
2170

2171
## N-dimensional concatenation ##
2172

2173
"""
2174
    hvncat(dim::Int, row_first, values...)
2175
    hvncat(dims::Tuple{Vararg{Int}}, row_first, values...)
2176
    hvncat(shape::Tuple{Vararg{Tuple}}, row_first, values...)
2177

2178
Horizontal, vertical, and n-dimensional concatenation of many `values` in one call.
2179

2180
This function is called for block matrix syntax. The first argument either specifies the
2181
shape of the concatenation, similar to `hvcat`, as a tuple of tuples, or the dimensions that
2182
specify the key number of elements along each axis, and is used to determine the output
2183
dimensions. The `dims` form is more performant, and is used by default when the concatenation
2184
operation has the same number of elements along each axis (e.g., [a b; c d;;; e f ; g h]).
2185
The `shape` form is used when the number of elements along each axis is unbalanced
2186
(e.g., [a b ; c]). Unbalanced syntax needs additional validation overhead. The `dim` form
2187
is an optimization for concatenation along just one dimension. `row_first` indicates how
2188
`values` are ordered. The meaning of the first and second elements of `shape` are also
2189
swapped based on `row_first`.
2190

2191
# Examples
2192
```jldoctest
2193
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
2194
(1, 2, 3, 4, 5, 6)
2195

2196
julia> [a b c;;; d e f]
2197
1×3×2 Array{Int64, 3}:
2198
[:, :, 1] =
2199
 1  2  3
2200

2201
[:, :, 2] =
2202
 4  5  6
2203

2204
julia> hvncat((2,1,3), false, a,b,c,d,e,f)
2205
2×1×3 Array{Int64, 3}:
2206
[:, :, 1] =
2207
 1
2208
 2
2209

2210
[:, :, 2] =
2211
 3
2212
 4
2213

2214
[:, :, 3] =
2215
 5
2216
 6
2217

2218
julia> [a b;;; c d;;; e f]
2219
1×2×3 Array{Int64, 3}:
2220
[:, :, 1] =
2221
 1  2
2222

2223
[:, :, 2] =
2224
 3  4
2225

2226
[:, :, 3] =
2227
 5  6
2228

2229
julia> hvncat(((3, 3), (3, 3), (6,)), true, a, b, c, d, e, f)
2230
1×3×2 Array{Int64, 3}:
2231
[:, :, 1] =
2232
 1  2  3
2233

2234
[:, :, 2] =
2235
 4  5  6
2236
```
2237

2238
# Examples for construction of the arguments
2239
```
2240
[a b c ; d e f ;;;
2241
 g h i ; j k l ;;;
2242
 m n o ; p q r ;;;
2243
 s t u ; v w x]
2244
⇒ dims = (2, 3, 4)
2245

2246
[a b ; c ;;; d ;;;;]
2247
 ___   _     _
2248
 2     1     1 = elements in each row (2, 1, 1)
2249
 _______     _
2250
 3           1 = elements in each column (3, 1)
2251
 _____________
2252
 4             = elements in each 3d slice (4,)
2253
 _____________
2254
 4             = elements in each 4d slice (4,)
2255
⇒ shape = ((2, 1, 1), (3, 1), (4,), (4,)) with `row_first` = true
2256
```
2257
"""
2258
hvncat(dimsshape::Tuple, row_first::Bool, xs...) = _hvncat(dimsshape, row_first, xs...)
262✔
2259
hvncat(dim::Int, xs...) = _hvncat(dim, true, xs...)
77✔
2260

2261
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool) = _typed_hvncat(Any, dimsshape, row_first)
29✔
2262
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs...) = _typed_hvncat(promote_eltypeof(xs...), dimsshape, row_first, xs...)
91✔
2263
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::T...) where T<:Number = _typed_hvncat(T, dimsshape, row_first, xs...)
88✔
2264
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::Number...) = _typed_hvncat(promote_typeof(xs...), dimsshape, row_first, xs...)
×
2265
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::AbstractArray...) = _typed_hvncat(promote_eltype(xs...), dimsshape, row_first, xs...)
×
2266
_hvncat(dimsshape::Union{Tuple, Int}, row_first::Bool, xs::AbstractArray{T}...) where T = _typed_hvncat(T, dimsshape, row_first, xs...)
132✔
2267

2268

2269
typed_hvncat(T::Type, dimsshape::Tuple, row_first::Bool, xs...) = _typed_hvncat(T, dimsshape, row_first, xs...)
17✔
2270
typed_hvncat(T::Type, dim::Int, xs...) = _typed_hvncat(T, Val(dim), xs...)
14✔
2271

2272
# 1-dimensional hvncat methods
2273

2274
_typed_hvncat(::Type, ::Val{0}) = _typed_hvncat_0d_only_one()
4✔
2275
_typed_hvncat(T::Type, ::Val{0}, x) = fill(convert(T, x))
×
2276
_typed_hvncat(T::Type, ::Val{0}, x::Number) = fill(convert(T, x))
4✔
2277
_typed_hvncat(T::Type, ::Val{0}, x::AbstractArray) = convert.(T, x)
4✔
2278
_typed_hvncat(::Type, ::Val{0}, ::Any...) = _typed_hvncat_0d_only_one()
×
2279
_typed_hvncat(::Type, ::Val{0}, ::Number...) = _typed_hvncat_0d_only_one()
4✔
2280
_typed_hvncat(::Type, ::Val{0}, ::AbstractArray...) = _typed_hvncat_0d_only_one()
×
2281

2282
_typed_hvncat_0d_only_one() =
8✔
2283
    throw(ArgumentError("a 0-dimensional array may only contain exactly one element"))
2284

2285
# `@constprop :aggressive` here to form constant `Val(dim)` type to get type stability
2286
@constprop :aggressive _typed_hvncat(T::Type, dim::Int, ::Bool, xs...) = _typed_hvncat(T, Val(dim), xs...) # catches from _hvncat type promoters
77✔
2287

2288
function _typed_hvncat(::Type{T}, ::Val{N}) where {T, N}
15✔
2289
    N < 0 &&
15✔
2290
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2291
    return Array{T, N}(undef, ntuple(x -> 0, Val(N)))
40✔
2292
end
2293

2294
function _typed_hvncat(T::Type, ::Val{N}, xs::Number...) where N
38✔
2295
    N < 0 &&
38✔
2296
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2297
    A = cat_similar(xs[1], T, (ntuple(x -> 1, Val(N - 1))..., length(xs)))
83✔
2298
    hvncat_fill!(A, false, xs)
37✔
2299
    return A
37✔
2300
end
2301

2302
function _typed_hvncat(::Type{T}, ::Val{N}, as::AbstractArray...) where {T, N}
25✔
2303
    # optimization for arrays that can be concatenated by copying them linearly into the destination
2304
    # conditions: the elements must all have 1-length dimensions above N
2305
    length(as) > 0 ||
25✔
2306
        throw(ArgumentError("must have at least one element"))
2307
    N < 0 &&
25✔
2308
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2309
    for a ∈ as
23✔
2310
        ndims(a) <= N || all(x -> size(a, x) == 1, (N + 1):ndims(a)) ||
54✔
2311
            return _typed_hvncat(T, (ntuple(x -> 1, Val(N - 1))..., length(as), 1), false, as...)
9✔
2312
            # the extra 1 is to avoid an infinite cycle
2313
    end
46✔
2314

2315
    nd = N
17✔
2316

2317
    Ndim = 0
17✔
2318
    for i ∈ eachindex(as)
18✔
2319
        Ndim += cat_size(as[i], N)
38✔
2320
        nd = max(nd, cat_ndims(as[i]))
38✔
2321
        for d ∈ 1:N - 1
32✔
2322
            cat_size(as[1], d) == cat_size(as[i], d) || throw(ArgumentError("mismatched size along axis $d in element $i"))
39✔
2323
        end
44✔
2324
    end
43✔
2325

2326
    A = cat_similar(as[1], T, (ntuple(d -> size(as[1], d), N - 1)..., Ndim, ntuple(x -> 1, nd - N)...))
28✔
2327
    k = 1
13✔
2328
    for a ∈ as
13✔
2329
        for i ∈ eachindex(a)
44✔
2330
            A[k] = a[i]
36✔
2331
            k += 1
34✔
2332
        end
47✔
2333
    end
34✔
2334
    return A
13✔
2335
end
2336

2337
function _typed_hvncat(::Type{T}, ::Val{N}, as...) where {T, N}
14✔
2338
    length(as) > 0 ||
14✔
2339
        throw(ArgumentError("must have at least one element"))
2340
    N < 0 &&
14✔
2341
        throw(ArgumentError("concatenation dimension must be nonnegative"))
2342
    nd = N
12✔
2343
    Ndim = 0
12✔
2344
    for i ∈ eachindex(as)
14✔
2345
        Ndim += cat_size(as[i], N)
30✔
2346
        nd = max(nd, cat_ndims(as[i]))
30✔
2347
        for d ∈ 1:N-1
20✔
2348
            cat_size(as[i], d) == 1 ||
36✔
2349
                throw(ArgumentError("all dimensions of element $i other than $N must be of length 1"))
2350
        end
28✔
2351
    end
20✔
2352

2353
    A = Array{T, nd}(undef, ntuple(x -> 1, Val(N - 1))..., Ndim, ntuple(x -> 1, nd - N)...)
15✔
2354

2355
    k = 1
4✔
2356
    for a ∈ as
4✔
2357
        if a isa AbstractArray
12✔
2358
            lena = length(a)
2✔
2359
            copyto!(A, k, a, 1, lena)
2✔
2360
            k += lena
2✔
2361
        else
2362
            A[k] = a
10✔
2363
            k += 1
10✔
2364
        end
2365
    end
16✔
2366
    return A
4✔
2367
end
2368

2369
# 0-dimensional cases for balanced and unbalanced hvncat method
2370

2371
_typed_hvncat(T::Type, ::Tuple{}, ::Bool, x...) = _typed_hvncat(T, Val(0), x...)
2✔
2372
_typed_hvncat(T::Type, ::Tuple{}, ::Bool, x::Number...) = _typed_hvncat(T, Val(0), x...)
6✔
2373

2374

2375
# balanced dimensions hvncat methods
2376

2377
_typed_hvncat(T::Type, dims::Tuple{Int}, ::Bool, as...) = _typed_hvncat_1d(T, dims[1], Val(false), as...)
2✔
2378
_typed_hvncat(T::Type, dims::Tuple{Int}, ::Bool, as::Number...) = _typed_hvncat_1d(T, dims[1], Val(false), as...)
8✔
2379

2380
function _typed_hvncat_1d(::Type{T}, ds::Int, ::Val{row_first}, as...) where {T, row_first}
22✔
2381
    lengthas = length(as)
22✔
2382
    ds > 0 ||
22✔
2383
        throw(ArgumentError("`dimsshape` argument must consist of positive integers"))
2384
    lengthas == ds ||
30✔
2385
        throw(ArgumentError("number of elements does not match `dimshape` argument; expected $ds, got $lengthas"))
2386
    if row_first
14✔
2387
        return _typed_hvncat(T, Val(2), as...)
4✔
2388
    else
2389
        return _typed_hvncat(T, Val(1), as...)
10✔
2390
    end
2391
end
2392

2393
function _typed_hvncat(::Type{T}, dims::NTuple{N, Int}, row_first::Bool, xs::Number...) where {T, N}
44✔
2394
    all(>(0), dims) ||
60✔
2395
        throw(ArgumentError("`dims` argument must contain positive integers"))
2396
    A = Array{T, N}(undef, dims...)
28✔
2397
    lengtha = length(A)  # Necessary to store result because throw blocks are being deoptimized right now, which leads to excessive allocations
28✔
2398
    lengthx = length(xs) # Cuts from 3 allocations to 1.
28✔
2399
    if lengtha != lengthx
28✔
2400
       throw(ArgumentError("argument count does not match specified shape (expected $lengtha, got $lengthx)"))
×
2401
    end
2402
    hvncat_fill!(A, row_first, xs)
28✔
2403
    return A
28✔
2404
end
2405

2406
function hvncat_fill!(A::Array, row_first::Bool, xs::Tuple)
65✔
2407
    # putting these in separate functions leads to unnecessary allocations
2408
    if row_first
65✔
2409
        nr, nc = size(A, 1), size(A, 2)
17✔
2410
        nrc = nr * nc
17✔
2411
        na = prod(size(A)[3:end])
17✔
2412
        k = 1
17✔
2413
        for d ∈ 1:na
34✔
2414
            dd = nrc * (d - 1)
31✔
2415
            for i ∈ 1:nr
62✔
2416
                Ai = dd + i
42✔
2417
                for j ∈ 1:nc
84✔
2418
                    A[Ai] = xs[k]
95✔
2419
                    k += 1
95✔
2420
                    Ai += nr
95✔
2421
                end
148✔
2422
            end
53✔
2423
        end
31✔
2424
    else
2425
        for k ∈ eachindex(xs)
48✔
2426
            A[k] = xs[k]
95✔
2427
        end
95✔
2428
    end
2429
end
2430

2431
function _typed_hvncat(T::Type, dims::NTuple{N, Int}, row_first::Bool, as...) where {N}
90✔
2432
    # function barrier after calculating the max is necessary for high performance
2433
    nd = max(maximum(cat_ndims(a) for a ∈ as), N)
90✔
2434
    return _typed_hvncat_dims(T, (dims..., ntuple(x -> 1, nd - N)...), row_first, as)
124✔
2435
end
2436

2437
function _typed_hvncat_dims(::Type{T}, dims::NTuple{N, Int}, row_first::Bool, as::Tuple) where {T, N}
90✔
2438
    length(as) > 0 ||
90✔
2439
        throw(ArgumentError("must have at least one element"))
2440
    all(>(0), dims) ||
122✔
2441
        throw(ArgumentError("`dims` argument must contain positive integers"))
2442

2443
    d1 = row_first ? 2 : 1
58✔
2444
    d2 = row_first ? 1 : 2
58✔
2445

2446
    outdims = zeros(Int, N)
203✔
2447

2448
    # validate shapes for lowest level of concatenation
2449
    d = findfirst(>(1), dims)
86✔
2450
    if d !== nothing # all dims are 1
58✔
2451
        if row_first && d < 3
57✔
2452
            d = d == 1 ? 2 : 1
32✔
2453
        end
2454
        nblocks = length(as) ÷ dims[d]
57✔
2455
        for b ∈ 1:nblocks
114✔
2456
            offset = ((b - 1) * dims[d])
175✔
2457
            startelementi = offset + 1
175✔
2458
            for i ∈ offset .+ (2:dims[d])
262✔
2459
                for dd ∈ 1:N
111✔
2460
                    dd == d && continue
316✔
2461
                    if cat_size(as[startelementi], dd) != cat_size(as[i], dd)
217✔
2462
                        throw(ArgumentError("incompatible shape in element $i"))
6✔
2463
                    end
2464
                end
515✔
2465
            end
129✔
2466
        end
287✔
2467
    end
2468

2469
    # discover number of rows or columns
2470
    for i ∈ 1:dims[d1]
104✔
2471
        outdims[d1] += cat_size(as[i], d1)
140✔
2472
    end
164✔
2473

2474
    currentdims = zeros(Int, N)
176✔
2475
    blockcount = 0
52✔
2476
    elementcount = 0
52✔
2477
    for i ∈ eachindex(as)
52✔
2478
        elementcount += cat_length(as[i])
309✔
2479
        currentdims[d1] += cat_size(as[i], d1)
309✔
2480
        if currentdims[d1] == outdims[d1]
259✔
2481
            currentdims[d1] = 0
129✔
2482
            for d ∈ (d2, 3:N...)
129✔
2483
                currentdims[d] += cat_size(as[i], d)
258✔
2484
                if outdims[d] == 0 # unfixed dimension
203✔
2485
                    blockcount += 1
167✔
2486
                    if blockcount == dims[d]
167✔
2487
                        outdims[d] = currentdims[d]
88✔
2488
                        currentdims[d] = 0
88✔
2489
                        blockcount = 0
88✔
2490
                    else
2491
                        break
167✔
2492
                    end
2493
                else # fixed dimension
2494
                    if currentdims[d] == outdims[d] # end of dimension
36✔
2495
                        currentdims[d] = 0
23✔
2496
                    elseif currentdims[d] < outdims[d] # dimension in progress
13✔
2497
                        break
13✔
2498
                    else # exceeded dimension
2499
                        throw(ArgumentError("argument $i has too many elements along axis $d"))
×
2500
                    end
2501
                end
2502
            end
142✔
2503
        elseif currentdims[d1] > outdims[d1] # exceeded dimension
130✔
2504
            throw(ArgumentError("argument $i has too many elements along axis $d1"))
16✔
2505
        end
2506
    end
450✔
2507

2508
    outlen = prod(outdims)
72✔
2509
    elementcount == outlen ||
36✔
2510
        throw(ArgumentError("mismatched number of elements; expected $(outlen), got $(elementcount)"))
2511

2512
    # copy into final array
2513
    A = cat_similar(as[1], T, outdims)
36✔
2514
    # @assert all(==(0), currentdims)
2515
    outdims .= 0
108✔
2516
    hvncat_fill!(A, currentdims, outdims, d1, d2, as)
36✔
2517
    return A
36✔
2518
end
2519

2520

2521
# unbalanced dimensions hvncat methods
2522

2523
function _typed_hvncat(T::Type, shape::Tuple{Tuple}, row_first::Bool, xs...)
19✔
2524
    length(shape[1]) > 0 ||
19✔
2525
        throw(ArgumentError("each level of `shape` argument must have at least one value"))
2526
    return _typed_hvncat_1d(T, shape[1][1], Val(row_first), xs...)
13✔
2527
end
2528

2529
function _typed_hvncat(T::Type, shape::NTuple{N, Tuple}, row_first::Bool, as...) where {N}
115✔
2530
    # function barrier after calculating the max is necessary for high performance
2531
    nd = max(maximum(cat_ndims(a) for a ∈ as), N)
115✔
2532
    return _typed_hvncat_shape(T, (shape..., ntuple(x -> shape[end], nd - N)...), row_first, as)
134✔
2533
end
2534

2535
function _typed_hvncat_shape(::Type{T}, shape::NTuple{N, Tuple}, row_first, as::Tuple) where {T, N}
107✔
2536
    length(as) > 0 ||
107✔
2537
        throw(ArgumentError("must have at least one element"))
2538
    all(>(0), tuple((shape...)...)) ||
147✔
2539
        throw(ArgumentError("`shape` argument must consist of positive integers"))
2540

2541
    d1 = row_first ? 2 : 1
67✔
2542
    d2 = row_first ? 1 : 2
67✔
2543

2544
    shapev = collect(shape) # saves allocations later
67✔
2545
    all(!isempty, shapev) ||
134✔
2546
        throw(ArgumentError("each level of `shape` argument must have at least one value"))
2547
    length(shapev[end]) == 1 ||
70✔
2548
        throw(ArgumentError("last level of shape must contain only one integer"))
2549
    shapelength = shapev[end][1]
64✔
2550
    lengthas = length(as)
64✔
2551
    shapelength == lengthas || throw(ArgumentError("number of elements does not match shape; expected $(shapelength), got $lengthas)"))
64✔
2552
    # discover dimensions
2553
    nd = max(N, cat_ndims(as[1]))
64✔
2554
    outdims = fill(-1, nd)
210✔
2555
    currentdims = zeros(Int, nd)
210✔
2556
    blockcounts = zeros(Int, nd)
210✔
2557
    shapepos = ones(Int, nd)
210✔
2558

2559
    elementcount = 0
64✔
2560
    for i ∈ eachindex(as)
64✔
2561
        elementcount += cat_length(as[i])
355✔
2562
        wasstartblock = false
313✔
2563
        for d ∈ 1:N
313✔
2564
            ad = (d < 3 && row_first) ? (d == 1 ? 2 : 1) : d
907✔
2565
            dsize = cat_size(as[i], ad)
1,048✔
2566
            blockcounts[d] += 1
907✔
2567

2568
            if d == 1 || i == 1 || wasstartblock
1,501✔
2569
                currentdims[d] += dsize
623✔
2570
            elseif dsize != cat_size(as[i - 1], ad)
302✔
2571
                throw(ArgumentError("argument $i has a mismatched number of elements along axis $ad; \
8✔
2572
                                    expected $(cat_size(as[i - 1], ad)), got $dsize"))
2573
            end
2574

2575
            wasstartblock = blockcounts[d] == 1 # remember for next dimension
899✔
2576

2577
            isendblock = blockcounts[d] == shapev[d][shapepos[d]]
899✔
2578
            if isendblock
899✔
2579
                if outdims[d] == -1
269✔
2580
                    outdims[d] = currentdims[d]
138✔
2581
                elseif outdims[d] != currentdims[d]
131✔
2582
                    throw(ArgumentError("argument $i has a mismatched number of elements along axis $ad; \
40✔
2583
                                        expected $(abs(outdims[d] - (currentdims[d] - dsize))), got $dsize"))
2584
                end
2585
                currentdims[d] = 0
229✔
2586
                blockcounts[d] = 0
229✔
2587
                shapepos[d] += 1
229✔
2588
                d > 1 && (blockcounts[d - 1] == 0 ||
230✔
2589
                    throw(ArgumentError("shape in level $d is inconsistent; level counts must nest \
2590
                                        evenly into each other")))
2591
            end
2592
        end
1,452✔
2593
    end
513✔
2594

2595
    outlen = prod(outdims)
30✔
2596
    elementcount == outlen ||
15✔
2597
        throw(ArgumentError("mismatched number of elements; expected $(outlen), got $(elementcount)"))
2598

2599
    if row_first
15✔
2600
        outdims[1], outdims[2] = outdims[2], outdims[1]
11✔
2601
    end
2602

2603
    # @assert all(==(0), currentdims)
2604
    # @assert all(==(0), blockcounts)
2605

2606
    # copy into final array
2607
    A = cat_similar(as[1], T, outdims)
15✔
2608
    hvncat_fill!(A, currentdims, blockcounts, d1, d2, as)
15✔
2609
    return A
15✔
2610
end
2611

2612
function hvncat_fill!(A::AbstractArray{T, N}, scratch1::Vector{Int}, scratch2::Vector{Int}, d1::Int, d2::Int, as::Tuple{Vararg}) where {T, N}
51✔
2613
    outdims = size(A)
51✔
2614
    offsets = scratch1
51✔
2615
    inneroffsets = scratch2
51✔
2616
    for a ∈ as
51✔
2617
        if isa(a, AbstractArray)
270✔
2618
            for ai ∈ a
266✔
2619
                Ai = hvncat_calcindex(offsets, inneroffsets, outdims, N)
7,046✔
2620
                A[Ai] = ai
1,888✔
2621

2622
                for j ∈ 1:N
1,888✔
2623
                    inneroffsets[j] += 1
4,152✔
2624
                    inneroffsets[j] < cat_size(a, j) && break
4,221✔
2625
                    inneroffsets[j] = 0
2,490✔
2626
                end
2,490✔
2627
            end
2,118✔
2628
        else
2629
            Ai = hvncat_calcindex(offsets, inneroffsets, outdims, N)
52✔
2630
            A[Ai] = a
30✔
2631
        end
2632

2633
        for j ∈ (d1, d2, 3:N...)
270✔
2634
            offsets[j] += cat_size(a, j)
599✔
2635
            offsets[j] < outdims[j] && break
518✔
2636
            offsets[j] = 0
304✔
2637
        end
304✔
2638
    end
270✔
2639
end
2640

2641
@propagate_inbounds function hvncat_calcindex(offsets::Vector{Int}, inneroffsets::Vector{Int},
1,915✔
2642
                                              outdims::Tuple{Vararg{Int}}, nd::Int)
2643
    Ai = inneroffsets[1] + offsets[1] + 1
1,915✔
2644
    for j ∈ 2:nd
1,915✔
2645
        increment = inneroffsets[j] + offsets[j]
7,098✔
2646
        for k ∈ 1:j-1
14,168✔
2647
            increment *= outdims[k]
17,209✔
2648
        end
27,320✔
2649
        Ai += increment
7,098✔
2650
    end
12,281✔
2651
    Ai
1,915✔
2652
end
2653

2654
"""
2655
    stack(iter; [dims])
2656

2657
Combine a collection of arrays (or other iterable objects) of equal size
2658
into one larger array, by arranging them along one or more new dimensions.
2659

2660
By default the axes of the elements are placed first,
2661
giving `size(result) = (size(first(iter))..., size(iter)...)`.
2662
This has the same order of elements as [`Iterators.flatten`](@ref)`(iter)`.
2663

2664
With keyword `dims::Integer`, instead the `i`th element of `iter` becomes the slice
2665
[`selectdim`](@ref)`(result, dims, i)`, so that `size(result, dims) == length(iter)`.
2666
In this case `stack` reverses the action of [`eachslice`](@ref) with the same `dims`.
2667

2668
The various [`cat`](@ref) functions also combine arrays. However, these all
2669
extend the arrays' existing (possibly trivial) dimensions, rather than placing
2670
the arrays along new dimensions.
2671
They also accept arrays as separate arguments, rather than a single collection.
2672

2673
!!! compat "Julia 1.9"
2674
    This function requires at least Julia 1.9.
2675

2676
# Examples
2677
```jldoctest
2678
julia> vecs = (1:2, [30, 40], Float32[500, 600]);
2679

2680
julia> mat = stack(vecs)
2681
2×3 Matrix{Float32}:
2682
 1.0  30.0  500.0
2683
 2.0  40.0  600.0
2684

2685
julia> mat == hcat(vecs...) == reduce(hcat, collect(vecs))
2686
true
2687

2688
julia> vec(mat) == vcat(vecs...) == reduce(vcat, collect(vecs))
2689
true
2690

2691
julia> stack(zip(1:4, 10:99))  # accepts any iterators of iterators
2692
2×4 Matrix{Int64}:
2693
  1   2   3   4
2694
 10  11  12  13
2695

2696
julia> vec(ans) == collect(Iterators.flatten(zip(1:4, 10:99)))
2697
true
2698

2699
julia> stack(vecs; dims=1)  # unlike any cat function, 1st axis of vecs[1] is 2nd axis of result
2700
3×2 Matrix{Float32}:
2701
   1.0    2.0
2702
  30.0   40.0
2703
 500.0  600.0
2704

2705
julia> x = rand(3,4);
2706

2707
julia> x == stack(eachcol(x)) == stack(eachrow(x), dims=1)  # inverse of eachslice
2708
true
2709
```
2710

2711
Higher-dimensional examples:
2712

2713
```jldoctest
2714
julia> A = rand(5, 7, 11);
2715

2716
julia> E = eachslice(A, dims=2);  # a vector of matrices
2717

2718
julia> (element = size(first(E)), container = size(E))
2719
(element = (5, 11), container = (7,))
2720

2721
julia> stack(E) |> size
2722
(5, 11, 7)
2723

2724
julia> stack(E) == stack(E; dims=3) == cat(E...; dims=3)
2725
true
2726

2727
julia> A == stack(E; dims=2)
2728
true
2729

2730
julia> M = (fill(10i+j, 2, 3) for i in 1:5, j in 1:7);
2731

2732
julia> (element = size(first(M)), container = size(M))
2733
(element = (2, 3), container = (5, 7))
2734

2735
julia> stack(M) |> size  # keeps all dimensions
2736
(2, 3, 5, 7)
2737

2738
julia> stack(M; dims=1) |> size  # vec(container) along dims=1
2739
(35, 2, 3)
2740

2741
julia> hvcat(5, M...) |> size  # hvcat puts matrices next to each other
2742
(14, 15)
2743
```
2744
"""
2745
stack(iter; dims=:) = _stack(dims, iter)
250✔
2746

2747
"""
2748
    stack(f, args...; [dims])
2749

2750
Apply a function to each element of a collection, and `stack` the result.
2751
Or to several collections, [`zip`](@ref)ped together.
2752

2753
The function should return arrays (or tuples, or other iterators) all of the same size.
2754
These become slices of the result, each separated along `dims` (if given) or by default
2755
along the last dimensions.
2756

2757
See also [`mapslices`](@ref), [`eachcol`](@ref).
2758

2759
# Examples
2760
```jldoctest
2761
julia> stack(c -> (c, c-32), "julia")
2762
2×5 Matrix{Char}:
2763
 'j'  'u'  'l'  'i'  'a'
2764
 'J'  'U'  'L'  'I'  'A'
2765

2766
julia> stack(eachrow([1 2 3; 4 5 6]), (10, 100); dims=1) do row, n
2767
         vcat(row, row .* n, row ./ n)
2768
       end
2769
2×9 Matrix{Float64}:
2770
 1.0  2.0  3.0   10.0   20.0   30.0  0.1   0.2   0.3
2771
 4.0  5.0  6.0  400.0  500.0  600.0  0.04  0.05  0.06
2772
```
2773
"""
2774
stack(f, iter; dims=:) = _stack(dims, f(x) for x in iter)
12✔
2775
stack(f, xs, yzs...; dims=:) = _stack(dims, f(xy...) for xy in zip(xs, yzs...))
2✔
2776

2777
_stack(dims::Union{Integer, Colon}, iter) = _stack(dims, IteratorSize(iter), iter)
165✔
2778

2779
_stack(dims, ::IteratorSize, iter) = _stack(dims, collect(iter))
21✔
2780

2781
function _stack(dims, ::Union{HasShape, HasLength}, iter)
122✔
2782
    S = @default_eltype iter
122✔
2783
    T = S != Union{} ? eltype(S) : Any  # Union{} occurs for e.g. stack(1,2), postpone the error
126✔
2784
    if isconcretetype(T)
122✔
2785
        _typed_stack(dims, T, S, iter)
103✔
2786
    else  # Need to look inside, but shouldn't run an expensive iterator twice:
2787
        array = iter isa Union{Tuple, AbstractArray} ? iter : collect(iter)
42✔
2788
        isempty(array) && return _empty_stack(dims, T, S, iter)
38✔
2789
        T2 = mapreduce(eltype, promote_type, array)
42✔
2790
        _typed_stack(dims, T2, eltype(array), array)
36✔
2791
    end
2792
end
2793

2794
function _typed_stack(::Colon, ::Type{T}, ::Type{S}, A, Aax=_iterator_axes(A)) where {T, S}
184✔
2795
    xit = iterate(A)
210✔
2796
    nothing === xit && return _empty_stack(:, T, S, A)
94✔
2797
    x1, _ = xit
94✔
2798
    ax1 = _iterator_axes(x1)
98✔
2799
    B = similar(_ensure_array(x1), T, ax1..., Aax...)
106✔
2800
    off = firstindex(B)
93✔
2801
    len = length(x1)
97✔
2802
    while xit !== nothing
2,563✔
2803
        x, state = xit
2,476✔
2804
        _stack_size_check(x, ax1)
4,654✔
2805
        copyto!(B, off, x)
2,474✔
2806
        off += len
2,470✔
2807
        xit = iterate(A, state)
3,798✔
2808
    end
2,470✔
2809
    B
87✔
2810
end
2811

2812
_iterator_axes(x) = _iterator_axes(x, IteratorSize(x))
9,238✔
2813
_iterator_axes(x, ::HasLength) = (OneTo(length(x)),)
462✔
2814
_iterator_axes(x, ::IteratorSize) = axes(x)
8,776✔
2815

2816
# For some dims values, stack(A; dims) == stack(vec(A)), and the : path will be faster
2817
_typed_stack(dims::Integer, ::Type{T}, ::Type{S}, A) where {T,S} =
51✔
2818
    _typed_stack(dims, T, S, IteratorSize(S), A)
2819
_typed_stack(dims::Integer, ::Type{T}, ::Type{S}, ::HasLength, A) where {T,S} =
13✔
2820
    _typed_stack(dims, T, S, HasShape{1}(), A)
2821
function _typed_stack(dims::Integer, ::Type{T}, ::Type{S}, ::HasShape{N}, A) where {T,S,N}
27✔
2822
    if dims == N+1
27✔
2823
        _typed_stack(:, T, S, A, (_vec_axis(A),))
4✔
2824
    else
2825
        _dim_stack(dims, T, S, A)
23✔
2826
    end
2827
end
2828
_typed_stack(dims::Integer, ::Type{T}, ::Type{S}, ::IteratorSize, A) where {T,S} =
2✔
2829
    _dim_stack(dims, T, S, A)
2830

2831
_vec_axis(A, ax=_iterator_axes(A)) = length(ax) == 1 ? only(ax) : OneTo(prod(length, ax; init=1))
50✔
2832

2833
@constprop :aggressive function _dim_stack(dims::Integer, ::Type{T}, ::Type{S}, A) where {T,S}
25✔
2834
    xit = Iterators.peel(A)
48✔
2835
    nothing === xit && return _empty_stack(dims, T, S, A)
25✔
2836
    x1, xrest = xit
25✔
2837
    ax1 = _iterator_axes(x1)
25✔
2838
    N1 = length(ax1)+1
24✔
2839
    dims in 1:N1 || throw(ArgumentError(LazyString("cannot stack slices ndims(x) = ", N1-1, " along dims = ", dims)))
27✔
2840

2841
    newaxis = _vec_axis(A)
21✔
2842
    outax = ntuple(d -> d==dims ? newaxis : ax1[d - (d>dims)], N1)
141✔
2843
    B = similar(_ensure_array(x1), T, outax...)
23✔
2844

2845
    if dims == 1
21✔
2846
        _dim_stack!(Val(1), B, x1, xrest)
13✔
2847
    elseif dims == 2
8✔
2848
        _dim_stack!(Val(2), B, x1, xrest)
4✔
2849
    else
2850
        _dim_stack!(Val(dims), B, x1, xrest)
4✔
2851
    end
2852
    B
18✔
2853
end
2854

2855
function _dim_stack!(::Val{dims}, B::AbstractArray, x1, xrest) where {dims}
21✔
2856
    before = ntuple(d -> Colon(), dims - 1)
33✔
2857
    after = ntuple(d -> Colon(), ndims(B) - dims)
49✔
2858

2859
    i = firstindex(B, dims)
21✔
2860
    copyto!(view(B, before..., i, after...), x1)
39✔
2861

2862
    for x in xrest
29✔
2863
        _stack_size_check(x, _iterator_axes(x1))
6,422✔
2864
        i += 1
3,261✔
2865
        @inbounds copyto!(view(B, before..., i, after...), x)
6,512✔
2866
    end
3,261✔
2867
end
2868

2869
@inline function _stack_size_check(x, ax1::Tuple)
5,740✔
2870
    if _iterator_axes(x) != ax1
11,107✔
2871
        uax1 = map(UnitRange, ax1)
9✔
2872
        uaxN = map(UnitRange, axes(x))
9✔
2873
        throw(DimensionMismatch(
9✔
2874
            LazyString("stack expects uniform slices, got axes(x) == ", uaxN, " while first had ", uax1)))
2875
    end
2876
end
2877

2878
_ensure_array(x::AbstractArray) = x
85✔
2879
_ensure_array(x) = 1:0  # passed to similar, makes stack's output an Array
29✔
2880

2881
_empty_stack(_...) = throw(ArgumentError("`stack` on an empty collection is not allowed"))
3✔
2882

2883

2884
## Reductions and accumulates ##
2885

2886
function isequal(A::AbstractArray, B::AbstractArray)
246,290✔
2887
    if A === B return true end
246,549✔
2888
    if axes(A) != axes(B)
488,565✔
2889
        return false
3,479✔
2890
    end
2891
    for (a, b) in zip(A, B)
484,505✔
2892
        if !isequal(a, b)
91,037,385✔
2893
            return false
521✔
2894
        end
2895
    end
181,628,368✔
2896
    return true
242,031✔
2897
end
2898

2899
function cmp(A::AbstractVector, B::AbstractVector)
315✔
2900
    for (a, b) in zip(A, B)
630✔
2901
        if !isequal(a, b)
692✔
2902
            return isless(a, b) ? -1 : 1
300✔
2903
        end
2904
    end
769✔
2905
    return cmp(length(A), length(B))
15✔
2906
end
2907

2908
"""
2909
    isless(A::AbstractVector, B::AbstractVector)
2910

2911
Return `true` when `A` is less than `B` in lexicographic order.
2912
"""
2913
isless(A::AbstractVector, B::AbstractVector) = cmp(A, B) < 0
306✔
2914

2915
function (==)(A::AbstractArray, B::AbstractArray)
6,557,844✔
2916
    if axes(A) != axes(B)
13,115,513✔
2917
        return false
2,994✔
2918
    end
2919
    anymissing = false
6,551,003✔
2920
    for (a, b) in zip(A, B)
12,225,912✔
2921
        eq = (a == b)
135,983,644✔
2922
        if ismissing(eq)
101,332,490✔
2923
            anymissing = true
24✔
2924
        elseif !eq
135,095,311✔
2925
            return false
2,420✔
2926
        end
2927
    end
264,518,587✔
2928
    return anymissing ? missing : true
6,553,879✔
2929
end
2930

2931
# _sub2ind and _ind2sub
2932
# fallbacks
2933
function _sub2ind(A::AbstractArray, I...)
733,764✔
2934
    @inline
733,764✔
2935
    _sub2ind(axes(A), I...)
2,112,458✔
2936
end
2937

2938
function _ind2sub(A::AbstractArray, ind)
207,646✔
2939
    @inline
207,646✔
2940
    _ind2sub(axes(A), ind)
207,646✔
2941
end
2942

2943
# 0-dimensional arrays and indexing with []
2944
_sub2ind(::Tuple{}) = 1
18✔
2945
_sub2ind(::DimsInteger) = 1
2✔
2946
_sub2ind(::Indices) = 1
×
2947
_sub2ind(::Tuple{}, I::Integer...) = (@inline; _sub2ind_recurse((), 1, 1, I...))
5✔
2948

2949
# Generic cases
2950
_sub2ind(dims::DimsInteger, I::Integer...) = (@inline; _sub2ind_recurse(dims, 1, 1, I...))
2,177,106,525✔
2951
_sub2ind(inds::Indices, I::Integer...) = (@inline; _sub2ind_recurse(inds, 1, 1, I...))
2,230,614✔
2952
# In 1d, there's a question of whether we're doing cartesian indexing
2953
# or linear indexing. Support only the former.
2954
_sub2ind(inds::Indices{1}, I::Integer...) =
1✔
2955
    throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
2956
_sub2ind(inds::Tuple{OneTo}, I::Integer...) = (@inline; _sub2ind_recurse(inds, 1, 1, I...)) # only OneTo is safe
×
2957
_sub2ind(inds::Tuple{OneTo}, i::Integer)    = i
×
2958

2959
_sub2ind_recurse(::Any, L, ind) = ind
1,804,900✔
2960
function _sub2ind_recurse(::Tuple{}, L, ind, i::Integer, I::Integer...)
1,808✔
2961
    @inline
867✔
2962
    _sub2ind_recurse((), L, ind+(i-1)*L, I...)
12,141✔
2963
end
2964
function _sub2ind_recurse(inds, L, ind, i::Integer, I::Integer...)
3,063,393✔
2965
    @inline
2,540,677✔
2966
    r1 = inds[1]
2,574,488✔
2967
    _sub2ind_recurse(tail(inds), nextL(L, r1), ind+offsetin(i, r1)*L, I...)
2,182,227,531✔
2968
end
2969

2970
nextL(L, l::Integer) = L*l
1,958,967✔
2971
nextL(L, r::AbstractUnitRange) = L*length(r)
2,698,652✔
2972
nextL(L, r::Slice) = L*length(r.indices)
×
2973
offsetin(i, l::Integer) = i-1
2,177,203,600✔
2974
offsetin(i, r::AbstractUnitRange) = i-first(r)
4,848,522✔
2975

2976
_ind2sub(::Tuple{}, ind::Integer) = (@inline; ind == 1 ? () : throw(BoundsError()))
×
2977
_ind2sub(dims::DimsInteger, ind::Integer) = (@inline; _ind2sub_recurse(dims, ind-1))
1,243✔
2978
_ind2sub(inds::Indices, ind::Integer)     = (@inline; _ind2sub_recurse(inds, ind-1))
207,658✔
2979
_ind2sub(inds::Indices{1}, ind::Integer) =
1✔
2980
    throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
2981
_ind2sub(inds::Tuple{OneTo}, ind::Integer) = (ind,)
12✔
2982

2983
_ind2sub_recurse(::Tuple{}, ind) = (ind+1,)
×
2984
function _ind2sub_recurse(indslast::NTuple{1}, ind)
208,901✔
2985
    @inline
208,901✔
2986
    (_lookup(ind, indslast[1]),)
208,901✔
2987
end
2988
function _ind2sub_recurse(inds, ind)
370,642✔
2989
    @inline
370,642✔
2990
    r1 = inds[1]
370,642✔
2991
    indnext, f, l = _div(ind, r1)
370,642✔
2992
    (ind-l*indnext+f, _ind2sub_recurse(tail(inds), indnext)...)
370,642✔
2993
end
2994

2995
_lookup(ind, d::Integer) = ind+1
1,243✔
2996
_lookup(ind, r::AbstractUnitRange) = ind+first(r)
207,658✔
2997
_div(ind, d::Integer) = div(ind, d), 1, d
1,243✔
2998
_div(ind, r::AbstractUnitRange) = (d = length(r); (div(ind, d), first(r), d))
738,798✔
2999

3000
# Vectorized forms
3001
function _sub2ind(inds::Indices{1}, I1::AbstractVector{T}, I::AbstractVector{T}...) where T<:Integer
×
3002
    throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
×
3003
end
3004
_sub2ind(inds::Tuple{OneTo}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} =
×
3005
    _sub2ind_vecs(inds, I1, I...)
3006
_sub2ind(inds::Union{DimsInteger,Indices}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} =
×
3007
    _sub2ind_vecs(inds, I1, I...)
3008
function _sub2ind_vecs(inds, I::AbstractVector...)
×
3009
    I1 = I[1]
×
3010
    Iinds = axes1(I1)
×
3011
    for j = 2:length(I)
×
3012
        axes1(I[j]) == Iinds || throw(DimensionMismatch("indices of I[1] ($(Iinds)) does not match indices of I[$j] ($(axes1(I[j])))"))
×
3013
    end
×
3014
    Iout = similar(I1)
×
3015
    _sub2ind!(Iout, inds, Iinds, I)
×
3016
    Iout
×
3017
end
3018

3019
function _sub2ind!(Iout, inds, Iinds, I)
×
3020
    @noinline
×
3021
    for i in Iinds
×
3022
        # Iout[i] = _sub2ind(inds, map(Ij -> Ij[i], I)...)
3023
        Iout[i] = sub2ind_vec(inds, i, I)
×
3024
    end
×
3025
    Iout
×
3026
end
3027

3028
sub2ind_vec(inds, i, I) = (@inline; _sub2ind(inds, _sub2ind_vec(i, I...)...))
×
3029
_sub2ind_vec(i, I1, I...) = (@inline; (I1[i], _sub2ind_vec(i, I...)...))
×
3030
_sub2ind_vec(i) = ()
×
3031

3032
function _ind2sub(inds::Union{DimsInteger{N},Indices{N}}, ind::AbstractVector{<:Integer}) where N
×
3033
    M = length(ind)
×
3034
    t = ntuple(n->similar(ind),Val(N))
×
3035
    for (i,idx) in pairs(IndexLinear(), ind)
×
3036
        sub = _ind2sub(inds, idx)
×
3037
        for j = 1:N
×
3038
            t[j][i] = sub[j]
×
3039
        end
×
3040
    end
×
3041
    t
×
3042
end
3043

3044
## iteration utilities ##
3045

3046
"""
3047
    foreach(f, c...) -> Nothing
3048

3049
Call function `f` on each element of iterable `c`.
3050
For multiple iterable arguments, `f` is called elementwise, and iteration stops when
3051
any iterator is finished.
3052

3053
`foreach` should be used instead of [`map`](@ref) when the results of `f` are not
3054
needed, for example in `foreach(println, array)`.
3055

3056
# Examples
3057
```jldoctest
3058
julia> tri = 1:3:7; res = Int[];
3059

3060
julia> foreach(x -> push!(res, x^2), tri)
3061

3062
julia> res
3063
3-element Vector{$(Int)}:
3064
  1
3065
 16
3066
 49
3067

3068
julia> foreach((x, y) -> println(x, " with ", y), tri, 'a':'z')
3069
1 with a
3070
4 with b
3071
7 with c
3072
```
3073
"""
3074
foreach(f) = (f(); nothing)
2✔
3075
foreach(f, itr) = (for x in itr; f(x); end; nothing)
209,179,544✔
3076
foreach(f, itrs...) = (for z in zip(itrs...); f(z...); end; nothing)
11✔
3077

3078
## map over arrays ##
3079

3080
## transform any set of dimensions
3081
## dims specifies which dimensions will be transformed. for example
3082
## dims==1:2 will call f on all slices A[:,:,...]
3083
"""
3084
    mapslices(f, A; dims)
3085

3086
Transform the given dimensions of array `A` by applying a function `f` on each slice
3087
of the form `A[..., :, ..., :, ...]`, with a colon at each `d` in `dims`. The results are
3088
concatenated along the remaining dimensions.
3089

3090
For example, if `dims = [1,2]` and `A` is 4-dimensional, then `f` is called on `x = A[:,:,i,j]`
3091
for all `i` and `j`, and `f(x)` becomes `R[:,:,i,j]` in the result `R`.
3092

3093
See also [`eachcol`](@ref) or [`eachslice`](@ref), used with [`map`](@ref) or [`stack`](@ref).
3094

3095
# Examples
3096
```jldoctest
3097
julia> A = reshape(1:30,(2,5,3))
3098
2×5×3 reshape(::UnitRange{$Int}, 2, 5, 3) with eltype $Int:
3099
[:, :, 1] =
3100
 1  3  5  7   9
3101
 2  4  6  8  10
3102

3103
[:, :, 2] =
3104
 11  13  15  17  19
3105
 12  14  16  18  20
3106

3107
[:, :, 3] =
3108
 21  23  25  27  29
3109
 22  24  26  28  30
3110

3111
julia> f(x::Matrix) = fill(x[1,1], 1,4);  # returns a 1×4 matrix
3112

3113
julia> B = mapslices(f, A, dims=(1,2))
3114
1×4×3 Array{$Int, 3}:
3115
[:, :, 1] =
3116
 1  1  1  1
3117

3118
[:, :, 2] =
3119
 11  11  11  11
3120

3121
[:, :, 3] =
3122
 21  21  21  21
3123

3124
julia> f2(x::AbstractMatrix) = fill(x[1,1], 1,4);
3125

3126
julia> B == stack(f2, eachslice(A, dims=3))
3127
true
3128

3129
julia> g(x) = x[begin] // x[end-1];  # returns a number
3130

3131
julia> mapslices(g, A, dims=[1,3])
3132
1×5×1 Array{Rational{$Int}, 3}:
3133
[:, :, 1] =
3134
 1//21  3//23  1//5  7//27  9//29
3135

3136
julia> map(g, eachslice(A, dims=2))
3137
5-element Vector{Rational{$Int}}:
3138
 1//21
3139
 3//23
3140
 1//5
3141
 7//27
3142
 9//29
3143

3144
julia> mapslices(sum, A; dims=(1,3)) == sum(A; dims=(1,3))
3145
true
3146
```
3147

3148
Notice that in `eachslice(A; dims=2)`, the specified dimension is the
3149
one *without* a colon in the slice. This is `view(A,:,i,:)`, whereas
3150
`mapslices(f, A; dims=(1,3))` uses `A[:,i,:]`. The function `f` may mutate
3151
values in the slice without affecting `A`.
3152
"""
3153
function mapslices(f, A::AbstractArray; dims)
892✔
3154
    isempty(dims) && return map(f, A)
446✔
3155

3156
    for d in dims
566✔
3157
        d isa Integer || throw(ArgumentError("mapslices: dimension must be an integer, got $d"))
881✔
3158
        d >= 1 || throw(ArgumentError("mapslices: dimension must be ≥ 1, got $d"))
882✔
3159
        # Indexing a matrix M[:,1,:] produces a 1-column matrix, but dims=(1,3) here
3160
        # would otherwise ignore 3, and slice M[:,i]. Previously this gave error:
3161
        # BoundsError: attempt to access 2-element Vector{Any} at index [3]
3162
        d > ndims(A) && throw(ArgumentError("mapslices does not accept dimensions > ndims(A) = $(ndims(A)), got $d"))
880✔
3163
    end
1,176✔
3164
    dim_mask = ntuple(d -> d in dims, ndims(A))
4,233✔
3165

3166
    # Apply the function to the first slice in order to determine the next steps
3167
    idx1 = ntuple(d -> d in dims ? (:) : firstindex(A,d), ndims(A))
3,156✔
3168
    Aslice = A[idx1...]
829✔
3169
    r1 = f(Aslice)
532✔
3170

3171
    res1 = if r1 isa AbstractArray && ndims(r1) > 0
449✔
3172
        n = sum(dim_mask)
29✔
3173
        if ndims(r1) > n && any(ntuple(d -> size(r1,d+n)>1, ndims(r1)-n))
33✔
3174
            s = size(r1)[1:n]
1✔
3175
            throw(DimensionMismatch("mapslices cannot assign slice f(x) of size $(size(r1)) into output of size $s"))
1✔
3176
        end
3177
        r1
28✔
3178
    else
3179
        # If the result of f on a single slice is a scalar then we add singleton
3180
        # dimensions. When adding the dimensions, we have to respect the
3181
        # index type of the input array (e.g. in the case of OffsetArrays)
3182
        _res1 = similar(Aslice, typeof(r1), reduced_indices(Aslice, 1:ndims(Aslice)))
432✔
3183
        _res1[begin] = r1
414✔
3184
        _res1
813✔
3185
    end
3186

3187
    # Determine result size and allocate. We always pad ndims(res1) out to length(dims):
3188
    din = Ref(0)
442✔
3189
    Rsize = ntuple(ndims(A)) do d
442✔
3190
        if d in dims
3,237✔
3191
            axes(res1, din[] += 1)
875✔
3192
        else
3193
            axes(A,d)
805✔
3194
        end
3195
    end
3196
    R = similar(res1, Rsize)
459✔
3197

3198
    # Determine iteration space. It will be convenient in the loop to mask N-dimensional
3199
    # CartesianIndices, with some trivial dimensions:
3200
    itershape = ntuple(d -> d in dims ? Base.OneTo(1) : axes(A,d), ndims(A))
3,151✔
3201
    indices = Iterators.drop(CartesianIndices(itershape), 1)
442✔
3202

3203
    # That skips the first element, which we already have:
3204
    ridx = ntuple(d -> d in dims ? Slice(axes(R,d)) : firstindex(A,d), ndims(A))
2,488✔
3205
    concatenate_setindex!(R, res1, ridx...)
455✔
3206

3207
    # In some cases, we can re-use the first slice for a dramatic performance
3208
    # increase. The slice itself must be mutable and the result cannot contain
3209
    # any mutable containers. The following errs on the side of being overly
3210
    # strict (#18570 & #21123).
3211
    safe_for_reuse = isa(Aslice, StridedArray) &&
448✔
3212
                     (isa(r1, Number) || (isa(r1, AbstractArray) && eltype(r1) <: Number))
3213

3214
    _inner_mapslices!(R, indices, f, A, dim_mask, Aslice, safe_for_reuse)
458✔
3215
    return R
442✔
3216
end
3217

3218
@noinline function _inner_mapslices!(R, indices, f, A, dim_mask, Aslice, safe_for_reuse)
442✔
3219
    must_extend = any(dim_mask .& size(R) .> 1)
2,010✔
3220
    if safe_for_reuse
442✔
3221
        # when f returns an array, R[ridx...] = f(Aslice) line copies elements,
3222
        # so we can reuse Aslice
3223
        for I in indices
418✔
3224
            idx = ifelse.(dim_mask, Slice.(axes(A)), Tuple(I))
11,173✔
3225
            _unsafe_getindex!(Aslice, A, idx...)
11,173✔
3226
            r = f(Aslice)
15,359✔
3227
            if r isa AbstractArray || must_extend
11,173✔
3228
                ridx = ifelse.(dim_mask, Slice.(axes(R)), Tuple(I))
65✔
3229
                R[ridx...] = r
104✔
3230
            else
3231
                ridx = ifelse.(dim_mask, first.(axes(R)), Tuple(I))
11,108✔
3232
                R[ridx...] = r
11,108✔
3233
            end
3234
        end
11,173✔
3235
    else
3236
        # we can't guarantee safety (#18524), so allocate new storage for each slice
3237
        for I in indices
74✔
3238
            idx = ifelse.(dim_mask, Slice.(axes(A)), Tuple(I))
1,857✔
3239
            ridx = ifelse.(dim_mask, Slice.(axes(R)), Tuple(I))
1,857✔
3240
            concatenate_setindex!(R, f(A[idx...]), ridx...)
1,870✔
3241
        end
1,857✔
3242
    end
3243
end
3244

3245
concatenate_setindex!(R, v, I...) = (R[I...] .= (v,); R)
3,702✔
3246
concatenate_setindex!(R, X::AbstractArray, I...) = (R[I...] = X)
448✔
3247

3248
## 0 arguments
3249

3250
map(f) = f()
1✔
3251

3252
## 1 argument
3253

3254
function map!(f::F, dest::AbstractArray, A::AbstractArray) where F
3,629✔
3255
    for (i,j) in zip(eachindex(dest),eachindex(A))
236,326,748✔
3256
        val = f(@inbounds A[j])
238,433,534✔
3257
        @inbounds dest[i] = val
142,265,814✔
3258
    end
176,626,073✔
3259
    return dest
128,623,377✔
3260
end
3261

3262
# map on collections
3263
map(f, A::AbstractArray) = collect_similar(A, Generator(f,A))
139,488✔
3264

3265
mapany(f, A::AbstractArray) = map!(f, Vector{Any}(undef, length(A)), A)
2,914✔
3266
mapany(f, itr) = Any[f(x) for x in itr]
×
3267

3268
"""
3269
    map(f, c...) -> collection
3270

3271
Transform collection `c` by applying `f` to each element. For multiple collection arguments,
3272
apply `f` elementwise, and stop when any of them is exhausted.
3273

3274
See also [`map!`](@ref), [`foreach`](@ref), [`mapreduce`](@ref), [`mapslices`](@ref), [`zip`](@ref), [`Iterators.map`](@ref).
3275

3276
# Examples
3277
```jldoctest
3278
julia> map(x -> x * 2, [1, 2, 3])
3279
3-element Vector{Int64}:
3280
 2
3281
 4
3282
 6
3283

3284
julia> map(+, [1, 2, 3], [10, 20, 30, 400, 5000])
3285
3-element Vector{Int64}:
3286
 11
3287
 22
3288
 33
3289
```
3290
"""
3291
map(f, A) = collect(Generator(f,A)) # default to returning an Array for `map` on general iterators
401✔
3292

3293
map(f, ::AbstractDict) = error("map is not defined on dictionaries")
1✔
3294
map(f, ::AbstractSet) = error("map is not defined on sets")
1✔
3295

3296
## 2 argument
3297
function map!(f::F, dest::AbstractArray, A::AbstractArray, B::AbstractArray) where F
250✔
3298
    for (i, j, k) in zip(eachindex(dest), eachindex(A), eachindex(B))
487✔
3299
        @inbounds a, b = A[j], B[k]
370,635✔
3300
        val = f(a, b)
328,502✔
3301
        @inbounds dest[i] = val
328,502✔
3302
    end
656,767✔
3303
    return dest
250✔
3304
end
3305

3306
## N argument
3307

3308
@inline ith_all(i, ::Tuple{}) = ()
430✔
3309
function ith_all(i, as)
1,290✔
3310
    @_propagate_inbounds_meta
1,290✔
3311
    return (as[1][i], ith_all(i, tail(as))...)
1,290✔
3312
end
3313

3314
function map_n!(f::F, dest::AbstractArray, As) where F
10✔
3315
    idxs1 = LinearIndices(As[1])
10✔
3316
    @boundscheck LinearIndices(dest) == idxs1 && all(x -> LinearIndices(x) == idxs1, As)
80✔
3317
    for i = idxs1
20✔
3318
        @inbounds I = ith_all(i, As)
430✔
3319
        val = f(I...)
430✔
3320
        @inbounds dest[i] = val
430✔
3321
    end
850✔
3322
    return dest
10✔
3323
end
3324

3325
"""
3326
    map!(function, destination, collection...)
3327

3328
Like [`map`](@ref), but stores the result in `destination` rather than a new
3329
collection. `destination` must be at least as large as the smallest collection.
3330

3331
See also: [`map`](@ref), [`foreach`](@ref), [`zip`](@ref), [`copyto!`](@ref).
3332

3333
# Examples
3334
```jldoctest
3335
julia> a = zeros(3);
3336

3337
julia> map!(x -> x * 2, a, [1, 2, 3]);
3338

3339
julia> a
3340
3-element Vector{Float64}:
3341
 2.0
3342
 4.0
3343
 6.0
3344

3345
julia> map!(+, zeros(Int, 5), 100:999, 1:3)
3346
5-element Vector{$(Int)}:
3347
 101
3348
 103
3349
 105
3350
   0
3351
   0
3352
```
3353
"""
3354
function map!(f::F, dest::AbstractArray, As::AbstractArray...) where {F}
11✔
3355
    isempty(As) && throw(ArgumentError(
11✔
3356
        """map! requires at least one "source" argument"""))
3357
    map_n!(f, dest, As)
10✔
3358
end
3359

3360
"""
3361
    map(f, A::AbstractArray...) -> N-array
3362

3363
When acting on multi-dimensional arrays of the same [`ndims`](@ref),
3364
they must all have the same [`axes`](@ref), and the answer will too.
3365

3366
See also [`broadcast`](@ref), which allows mismatched sizes.
3367

3368
# Examples
3369
```
3370
julia> map(//, [1 2; 3 4], [4 3; 2 1])
3371
2×2 Matrix{Rational{$Int}}:
3372
 1//4  2//3
3373
 3//2  4//1
3374

3375
julia> map(+, [1 2; 3 4], zeros(2,1))
3376
ERROR: DimensionMismatch
3377

3378
julia> map(+, [1 2; 3 4], [1,10,100,1000], zeros(3,1))  # iterates until 3rd is exhausted
3379
3-element Vector{Float64}:
3380
   2.0
3381
  13.0
3382
 102.0
3383
```
3384
"""
3385
map(f, iters...) = collect(Generator(f, iters...))
911✔
3386

3387
# multi-item push!, pushfirst! (built on top of type-specific 1-item version)
3388
# (note: must not cause a dispatch loop when 1-item case is not defined)
3389
push!(A, a, b) = push!(push!(A, a), b)
1,022✔
3390
push!(A, a, b, c...) = push!(push!(A, a, b), c...)
2✔
3391
pushfirst!(A, a, b) = pushfirst!(pushfirst!(A, b), a)
×
3392
pushfirst!(A, a, b, c...) = pushfirst!(pushfirst!(A, c...), a, b)
2✔
3393

3394
## hashing AbstractArray ##
3395

3396
const hash_abstractarray_seed = UInt === UInt64 ? 0x7e2d6fb6448beb77 : 0xd4514ce5
3397
function hash(A::AbstractArray, h::UInt)
14,592✔
3398
    h += hash_abstractarray_seed
14,592✔
3399
    # Axes are themselves AbstractArrays, so hashing them directly would stack overflow
3400
    # Instead hash the tuple of firsts and lasts along each dimension
3401
    h = hash(map(first, axes(A)), h)
14,829✔
3402
    h = hash(map(last, axes(A)), h)
14,829✔
3403

3404
    # For short arrays, it's not worth doing anything complicated
3405
    if length(A) < 8192
14,829✔
3406
        for x in A
19,289✔
3407
            h = hash(x, h)
561,718✔
3408
        end
700,848✔
3409
        return h
14,588✔
3410
    end
3411

3412
    # Goal: Hash approximately log(N) entries with a higher density of hashed elements
3413
    # weighted towards the end and special consideration for repeated values. Colliding
3414
    # hashes will often subsequently be compared by equality -- and equality between arrays
3415
    # works elementwise forwards and is short-circuiting. This means that a collision
3416
    # between arrays that differ by elements at the beginning is cheaper than one where the
3417
    # difference is towards the end. Furthermore, choosing `log(N)` arbitrary entries from a
3418
    # sparse array will likely only choose the same element repeatedly (zero in this case).
3419

3420
    # To achieve this, we work backwards, starting by hashing the last element of the
3421
    # array. After hashing each element, we skip `fibskip` elements, where `fibskip`
3422
    # is pulled from the Fibonacci sequence -- Fibonacci was chosen as a simple
3423
    # ~O(log(N)) algorithm that ensures we don't hit a common divisor of a dimension
3424
    # and only end up hashing one slice of the array (as might happen with powers of
3425
    # two). Finally, we find the next distinct value from the one we just hashed.
3426

3427
    # This is a little tricky since skipping an integer number of values inherently works
3428
    # with linear indices, but `findprev` uses `keys`. Hoist out the conversion "maps":
3429
    ks = keys(A)
4✔
3430
    key_to_linear = LinearIndices(ks) # Index into this map to compute the linear index
4✔
3431
    linear_to_key = vec(ks)           # And vice-versa
4✔
3432

3433
    # Start at the last index
3434
    keyidx = last(ks)
4✔
3435
    linidx = key_to_linear[keyidx]
4✔
3436
    fibskip = prevfibskip = oneunit(linidx)
4✔
3437
    first_linear = first(LinearIndices(linear_to_key))
4✔
3438
    n = 0
4✔
3439
    while true
28,192✔
3440
        n += 1
28,192✔
3441
        # Hash the element
3442
        elt = A[keyidx]
28,192✔
3443
        h = hash(keyidx=>elt, h)
28,192✔
3444

3445
        # Skip backwards a Fibonacci number of indices -- this is a linear index operation
3446
        linidx = key_to_linear[keyidx]
28,192✔
3447
        linidx < fibskip + first_linear && break
28,192✔
3448
        linidx -= fibskip
28,188✔
3449
        keyidx = linear_to_key[linidx]
28,188✔
3450

3451
        # Only increase the Fibonacci skip once every N iterations. This was chosen
3452
        # to be big enough that all elements of small arrays get hashed while
3453
        # obscenely large arrays are still tractable. With a choice of N=4096, an
3454
        # entirely-distinct 8000-element array will have ~75% of its elements hashed,
3455
        # with every other element hashed in the first half of the array. At the same
3456
        # time, hashing a `typemax(Int64)`-length Float64 range takes about a second.
3457
        if rem(n, 4096) == 0
28,188✔
3458
            fibskip, prevfibskip = fibskip + prevfibskip, fibskip
4✔
3459
        end
3460

3461
        # Find a key index with a value distinct from `elt` -- might be `keyidx` itself
3462
        keyidx = findprev(!isequal(elt), A, keyidx)
56,376✔
3463
        keyidx === nothing && break
28,188✔
3464
    end
28,188✔
3465

3466
    return h
4✔
3467
end
3468

3469
# The semantics of `collect` are weird. Better to write our own
3470
function rest(a::AbstractArray{T}, state...) where {T}
11✔
3471
    v = Vector{T}(undef, 0)
11✔
3472
    # assume only very few items are taken from the front
3473
    sizehint!(v, length(a))
11✔
3474
    return foldl(push!, Iterators.rest(a, state...), init=v)
11✔
3475
end
3476

3477

3478
## keepat! ##
3479

3480
# NOTE: since these use `@inbounds`, they are actually only intended for Vector and BitVector
3481

3482
function _keepat!(a::AbstractVector, inds)
11✔
3483
    local prev
11✔
3484
    i = firstindex(a)
11✔
3485
    for k in inds
19✔
3486
        if @isdefined(prev)
34✔
3487
            prev < k || throw(ArgumentError("indices must be unique and sorted"))
27✔
3488
        end
3489
        ak = a[k] # must happen even when i==k for bounds checking
32✔
3490
        if i != k
29✔
3491
            @inbounds a[i] = ak # k > i, so a[i] is inbounds
13✔
3492
        end
3493
        prev = k
29✔
3494
        i = nextind(a, i)
29✔
3495
    end
51✔
3496
    deleteat!(a, i:lastindex(a))
11✔
3497
    return a
6✔
3498
end
3499

3500
function _keepat!(a::AbstractVector, m::AbstractVector{Bool})
5✔
3501
    length(m) == length(a) || throw(BoundsError(a, m))
7✔
3502
    j = firstindex(a)
3✔
3503
    for i in eachindex(a, m)
5✔
3504
        @inbounds begin
20✔
3505
            if m[i]
20✔
3506
                i == j || (a[j] = a[i])
22✔
3507
                j = nextind(a, j)
11✔
3508
            end
3509
        end
3510
    end
38✔
3511
    deleteat!(a, j:lastindex(a))
3✔
3512
end
3513

3514
## 1-d circshift ##
3515
function circshift!(a::AbstractVector, shift::Integer)
1,101✔
3516
    n = length(a)
1,101✔
3517
    n == 0 && return
1,101✔
3518
    shift = mod(shift, n)
2,202✔
3519
    shift == 0 && return
1,101✔
3520
    l = lastindex(a)
709✔
3521
    reverse!(a, firstindex(a), l-shift)
709✔
3522
    reverse!(a, l-shift+1, lastindex(a))
709✔
3523
    reverse!(a)
709✔
3524
    return a
709✔
3525
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc