• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

JuliaLang / julia / #37497

pending completion
#37497

push

local

web-flow
<a href="https://github.com/JuliaLang/julia/commit/<a class=hub.com/JuliaLang/julia/commit/def2ddacc9a9b064d06c24d12885427fb0502465">def2ddacc<a href="https://github.com/JuliaLang/julia/commit/def2ddacc9a9b064d06c24d12885427fb0502465">&quot;&gt;make default worker pool an AbstractWorkerPool (#49101)

Changes [Distributed._default_worker_pool](https://github.com/JuliaLang/julia/blob/</a><a class="double-link" href="https://github.com/JuliaLang/julia/commit/<a class="double-link" href="https://github.com/JuliaLang/julia/commit/5f5d2040511b42ba74bd7529a0eac9cf817ad496">5f5d20405</a>">5f5d20405</a><a href="https://github.com/JuliaLang/julia/commit/def2ddacc9a9b064d06c24d12885427fb0502465">/stdlib/Distributed/src/workerpool.jl#L242) to hold an `AbstractWorkerPool` instead of `WorkerPool`. With this, alternate implementations can be plugged in as the default pool. Helps in cases where a cluster is always meant to use a certain custom pool. Lower level calls can then work without having to pass a custom pool reference with every call.

4 of 4 new or added lines in 2 files covered. (100.0%)

71044 of 82770 relevant lines covered (85.83%)

33857692.69 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

70.3
/base/permuteddimsarray.jl
1
# This file is a part of Julia. License is MIT: https://julialang.org/license
2

3
module PermutedDimsArrays
4

5
import Base: permutedims, permutedims!
6
export PermutedDimsArray
7

8
# Some day we will want storage-order-aware iteration, so put perm in the parameters
9
struct PermutedDimsArray{T,N,perm,iperm,AA<:AbstractArray} <: AbstractArray{T,N}
10
    parent::AA
11

12
    function PermutedDimsArray{T,N,perm,iperm,AA}(data::AA) where {T,N,perm,iperm,AA<:AbstractArray}
271✔
13
        (isa(perm, NTuple{N,Int}) && isa(iperm, NTuple{N,Int})) || error("perm and iperm must both be NTuple{$N,Int}")
271✔
14
        isperm(perm) || throw(ArgumentError(string(perm, " is not a valid permutation of dimensions 1:", N)))
271✔
15
        all(map(d->iperm[perm[d]]==d, 1:N)) || throw(ArgumentError(string(perm, " and ", iperm, " must be inverses")))
933✔
16
        new(data)
271✔
17
    end
18
end
19

20
"""
21
    PermutedDimsArray(A, perm) -> B
22

23
Given an AbstractArray `A`, create a view `B` such that the
24
dimensions appear to be permuted. Similar to `permutedims`, except
25
that no copying occurs (`B` shares storage with `A`).
26

27
See also [`permutedims`](@ref), [`invperm`](@ref).
28

29
# Examples
30
```jldoctest
31
julia> A = rand(3,5,4);
32

33
julia> B = PermutedDimsArray(A, (3,1,2));
34

35
julia> size(B)
36
(4, 3, 5)
37

38
julia> B[3,1,2] == A[1,2,3]
39
true
40
```
41
"""
42
function PermutedDimsArray(data::AbstractArray{T,N}, perm) where {T,N}
271✔
43
    length(perm) == N || throw(ArgumentError(string(perm, " is not a valid permutation of dimensions 1:", N)))
271✔
44
    iperm = invperm(perm)
271✔
45
    PermutedDimsArray{T,N,(perm...,),(iperm...,),typeof(data)}(data)
271✔
46
end
47

48
Base.parent(A::PermutedDimsArray) = A.parent
240,960✔
49
Base.size(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} = genperm(size(parent(A)), perm)
49,694✔
50
Base.axes(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} = genperm(axes(parent(A)), perm)
137,653✔
51
Base.has_offset_axes(A::PermutedDimsArray) = Base.has_offset_axes(A.parent)
×
52

53
Base.similar(A::PermutedDimsArray, T::Type, dims::Base.Dims) = similar(parent(A), T, dims)
×
54

55
Base.unsafe_convert(::Type{Ptr{T}}, A::PermutedDimsArray{T}) where {T} = Base.unsafe_convert(Ptr{T}, parent(A))
17,980✔
56

57
# It's OK to return a pointer to the first element, and indeed quite
58
# useful for wrapping C routines that require a different storage
59
# order than used by Julia. But for an array with unconventional
60
# storage order, a linear offset is ambiguous---is it a memory offset
61
# or a linear index?
62
Base.pointer(A::PermutedDimsArray, i::Integer) = throw(ArgumentError("pointer(A, i) is deliberately unsupported for PermutedDimsArray"))
80✔
63

64
function Base.strides(A::PermutedDimsArray{T,N,perm}) where {T,N,perm}
35,600✔
65
    s = strides(parent(A))
35,600✔
66
    ntuple(d->s[perm[d]], Val(N))
141,270✔
67
end
68
Base.elsize(::Type{<:PermutedDimsArray{<:Any, <:Any, <:Any, <:Any, P}}) where {P} = Base.elsize(P)
35,560✔
69

70
@inline function Base.getindex(A::PermutedDimsArray{T,N,perm,iperm}, I::Vararg{Int,N}) where {T,N,perm,iperm}
68,740✔
71
    @boundscheck checkbounds(A, I...)
68,740✔
72
    @inbounds val = getindex(A.parent, genperm(I, iperm)...)
68,740✔
73
    val
68,740✔
74
end
75
@inline function Base.setindex!(A::PermutedDimsArray{T,N,perm,iperm}, val, I::Vararg{Int,N}) where {T,N,perm,iperm}
846✔
76
    @boundscheck checkbounds(A, I...)
846✔
77
    @inbounds setindex!(A.parent, val, genperm(I, iperm)...)
846✔
78
    val
846✔
79
end
80

81
@inline genperm(I::NTuple{N,Any}, perm::Dims{N}) where {N} = ntuple(d -> I[perm[d]], Val(N))
1,015,111✔
82
@inline genperm(I, perm::AbstractVector{Int}) = genperm(I, (perm...,))
1✔
83

84
"""
85
    permutedims(A::AbstractArray, perm)
86

87
Permute the dimensions of array `A`. `perm` is a vector or a tuple of length `ndims(A)`
88
specifying the permutation.
89

90
See also [`permutedims!`](@ref), [`PermutedDimsArray`](@ref), [`transpose`](@ref), [`invperm`](@ref).
91

92
# Examples
93
```jldoctest
94
julia> A = reshape(Vector(1:8), (2,2,2))
95
2×2×2 Array{Int64, 3}:
96
[:, :, 1] =
97
 1  3
98
 2  4
99

100
[:, :, 2] =
101
 5  7
102
 6  8
103

104
julia> perm = (3, 1, 2); # put the last dimension first
105

106
julia> B = permutedims(A, perm)
107
2×2×2 Array{Int64, 3}:
108
[:, :, 1] =
109
 1  2
110
 5  6
111

112
[:, :, 2] =
113
 3  4
114
 7  8
115

116
julia> A == permutedims(B, invperm(perm)) # the inverse permutation
117
true
118
```
119

120
For each dimension `i` of `B = permutedims(A, perm)`, its corresponding dimension of `A`
121
will be `perm[i]`. This means the equality `size(B, i) == size(A, perm[i])` holds.
122

123
```jldoctest
124
julia> A = randn(5, 7, 11, 13);
125

126
julia> perm = [4, 1, 3, 2];
127

128
julia> B = permutedims(A, perm);
129

130
julia> size(B)
131
(13, 5, 11, 7)
132

133
julia> size(A)[perm] == ans
134
true
135
```
136
"""
137
function permutedims(A::AbstractArray, perm)
6✔
138
    dest = similar(A, genperm(axes(A), perm))
10✔
139
    permutedims!(dest, A, perm)
6✔
140
end
141

142
"""
143
    permutedims(m::AbstractMatrix)
144

145
Permute the dimensions of the matrix `m`, by flipping the elements across the diagonal of
146
the matrix. Differs from `LinearAlgebra`'s [`transpose`](@ref) in that the
147
operation is not recursive.
148

149
# Examples
150
```jldoctest; setup = :(using LinearAlgebra)
151
julia> a = [1 2; 3 4];
152

153
julia> b = [5 6; 7 8];
154

155
julia> c = [9 10; 11 12];
156

157
julia> d = [13 14; 15 16];
158

159
julia> X = [[a] [b]; [c] [d]]
160
2×2 Matrix{Matrix{Int64}}:
161
 [1 2; 3 4]     [5 6; 7 8]
162
 [9 10; 11 12]  [13 14; 15 16]
163

164
julia> permutedims(X)
165
2×2 Matrix{Matrix{Int64}}:
166
 [1 2; 3 4]  [9 10; 11 12]
167
 [5 6; 7 8]  [13 14; 15 16]
168

169
julia> transpose(X)
170
2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:
171
 [1 3; 2 4]  [9 11; 10 12]
172
 [5 7; 6 8]  [13 15; 14 16]
173
```
174
"""
175
permutedims(A::AbstractMatrix) = permutedims(A, (2,1))
3✔
176

177
"""
178
    permutedims(v::AbstractVector)
179

180
Reshape vector `v` into a `1 × length(v)` row matrix.
181
Differs from `LinearAlgebra`'s [`transpose`](@ref) in that
182
the operation is not recursive.
183

184
# Examples
185
```jldoctest; setup = :(using LinearAlgebra)
186
julia> permutedims([1, 2, 3, 4])
187
1×4 Matrix{Int64}:
188
 1  2  3  4
189

190
julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]]
191
2-element Vector{Matrix{Int64}}:
192
 [1 2; 3 4]
193
 [5 6; 7 8]
194

195
julia> permutedims(V)
196
1×2 Matrix{Matrix{Int64}}:
197
 [1 2; 3 4]  [5 6; 7 8]
198

199
julia> transpose(V)
200
1×2 transpose(::Vector{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:
201
 [1 3; 2 4]  [5 7; 6 8]
202
```
203
"""
204
permutedims(v::AbstractVector) = reshape(v, (1, length(v)))
122✔
205

206
"""
207
    permutedims!(dest, src, perm)
208

209
Permute the dimensions of array `src` and store the result in the array `dest`. `perm` is a
210
vector specifying a permutation of length `ndims(src)`. The preallocated array `dest` should
211
have `size(dest) == size(src)[perm]` and is completely overwritten. No in-place permutation
212
is supported and unexpected results will happen if `src` and `dest` have overlapping memory
213
regions.
214

215
See also [`permutedims`](@ref).
216
"""
217
function permutedims!(dest, src::AbstractArray, perm)
4✔
218
    Base.checkdims_perm(dest, src, perm)
4✔
219
    P = PermutedDimsArray(dest, invperm(perm))
4✔
220
    _copy!(P, src)
4✔
221
    return dest
4✔
222
end
223

224
function Base.copyto!(dest::PermutedDimsArray{T,N}, src::AbstractArray{T,N}) where {T,N}
×
225
    checkbounds(dest, axes(src)...)
×
226
    _copy!(dest, src)
×
227
end
228
Base.copyto!(dest::PermutedDimsArray, src::AbstractArray) = _copy!(dest, src)
×
229

230
function _copy!(P::PermutedDimsArray{T,N,perm}, src) where {T,N,perm}
4✔
231
    # If dest/src are "close to dense," then it pays to be cache-friendly.
232
    # Determine the first permuted dimension
233
    d = 0  # d+1 will hold the first permuted dimension of src
4✔
234
    while d < ndims(src) && perm[d+1] == d+1
6✔
235
        d += 1
2✔
236
    end
2✔
237
    if d == ndims(src)
4✔
238
        copyto!(parent(P), src) # it's not permuted
2✔
239
    else
240
        R1 = CartesianIndices(axes(src)[1:d])
3✔
241
        d1 = findfirst(isequal(d+1), perm)::Int  # first permuted dim of dest
3✔
242
        R2 = CartesianIndices(axes(src)[d+2:d1-1])
3✔
243
        R3 = CartesianIndices(axes(src)[d1+1:end])
3✔
244
        _permutedims!(P, src, R1, R2, R3, d+1, d1)
3✔
245
    end
246
    return P
4✔
247
end
248

249
@noinline function _permutedims!(P::PermutedDimsArray, src, R1::CartesianIndices{0}, R2, R3, ds, dp)
3✔
250
    ip, is = axes(src, dp), axes(src, ds)
3✔
251
    for jo in first(ip):8:last(ip), io in first(is):8:last(is)
6✔
252
        for I3 in R3, I2 in R2
3✔
253
            for j in jo:min(jo+7, last(ip))
6✔
254
                for i in io:min(io+7, last(is))
24✔
255
                    @inbounds P[i, I2, j, I3] = src[i, I2, j, I3]
36✔
256
                end
60✔
257
            end
21✔
258
        end
3✔
259
    end
3✔
260
    P
3✔
261
end
262

263
@noinline function _permutedims!(P::PermutedDimsArray, src, R1, R2, R3, ds, dp)
×
264
    ip, is = axes(src, dp), axes(src, ds)
×
265
    for jo in first(ip):8:last(ip), io in first(is):8:last(is)
×
266
        for I3 in R3, I2 in R2
×
267
            for j in jo:min(jo+7, last(ip))
×
268
                for i in io:min(io+7, last(is))
×
269
                    for I1 in R1
×
270
                        @inbounds P[I1, i, I2, j, I3] = src[I1, i, I2, j, I3]
×
271
                    end
×
272
                end
×
273
            end
×
274
        end
×
275
    end
×
276
    P
×
277
end
278

279
const CommutativeOps = Union{typeof(+),typeof(Base.add_sum),typeof(min),typeof(max),typeof(Base._extrema_rf),typeof(|),typeof(&)}
280

281
function Base._mapreduce_dim(f, op::CommutativeOps, init::Base._InitialValue, A::PermutedDimsArray, dims::Colon)
12✔
282
    Base._mapreduce_dim(f, op, init, parent(A), dims)
12✔
283
end
284
function Base._mapreduce_dim(f::typeof(identity), op::Union{typeof(Base.mul_prod),typeof(*)}, init::Base._InitialValue, A::PermutedDimsArray{<:Union{Real,Complex}}, dims::Colon)
×
285
    Base._mapreduce_dim(f, op, init, parent(A), dims)
×
286
end
287

288
function Base.mapreducedim!(f, op::CommutativeOps, B::AbstractArray{T,N}, A::PermutedDimsArray{S,N,perm,iperm}) where {T,S,N,perm,iperm}
×
289
    C = PermutedDimsArray{T,N,iperm,perm,typeof(B)}(B) # make the inverse permutation for the output
×
290
    Base.mapreducedim!(f, op, C, parent(A))
×
291
    B
×
292
end
293
function Base.mapreducedim!(f::typeof(identity), op::Union{typeof(Base.mul_prod),typeof(*)}, B::AbstractArray{T,N}, A::PermutedDimsArray{<:Union{Real,Complex},N,perm,iperm}) where {T,N,perm,iperm}
×
294
    C = PermutedDimsArray{T,N,iperm,perm,typeof(B)}(B) # make the inverse permutation for the output
×
295
    Base.mapreducedim!(f, op, C, parent(A))
×
296
    B
×
297
end
298

299
function Base.showarg(io::IO, A::PermutedDimsArray{T,N,perm}, toplevel) where {T,N,perm}
2✔
300
    print(io, "PermutedDimsArray(")
2✔
301
    Base.showarg(io, parent(A), false)
2✔
302
    print(io, ", ", perm, ')')
2✔
303
    toplevel && print(io, " with eltype ", eltype(A))
2✔
304
    return nothing
2✔
305
end
306

307
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc