• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

formalsec / smtml / 470

25 Jan 2026 12:46PM UTC coverage: 44.97% (+0.4%) from 44.588%
470

push

github

filipeom
removed duplicates, And with cst

979 of 2177 relevant lines covered (44.97%)

9.31 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

34.81
/src/smtml/expr.ml
1
(* SPDX-License-Identifier: MIT *)
2
(* Copyright (C) 2023-2024 formalsec *)
3
(* Written by the Smtml programmers *)
4

5
type t = expr Hc.hash_consed
6

7
and expr =
8
  | Val of Value.t
9
  | Ptr of
10
      { base : Bitvector.t
11
      ; offset : t
12
      }
13
  | Symbol of Symbol.t
14
  | List of t list
15
  | App of Symbol.t * t list
16
  | Unop of Ty.t * Ty.Unop.t * t
17
  | Binop of Ty.t * Ty.Binop.t * t * t
18
  | Triop of Ty.t * Ty.Triop.t * t * t * t
19
  | Relop of Ty.t * Ty.Relop.t * t * t
20
  | Cvtop of Ty.t * Ty.Cvtop.t * t
21
  | Naryop of Ty.t * Ty.Naryop.t * t list
22
  | Extract of t * int * int
23
  | Concat of t * t
24
  | Binder of Binder.t * t list * t
25

26
module Expr = struct
27
  type t = expr
28

29
  let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
30
    if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
4✔
31
    else false
×
32

33
  let equal (e1 : expr) (e2 : expr) : bool =
34
    match (e1, e2) with
528✔
35
    | Val v1, Val v2 -> Value.equal v1 v2
487✔
36
    | Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
4✔
37
      Bitvector.equal b1 b2 && phys_equal o1 o2
4✔
38
    | Symbol s1, Symbol s2 -> Symbol.equal s1 s2
9✔
39
    | List l1, List l2 -> list_eq l1 l2
4✔
40
    | App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
×
41
    | Unop (t1, op1, e1), Unop (t2, op2, e2) ->
6✔
42
      Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
6✔
43
    | Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
17✔
44
      Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
17✔
45
      && phys_equal e3 e4
17✔
46
    | Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
1✔
47
      Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
1✔
48
      && phys_equal e3 e4
1✔
49
    | Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
×
50
      Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
×
51
      && phys_equal e3 e4 && phys_equal e5 e6
×
52
    | Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
×
53
      Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
×
54
    | Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
×
55
      Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
×
56
    | Extract (e1, h1, l1), Extract (e2, h2, l2) ->
×
57
      phys_equal e1 e2 && h1 = h2 && l1 = l2
×
58
    | Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
×
59
    | Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
×
60
      Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
×
61
    | ( ( Val _ | Ptr _ | Symbol _ | List _ | App _ | Unop _ | Binop _ | Triop _
×
62
        | Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _ | Binder _ )
×
63
      , _ ) ->
64
      false
65

66
  (* Optimized mixer (DJB2 variant). Inlines to simple arithmetic. *)
67
  let[@inline] combine h v = (h * 33) + v
367✔
68

69
  let hash (e : expr) : int =
70
    match e with
1,136✔
71
    | Val v -> Value.hash v
889✔
72
    | Ptr { base; offset } -> combine (Bitvector.hash base) offset.tag
22✔
73
    | Symbol s -> Symbol.hash s
85✔
74
    | List l -> List.fold_left (fun acc x -> combine acc x.Hc.tag) 0 l
16✔
75
    | App (s, es) ->
×
76
      let h_s = Symbol.hash s in
77
      List.fold_left (fun acc x -> combine acc x.Hc.tag) h_s es
×
78
    | Unop (ty, op, e) ->
22✔
79
      let h1 = Ty.hash ty in
80
      let h2 = combine h1 (Ty.Unop.hash op) in
22✔
81
      combine h2 e.tag
22✔
82
    | Binop (ty, op, e1, e2) ->
59✔
83
      let h = Ty.hash ty in
84
      let h = combine h (Ty.Binop.hash op) in
59✔
85
      let h = combine h e1.tag in
59✔
86
      combine h e2.tag
59✔
87
    | Triop (ty, op, e1, e2, e3) ->
×
88
      let h = Ty.hash ty in
89
      let h = combine h (Ty.Triop.hash op) in
×
90
      let h = combine h e1.tag in
×
91
      let h = combine h e2.tag in
×
92
      combine h e3.tag
×
93
    | Relop (ty, op, e1, e2) ->
9✔
94
      let h = Ty.hash ty in
95
      let h = combine h (Ty.Relop.hash op) in
9✔
96
      let h = combine h e1.tag in
9✔
97
      combine h e2.tag
9✔
98
    | Cvtop (ty, op, e) ->
16✔
99
      let h = Ty.hash ty in
100
      let h = combine h (Ty.Cvtop.hash op) in
16✔
101
      combine h e.tag
16✔
102
    | Naryop (ty, op, es) ->
×
103
      let h = Ty.hash ty in
104
      let h = combine h (Ty.Naryop.hash op) in
×
105
      List.fold_left (fun acc x -> combine acc x.Hc.tag) h es
×
106
    | Extract (e, hi, lo) ->
14✔
107
      let h = e.tag in
108
      let h = combine h hi in
109
      combine h lo
14✔
110
    | Concat (e1, e2) -> combine e1.tag e2.tag
4✔
111
    | Binder (b, vars, e) ->
×
112
      let h = Binder.hash b in
113
      let h_vars = List.fold_left (fun acc x -> combine acc x.Hc.tag) h vars in
×
114
      combine h_vars e.tag
×
115
end
116

117
module Hc = Hc.Make [@inlined hint] (Expr)
118

119
let equal (hte1 : t) (hte2 : t) = phys_equal hte1 hte2 [@@inline]
238✔
120

121
let hash (hte : t) = hte.tag [@@inline]
4✔
122

123
module Key = struct
124
  type nonrec t = t
125

126
  let to_int hte = hash hte
×
127

128
  let compare x y = compare (to_int x) (to_int y)
×
129
end
130

131
let[@inline] make e = Hc.hashcons e
832✔
132

133
let[@inline] view (hte : t) = hte.node
625✔
134

135
let[@inline] compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag
×
136

137
let symbol s = make (Symbol s)
47✔
138

139
(** The return type of an expression *)
140
let rec ty (hte : t) : Ty.t =
141
  match view hte with
13✔
142
  | Val x -> Value.type_of x
×
143
  | Ptr _ -> Ty_bitv 32
×
144
  | Symbol x -> Symbol.type_of x
10✔
145
  | List _ -> Ty_list
×
146
  | App (sym, _) -> begin match sym.ty with Ty_none -> Ty_app | ty -> ty end
×
147
  | Triop (_, Ite, _, hte1, hte2) ->
×
148
    let ty1 = ty hte1 in
149
    assert (
×
150
      let ty2 = ty hte2 in
151
      Ty.equal ty1 ty2 );
×
152
    ty1
153
  | Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
×
154
    match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
1✔
155
  | Unop (ty, _, _)
×
156
  | Binop (ty, _, _, _)
×
157
  | Triop (ty, _, _, _, _)
×
158
  | Relop (ty, _, _, _)
×
159
  | Cvtop (ty, _, _)
×
160
  | Naryop (ty, _, _) ->
×
161
    ty
162
  | Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
2✔
163
  | Concat (e1, e2) -> (
×
164
    match (ty e1, ty e2) with
×
165
    | Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
×
166
    | t1, t2 ->
×
167
      Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
168
  | Binder (_, _, e) -> ty e
×
169

170
let rec is_symbolic (v : t) : bool =
171
  match view v with
×
172
  | Val _ -> false
×
173
  | Symbol _ -> true
×
174
  | Ptr { offset; _ } -> is_symbolic offset
×
175
  | Unop (_, _, v) | Cvtop (_, _, v) | Extract (v, _, _) | Binder (_, _, v) ->
×
176
    is_symbolic v
177
  | Binop (_, _, v1, v2) | Relop (_, _, v1, v2) | Concat (v1, v2) ->
×
178
    is_symbolic v1 || is_symbolic v2
×
179
  | Triop (_, _, v1, v2, v3) ->
×
180
    is_symbolic v1 || is_symbolic v2 || is_symbolic v3
×
181
  | List vs | App (_, vs) | Naryop (_, _, vs) -> List.exists is_symbolic vs
×
182

183
let get_symbols (hte : t list) =
184
  let tbl = Hashtbl.create 64 in
1✔
185
  let rec symbols (hte : t) =
1✔
186
    match view hte with
13✔
187
    | Val _ -> ()
3✔
188
    | Ptr { offset; _ } -> symbols offset
×
189
    | Symbol s -> Hashtbl.replace tbl s ()
5✔
190
    | List es -> List.iter symbols es
×
191
    | App (_, es) -> List.iter symbols es
×
192
    | Unop (_, _, e1) -> symbols e1
×
193
    | Binop (_, _, e1, e2) ->
2✔
194
      symbols e1;
195
      symbols e2
2✔
196
    | Triop (_, _, e1, e2, e3) ->
×
197
      symbols e1;
198
      symbols e2;
×
199
      symbols e3
×
200
    | Relop (_, _, e1, e2) ->
3✔
201
      symbols e1;
202
      symbols e2
3✔
203
    | Cvtop (_, _, e) -> symbols e
×
204
    | Naryop (_, _, es) -> List.iter symbols es
×
205
    | Extract (e, _, _) -> symbols e
×
206
    | Concat (e1, e2) ->
×
207
      symbols e1;
208
      symbols e2
×
209
    | Binder (_, vars, e) ->
×
210
      List.iter symbols vars;
211
      symbols e
×
212
  in
213
  List.iter symbols hte;
214
  Hashtbl.fold (fun k () acc -> k :: acc) tbl []
1✔
215

216
let rec pp fmt (hte : t) =
217
  match view hte with
×
218
  | Val v -> Value.pp fmt v
×
219
  | Ptr { base; offset } -> Fmt.pf fmt "(Ptr %a %a)" Bitvector.pp base pp offset
×
220
  | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
×
221
  | List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
×
222
  | App (s, v) ->
×
223
    Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s (Fmt.list ~sep:Fmt.comma pp) v
×
224
  | Unop (ty, op, e) ->
×
225
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
226
  | Binop (ty, op, e1, e2) ->
×
227
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp e2
228
  | Triop (ty, op, e1, e2, e3) ->
×
229
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1 pp
230
      e2 pp e3
231
  | Relop (ty, op, e1, e2) ->
×
232
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp e2
233
  | Cvtop (ty, op, e) ->
×
234
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
235
  | Naryop (ty, op, es) ->
×
236
    Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
237
      (Fmt.list ~sep:Fmt.comma pp)
×
238
      es
239
  | Extract (e, h, l) -> Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
×
240
  | Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
×
241
  | Binder (b, vars, e) ->
×
242
    Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b (Fmt.list ~sep:Fmt.sp pp)
×
243
      vars pp e
244

245
let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
×
246

247
let pp_smtml fmt (es : t list) : unit =
248
  let def_num_printer = Num.get_default_printer () in
×
249
  Num.set_default_printer `Hexadecimal;
×
250
  Bitvector.set_default_printer `WithType;
×
251
  let pp_symbols fmt syms =
×
252
    Fmt.list ~sep:Fmt.cut
×
253
      (fun fmt sym ->
254
        let t = Symbol.type_of sym in
×
255
        Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
×
256
      fmt syms
257
  in
258
  let pp_asserts fmt es =
259
    Fmt.list ~sep:Fmt.cut
×
260
      (fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
×
261
      fmt es
262
  in
263
  let syms = get_symbols es in
264
  if List.length syms > 0 then Fmt.pf fmt "@[<v>%a@]@\n" pp_symbols syms;
×
265
  if List.length es > 0 then Fmt.pf fmt "@[<v>%a@]@\n" pp_asserts es;
×
266
  Fmt.string fmt "(check-sat)";
×
267
  Num.set_default_printer def_num_printer;
×
268
  Bitvector.set_default_printer `Pretty
×
269

270
let to_string e = Fmt.str "%a" pp e
×
271

272
let value (v : Value.t) : t = make (Val v) [@@inline]
688✔
273

274
let ptr base offset = make (Ptr { base = Bitvector.of_int32 base; offset })
7✔
275

276
let list l = make (List l)
5✔
277

278
let app symbol args = make (App (symbol, args))
×
279

280
let[@inline] binder bt vars expr = make (Binder (bt, vars, expr))
×
281

282
let let_in vars body = binder Let_in vars body
×
283

284
let forall vars body = binder Forall vars body
×
285

286
let exists vars body = binder Exists vars body
×
287

288
let raw_unop ty op hte = make (Unop (ty, op, hte)) [@@inline]
14✔
289

290
let negate_relop (hte : t) : t =
291
  let e =
×
292
    match view hte with
293
    | Relop (ty, Eq, e1, e2) -> Relop (ty, Ne, e1, e2)
×
294
    | Relop (ty, Ne, e1, e2) -> Relop (ty, Eq, e1, e2)
×
295
    | Relop (ty, Lt, e1, e2) -> Relop (ty, Le, e2, e1)
×
296
    | Relop (ty, LtU, e1, e2) -> Relop (ty, LeU, e2, e1)
×
297
    | Relop (ty, Le, e1, e2) -> Relop (ty, Lt, e2, e1)
×
298
    | Relop (ty, LeU, e1, e2) -> Relop (ty, LtU, e2, e1)
×
299
    | Relop (ty, Gt, e1, e2) -> Relop (ty, Le, e1, e2)
×
300
    | Relop (ty, GtU, e1, e2) -> Relop (ty, LeU, e1, e2)
×
301
    | Relop (ty, Ge, e1, e2) -> Relop (ty, Lt, e1, e2)
×
302
    | Relop (ty, GeU, e1, e2) -> Relop (ty, LtU, e1, e2)
×
303
    | _ -> Fmt.failwith "negate_relop: not a relop."
×
304
  in
305
  make e
306

307
let rec unop ty op hte =
308
  match (op, view hte) with
48✔
309
  | Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> raw_unop ty op hte
×
310
  | _, Val v -> value (Eval.unop ty op v)
24✔
311
  | Not, Unop (_, Not, hte') -> hte'
1✔
312
  | Neg, Unop (_, Neg, hte') -> hte'
1✔
313
  | Not, Binop (inner_ty, Or, a, b) ->
3✔
314
    make (Binop (inner_ty, And, unop ty Not a, unop ty Not b))
3✔
315
  | Not, Relop (Ty_fp _, _, _, _) -> raw_unop ty op hte
2✔
316
  | Not, Relop (_, _, _, _) -> negate_relop hte
×
317
  | Trim, Cvtop (Ty_real, ToString, _) -> hte
×
318
  | Head, List (hd :: _) -> hd
1✔
319
  | Tail, List (_ :: tl) -> make (List tl)
1✔
320
  | Reverse, List es -> make (List (List.rev es))
2✔
321
  | Length, List es -> value (Int (List.length es))
1✔
322
  | _ -> raw_unop ty op hte
12✔
323

324
let raw_binop ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
35✔
325

326
let rec binop ty op hte1 hte2 =
327
  match (op, view hte1, view hte2) with
119✔
328
  | Ty.Binop.(String_in_re | Regexp_range), _, _ -> raw_binop ty op hte1 hte2
×
329
  | op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
69✔
330
  | Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
331
    if Bitvector.equal b1 b2 then binop ty Sub os1 os2
1✔
332
    else raw_binop ty op hte1 hte2
×
333
  | Add, Ptr { base; offset }, _ ->
2✔
334
    let m = Bitvector.numbits base in
335
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte2 })
2✔
336
  | Sub, Ptr { base; offset }, _ ->
1✔
337
    let m = Bitvector.numbits base in
338
    make (Ptr { base; offset = binop (Ty_bitv m) Sub offset hte2 })
1✔
339
  | Rem, Ptr { base; offset }, _ ->
1✔
340
    let m = Bitvector.numbits base in
341
    let rhs = value (Bitv base) in
1✔
342
    let addr = binop (Ty_bitv m) Add rhs offset in
1✔
343
    binop ty Rem addr hte2
1✔
344
  | Add, _, Ptr { base; offset } ->
1✔
345
    let m = Bitvector.numbits base in
346
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte1 })
1✔
347
  | Sub, _, Ptr { base; offset } ->
×
348
    let m = Bitvector.numbits base in
349
    let base = value (Bitv base) in
×
350
    binop ty Sub hte1 (binop (Ty_bitv m) Add base offset)
×
351
  | (Add | Or), Val (Bitv bv), _ when Bitvector.eqz bv -> hte2
×
352
  | (And | Div | DivU | Mul | Rem | RemU), Val (Bitv bv), _
×
353
    when Bitvector.eqz bv ->
4✔
354
    hte1
1✔
355
  | (Add | Or), _, Val (Bitv bv) when Bitvector.eqz bv -> hte1
×
356
  | Add, _, Val (Real -0.) -> hte1
×
357
  | Add, Val (Real -0.), _ -> hte2
×
358
  | Add, _, Val (Num (F32 -0l)) -> hte1
1✔
359
  | Add, Val (Num (F32 -0l)), _ -> hte2
×
360
  | Add, _, Val (Num (F64 -0L)) -> hte1
×
361
  | Add, Val (Num (F64 -0L)), _ -> hte2
×
362
  | (And | Mul), _, Val (Bitv bv) when Bitvector.eqz bv -> hte2
1✔
363
  | And, Val True, _ -> hte2
×
364
  | And, _, Val True -> hte1
1✔
365
  | And, Val False, _ -> hte1
1✔
366
  | And, _, Val False -> hte2
×
367
  | Or, Val True, _ -> hte1
×
368
  | Or, _, Val True -> hte2
1✔
369
  | Or, Val False, _ -> hte2
×
370
  | Or, _, Val False -> hte1
1✔
371
  | Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
1✔
372
    let v = value (Eval.binop ty Add v1 v2) in
1✔
373
    raw_binop ty Add x v
1✔
374
  | Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
1✔
375
    let v = value (Eval.binop ty Add v1 v2) in
1✔
376
    raw_binop ty Sub x v
1✔
377
  | Mul, Val (Bitv bv), _ when Bitvector.eq_one bv -> hte2
×
378
  | Mul, _, Val (Bitv bv) when Bitvector.eq_one bv -> hte1
×
379
  | Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
1✔
380
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
381
    raw_binop ty Mul x v
1✔
382
  | Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
1✔
383
    let v = value (Eval.binop ty Add v1 v2) in
1✔
384
    raw_binop ty Add v x
1✔
385
  | Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
1✔
386
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
387
    raw_binop ty Mul v x
1✔
388
  | At, List es, Val (Int n) ->
1✔
389
    (* TODO: use another datastructure? *)
390
    begin match List.nth_opt es n with None -> assert false | Some v -> v
1✔
391
    end
392
  | (String_contains | String_prefix | String_suffix), _, Val (Str "") ->
1✔
393
    value True
394
  | List_cons, _, List es -> make (List (hte1 :: es))
1✔
395
  | List_append, List _, (List [] | Val (List [])) -> hte1
×
396
  | List_append, (List [] | Val (List [])), List _ -> hte2
×
397
  | List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
1✔
398
  | List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
×
399
  | List_append, List l0, List l1 -> make (List (l0 @ l1))
×
400
  | _ -> raw_binop ty op hte1 hte2
24✔
401

402
let raw_triop ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
×
403

404
let triop ty op e1 e2 e3 =
405
  match (op, view e1, view e2, view e3) with
7✔
406
  | Ty.Triop.Ite, Val True, _, _ -> e2
1✔
407
  | Ite, Val False, _, _ -> e3
1✔
408
  | Ite, _, _, _ when equal e2 e3 -> e2
1✔
409
  | op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
4✔
410
  | Ite, _, Triop (_, Ite, c2, r1, r2), Triop (_, Ite, _, _, _) ->
×
411
    let else_ = raw_triop ty Ite e1 r2 e3 in
412
    let cond = binop Ty_bool And e1 c2 in
×
413
    raw_triop ty Ite cond r1 else_
×
414
  | _ -> raw_triop ty op e1 e2 e3
×
415

416
let raw_relop ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
5✔
417

418
let rec relop ty (op : Ty.Relop.t) hte1 hte2 =
419
  let both_phys_eq = phys_equal hte1 hte2 in
81✔
420
  let can_be_shortcuted =
81✔
421
    match ty with
422
    | Ty.Ty_bool | Ty_bitv _ | Ty_int | Ty_unit -> both_phys_eq
×
423
    | Ty_fp _ | Ty_app | Ty_list | Ty_real | Ty_regexp | Ty_roundingMode
×
424
    | Ty_none | Ty_str ->
×
425
      false
426
  in
427
  match (op, view hte1, view hte2) with
81✔
428
  | (Eq | Le | Ge | LeU | GeU), _, _ when can_be_shortcuted -> value True
3✔
429
  | (Ne | Lt | Gt | LtU | GtU), _, _ when can_be_shortcuted -> value False
3✔
430
  | op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
21✔
431
  | Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
×
432
    if Float.is_nan v || Float.is_infinite v then value True
×
433
    else if both_phys_eq then value False
×
434
    else raw_relop ty op hte1 hte2
×
435
  | _, Val (Real v), _ | _, _, Val (Real v) ->
×
436
    if Float.is_nan v || Float.is_infinite v then value False
×
437
    else
438
      (* TODO: it is possible to add a shortcut when `both_phys_eq` *)
439
      raw_relop ty op hte1 hte2
×
440
  | Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
×
441
  | Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
×
442
  | Eq, _, Val (App (`Op "symbol", [ Str _ ]))
×
443
  | Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
444
    value False
445
  | Ne, _, Val (App (`Op "symbol", [ Str _ ]))
×
446
  | Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
447
    value True
448
  | ( Eq
×
449
    , Symbol ({ ty = Ty_fp prec1; _ } as s1)
450
    , Symbol ({ ty = Ty_fp prec2; _ } as s2) )
451
    when both_phys_eq || (prec1 = prec2 && Symbol.equal s1 s2) ->
×
452
    raw_unop Ty_bool Not (raw_unop (Ty_fp prec1) Is_nan hte1)
×
453
  | Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
454
    if both_phys_eq then value True
×
455
    else if Bitvector.equal b1 b2 then relop Ty_bool Eq os1 os2
×
456
    else value False
1✔
457
  | Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
458
    if both_phys_eq then value False
×
459
    else if Bitvector.equal b1 b2 then relop Ty_bool Ne os1 os2
×
460
    else value True
1✔
461
  | ( (LtU | LeU)
1✔
462
    , Ptr { base = b1; offset = os1 }
463
    , Ptr { base = b2; offset = os2 } ) ->
464
    if both_phys_eq then value True
×
465
    else if Bitvector.equal b1 b2 then relop ty op os1 os2
×
466
    else
467
      let b1 = Value.Bitv b1 in
2✔
468
      let b2 = Value.Bitv b2 in
469
      value (if Eval.relop ty op b1 b2 then True else False)
1✔
470
  | ( op
2✔
471
    , Val (Bitv _ as n)
472
    , Ptr { base; offset = { node = Val (Bitv _ as o); _ } } ) ->
473
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
474
    value (if Eval.relop ty op n base then True else False)
1✔
475
  | op, Ptr { base; offset = { node = Val (Bitv _ as o); _ } }, Val (Bitv _ as n)
2✔
476
    ->
477
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
478
    value (if Eval.relop ty op base n then True else False)
1✔
479
  | op, List l1, List l2 -> relop_list op l1 l2
×
480
  | Gt, _, _ -> relop ty Lt hte2 hte1
2✔
481
  | GtU, _, _ -> relop ty LtU hte2 hte1
1✔
482
  | Ge, _, _ -> relop ty Le hte2 hte1
1✔
483
  | GeU, _, _ -> relop ty LeU hte2 hte1
×
484
  | _, _, _ -> raw_relop ty op hte1 hte2
5✔
485

486
and relop_list op l1 l2 =
487
  match (op, l1, l2) with
×
488
  | Eq, [], [] -> value True
×
489
  | Eq, _, [] | Eq, [], _ -> value False
×
490
  | Eq, l1, l2 ->
×
491
    if not (List.compare_lengths l1 l2 = 0) then value False
×
492
    else
493
      List.fold_left2
×
494
        (fun acc a b ->
495
          binop Ty_bool And acc
×
496
          @@
497
          match (ty a, ty b) with
×
498
          | Ty_real, Ty_real -> relop Ty_real Eq a b
×
499
          | _ -> relop Ty_bool Eq a b )
×
500
        (value True) l1 l2
×
501
  | Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
×
502
  | (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
503

504
let raw_cvtop ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
8✔
505

506
let rec cvtop theory op hte =
507
  match (op, view hte) with
39✔
508
  | Ty.Cvtop.String_to_re, _ -> raw_cvtop theory op hte
×
509
  | _, Val v -> value (Eval.cvtop theory op v)
23✔
510
  | ToBool, Cvtop (_, OfBool, hte) -> hte
1✔
511
  | OfBool, Cvtop (_, ToBool, hte) -> hte
×
512
  | String_to_float, Cvtop (Ty_real, ToString, hte) -> hte
×
513
  | Reinterpret_float, Cvtop (Ty_real, Reinterpret_int, e1) -> e1
×
514
  | Reinterpret_float, Cvtop (Ty_fp n, Reinterpret_int, e) ->
×
515
    assert (match theory with Ty_bitv m -> n = m | _ -> false);
×
516
    e
517
  | Reinterpret_int, Cvtop (Ty_int, Reinterpret_float, e1) -> e1
×
518
  | Reinterpret_int, Cvtop (Ty_bitv m, Reinterpret_float, e) ->
2✔
519
    assert (match theory with Ty_fp n -> n = m | _ -> false);
×
520
    e
521
  | Zero_extend n, Ptr { base; offset } ->
1✔
522
    let offset = cvtop theory op offset in
523
    make (Ptr { base = Bitvector.zero_extend n base; offset })
1✔
524
  | WrapI64, Ptr { base; offset } ->
1✔
525
    let offset = cvtop theory op offset in
526
    make (Ptr { base = Bitvector.extract base ~high:31 ~low:0; offset })
1✔
527
  | WrapI64, Cvtop (Ty_bitv 64, Zero_extend 32, hte) ->
×
528
    assert (Ty.equal theory (ty hte) && Ty.equal theory (Ty_bitv 32));
×
529
    hte
530
  | ToString, Cvtop (_, OfString, e1) -> e1
1✔
531
  | OfString, Cvtop (_, ToString, e1) -> e1
×
532
  | PromoteF32, Cvtop (_, DemoteF64, e1) -> e1
×
533
  | DemoteF64, Cvtop (_, PromoteF32, e1) -> e1
×
534
  | Zero_extend 0, _ -> hte
1✔
535
  | Sign_extend 0, _ -> hte
×
536
  | String_from_code, Cvtop (_, String_to_code, e1) -> e1
×
537
  | String_to_code, Cvtop (_, String_from_code, e1) -> e1
1✔
538
  | _ -> raw_cvtop theory op hte
8✔
539

540
let raw_naryop ty op es = make (Naryop (ty, op, es)) [@@inline]
×
541

542
let naryop ty op es =
543
  if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
×
544
  then
545
    let vs =
7✔
546
      List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
18✔
547
    in
548
    value (Eval.naryop ty op vs)
7✔
549
  else
550
    match (ty, op, List.map view es) with
×
551
    | ( Ty_str
×
552
      , Concat
553
      , [ Naryop (Ty_str, Concat, l1); Naryop (Ty_str, Concat, l2) ] ) ->
554
      raw_naryop Ty_str Concat (l1 @ l2)
555
    | Ty_str, Concat, [ Naryop (Ty_str, Concat, htes); hte ] ->
×
556
      raw_naryop Ty_str Concat (htes @ [ make hte ])
×
557
    | Ty_str, Concat, [ hte; Naryop (Ty_str, Concat, htes) ] ->
×
558
      raw_naryop Ty_str Concat (make hte :: htes)
×
559
    | _ -> raw_naryop ty op es
×
560

561
let[@inline] raw_extract (hte : t) ~(high : int) ~(low : int) : t =
562
  make (Extract (hte, high, low))
7✔
563

564
let extract (hte : t) ~(high : int) ~(low : int) : t =
565
  match (view hte, high, low) with
12✔
566
  | Val (Bitv bv), high, low ->
3✔
567
    let high = (high * 8) - 1 in
568
    let low = low * 8 in
569
    value (Bitv (Bitvector.extract bv ~high ~low))
3✔
570
  | ( Cvtop
2✔
571
        ( _
572
        , (Zero_extend 24 | Sign_extend 24)
1✔
573
        , ({ node = Symbol { ty = Ty_bitv 8; _ }; _ } as sym) )
574
    , 1
575
    , 0 ) ->
576
    sym
577
  | Concat (_, e), h, l when Ty.size (ty e) = h - l -> e
2✔
578
  | Concat (e, _), 8, 4 when Ty.size (ty e) = 4 -> e
×
579
  | _ ->
5✔
580
    if high - low = Ty.size (ty hte) then hte else raw_extract hte ~high ~low
×
581

582
let raw_concat (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
2✔
583

584
(* TODO: don't rebuild so many values it generates unecessary hc lookups *)
585
let rec concat (msb : t) (lsb : t) : t =
586
  match (view msb, view lsb) with
6✔
587
  | Val (Bitv a), Val (Bitv b) -> value (Bitv (Bitvector.concat a b))
1✔
588
  | Val (Bitv _), Concat (({ node = Val (Bitv _); _ } as b), se) ->
×
589
    raw_concat (concat msb b) se
×
590
  | Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
3✔
591
    if h - l = Ty.size (ty s1) then s1 else raw_extract s1 ~high:h ~low:l
1✔
592
  | Extract (_, _, _), Concat (({ node = Extract (_, _, _); _ } as e2), e3) ->
×
593
    raw_concat (concat msb e2) e3
×
594
  | _ -> raw_concat msb lsb
2✔
595

596
let rec simplify_expr ?(in_relop = false) (hte : t) : t =
4✔
597
  match view hte with
16✔
598
  | Val _ | Symbol _ -> hte
4✔
599
  | Ptr { base; offset } ->
×
600
    let offset = simplify_expr ~in_relop offset in
601
    if not in_relop then make (Ptr { base; offset })
×
602
    else binop (Ty_bitv 32) Add (value (Bitv base)) offset
×
603
  | List es -> make @@ List (List.map (simplify_expr ~in_relop) es)
×
604
  | App (x, es) -> make @@ App (x, List.map (simplify_expr ~in_relop) es)
×
605
  | Unop (ty, op, e) ->
×
606
    let e = simplify_expr ~in_relop e in
607
    unop ty op e
×
608
  | Binop (ty, op, e1, e2) ->
6✔
609
    let e1 = simplify_expr ~in_relop e1 in
610
    let e2 = simplify_expr ~in_relop e2 in
6✔
611
    binop ty op e1 e2
6✔
612
  | Relop (ty, op, e1, e2) ->
×
613
    let e1 = simplify_expr ~in_relop:true e1 in
614
    let e2 = simplify_expr ~in_relop:true e2 in
×
615
    relop ty op e1 e2
×
616
  | Triop (ty, op, c, e1, e2) ->
×
617
    let c = simplify_expr ~in_relop c in
618
    let e1 = simplify_expr ~in_relop e1 in
×
619
    let e2 = simplify_expr ~in_relop e2 in
×
620
    triop ty op c e1 e2
×
621
  | Cvtop (ty, op, e) ->
×
622
    let e = simplify_expr ~in_relop e in
623
    cvtop ty op e
×
624
  | Naryop (ty, op, es) ->
×
625
    let es = List.map (simplify_expr ~in_relop) es in
626
    naryop ty op es
×
627
  | Extract (s, high, low) ->
×
628
    let s = simplify_expr ~in_relop s in
629
    extract s ~high ~low
×
630
  | Concat (e1, e2) ->
×
631
    let msb = simplify_expr ~in_relop e1 in
632
    let lsb = simplify_expr ~in_relop e2 in
×
633
    concat msb lsb
×
634
  | Binder _ ->
×
635
    (* Not simplifying anything atm *)
636
    hte
637

638
module Cache = Hashtbl.Make (struct
639
  type nonrec t = t
640

641
  let hash = hash
642

643
  let equal = equal
644
end)
645

646
let simplify =
647
  (* TODO: it may make sense to share the cache with simplify_expr ? *)
648
  let cache = Cache.create 512 in
649
  fun e ->
4✔
650
    match Cache.find_opt cache e with
2✔
651
    | Some simplified -> simplified
×
652
    | None ->
2✔
653
      let rec loop x =
654
        let x' = simplify_expr x in
4✔
655
        if equal x x' then begin
2✔
656
          Cache.add cache e x';
657
          x'
2✔
658
        end
659
        else loop x'
2✔
660
      in
661
      loop e
662

663
module Bool = struct
664
  open Ty
665

666
  let of_val = function
667
    | Val True -> Some true
×
668
    | Val False -> Some false
×
669
    | _ -> None
×
670

671
  let true_ = value True
4✔
672

673
  let false_ = value False
4✔
674

675
  let to_val b = if b then true_ else false_
×
676

677
  let v b = to_val b [@@inline]
×
678

679
  let not b =
680
    let bexpr = view b in
×
681
    match of_val bexpr with
×
682
    | Some b -> to_val (not b)
×
683
    | None -> (
×
684
      match bexpr with
685
      | Unop (Ty_bool, Not, cond) -> cond
×
686
      | _ -> unop Ty_bool Not b )
×
687

688
  let equal b1 b2 =
689
    match (view b1, view b2) with
×
690
    | Val True, Val True | Val False, Val False -> true_
×
691
    | _ -> relop Ty_bool Eq b1 b2
×
692

693
  let distinct b1 b2 =
694
    match (view b1, view b2) with
×
695
    | Val True, Val False | Val False, Val True -> true_
×
696
    | _ -> relop Ty_bool Ne b1 b2
×
697

698
  let and_ b1 b2 =
699
    match (of_val (view b1), of_val (view b2)) with
×
700
    | Some true, _ -> b2
×
701
    | _, Some true -> b1
×
702
    | Some false, _ | _, Some false -> false_
×
703
    | _ -> binop Ty_bool And b1 b2
×
704

705
  let or_ b1 b2 =
706
    match (of_val (view b1), of_val (view b2)) with
×
707
    | Some false, _ -> b2
×
708
    | _, Some false -> b1
×
709
    | Some true, _ | _, Some true -> true_
×
710
    | _ -> binop Ty_bool Or b1 b2
×
711

712
  let ite c r1 r2 = triop Ty_bool Ite c r1 r2
×
713
end
714

715
module Make (T : sig
716
  type elt
717

718
  val ty : Ty.t
719

720
  val value : elt -> Value.t
721
end) =
722
struct
723
  open Ty
724

725
  let v i = value (T.value i)
×
726

727
  let sym x = symbol Symbol.(x @: T.ty)
×
728

729
  let ( ~- ) e = unop T.ty Neg e
×
730

731
  let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
×
732

733
  let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
×
734

735
  let ( > ) e1 e2 = relop T.ty Gt e1 e2
×
736

737
  let ( >= ) e1 e2 = relop T.ty Ge e1 e2
×
738

739
  let ( < ) e1 e2 = relop T.ty Lt e1 e2
×
740

741
  let ( <= ) e1 e2 = relop T.ty Le e1 e2
×
742
end
743

744
module Bitv = struct
745
  open Ty
746

747
  module I8 = Make (struct
748
    type elt = int
749

750
    let ty = Ty_bitv 8
751

752
    let value i = Value.Bitv (Bitvector.of_int8 i)
×
753
  end)
754

755
  module I32 = Make (struct
756
    type elt = int32
757

758
    let ty = Ty_bitv 32
759

760
    let value i = Value.Bitv (Bitvector.of_int32 i)
×
761
  end)
762

763
  module I64 = Make (struct
764
    type elt = int64
765

766
    let ty = Ty_bitv 64
767

768
    let value i = Value.Bitv (Bitvector.of_int64 i)
×
769
  end)
770
end
771

772
module Fpa = struct
773
  open Ty
774

775
  module F32 = struct
776
    include Make (struct
777
      type elt = float
778

779
      let ty = Ty_fp 32
780

781
      let value f = Value.Num (F32 (Int32.bits_of_float f))
×
782
    end)
783

784
    (* Redeclare equality due to incorrect theory annotation *)
785
    let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
×
786

787
    let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
×
788
  end
789

790
  module F64 = struct
791
    include Make (struct
792
      type elt = float
793

794
      let ty = Ty_fp 64
795

796
      let value f = Value.Num (F64 (Int64.bits_of_float f))
×
797
    end)
798

799
    (* Redeclare equality due to incorrect theory annotation *)
800
    let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
×
801

802
    let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
×
803
  end
804
end
805

806
module Smtlib = struct
807
  let rec pp fmt (hte : t) =
808
    match view hte with
13✔
809
    | Val v -> Value.Smtlib.pp fmt v
3✔
810
    | Ptr _ -> assert false
811
    | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
5✔
812
    | List _ -> assert false
813
    | App _ -> assert false
814
    | Unop (ty, op, e) ->
×
815
      Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Ty.Smtlib.pp_unop (ty, op) pp e
816
    | Binop (ty, op, e1, e2) ->
2✔
817
      Fmt.pf fmt "@[<hov 1>(%a@ %a@ %a)@]" Ty.Smtlib.pp_binop (ty, op) pp e1 pp
818
        e2
819
    | Triop _ -> assert false
820
    | Relop (ty, op, e1, e2) ->
3✔
821
      Fmt.pf fmt "@[<hov 1>(%a@ %a@ %a)@]" Ty.Smtlib.pp_relop (ty, op) pp e1 pp
822
        e2
823
    | Cvtop _ -> assert false
824
    | Naryop _ -> assert false
825
    | Extract _ -> assert false
826
    | Concat _ -> assert false
827
    | Binder _ -> assert false
828
end
829

830
let inline_symbol_values map e =
831
  let rec aux e =
2✔
832
    match view e with
2✔
833
    | Val _ -> e
×
834
    | Symbol symbol -> Option.value ~default:e (Symbol.Map.find_opt symbol map)
2✔
835
    | Ptr e ->
×
836
      let offset = aux e.offset in
837
      make @@ Ptr { e with offset }
×
838
    | List vs ->
×
839
      let vs = List.map aux vs in
840
      list vs
×
841
    | App (x, vs) ->
×
842
      let vs = List.map aux vs in
843
      app x vs
×
844
    | Unop (ty, op, v) ->
×
845
      let v = aux v in
846
      unop ty op v
×
847
    | Binop (ty, op, v1, v2) ->
×
848
      let v1 = aux v1 in
849
      let v2 = aux v2 in
×
850
      binop ty op v1 v2
×
851
    | Triop (ty, op, v1, v2, v3) ->
×
852
      let v1 = aux v1 in
853
      let v2 = aux v2 in
×
854
      let v3 = aux v3 in
×
855
      triop ty op v1 v2 v3
×
856
    | Cvtop (ty, op, v) ->
×
857
      let v = aux v in
858
      cvtop ty op v
×
859
    | Relop (ty, op, v1, v2) ->
×
860
      let v1 = aux v1 in
861
      let v2 = aux v2 in
×
862
      relop ty op v1 v2
×
863
    | Naryop (ty, op, vs) ->
×
864
      let vs = List.map aux vs in
865
      naryop ty op vs
×
866
    | Extract (e, high, low) ->
×
867
      let e = aux e in
868
      extract e ~high ~low
×
869
    | Concat (e1, e2) ->
×
870
      let e1 = aux e1 in
871
      let e2 = aux e2 in
×
872
      concat e1 e2
×
873
    | Binder (b, vars, e) ->
×
874
      let e = aux e in
875
      binder b vars e
×
876
  in
877
  aux e
878

879
module Set = struct
880
  include Set.Make (Key)
881

882
  type key = Key.t
883

884
  let hash = Hashtbl.hash
885

886
  let to_list s = elements s
×
887

888
  let pp fmt v =
889
    Fmt.pf fmt "@[<hov 1>%a@]"
×
890
      (Fmt.iter iter ~sep:(fun fmt () -> Fmt.pf fmt "@;") pp)
×
891
      v
892

893
  let get_symbols (set : t) =
894
    let tbl = Hashtbl.create 64 in
×
895
    let rec symbols hte =
×
896
      match view hte with
×
897
      | Val _ -> ()
×
898
      | Ptr { offset; _ } -> symbols offset
×
899
      | Symbol s -> Hashtbl.replace tbl s ()
×
900
      | List es -> List.iter symbols es
×
901
      | App (_, es) -> List.iter symbols es
×
902
      | Unop (_, _, e1) -> symbols e1
×
903
      | Binop (_, _, e1, e2) ->
×
904
        symbols e1;
905
        symbols e2
×
906
      | Triop (_, _, e1, e2, e3) ->
×
907
        symbols e1;
908
        symbols e2;
×
909
        symbols e3
×
910
      | Relop (_, _, e1, e2) ->
×
911
        symbols e1;
912
        symbols e2
×
913
      | Cvtop (_, _, e) -> symbols e
×
914
      | Naryop (_, _, es) -> List.iter symbols es
×
915
      | Extract (e, _, _) -> symbols e
×
916
      | Concat (e1, e2) ->
×
917
        symbols e1;
918
        symbols e2
×
919
      | Binder (_, vars, e) ->
×
920
        List.iter symbols vars;
921
        symbols e
×
922
    in
923
    iter symbols set;
924
    Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
925

926
  let map f set =
927
    fold
×
928
      (fun elt set ->
929
        let elt = f elt in
×
930
        add elt set )
×
931
      set empty
932

933
  let inline_symbol_values symbol_map set =
934
    map (inline_symbol_values symbol_map) set
×
935
end
936

937
let rec split_conjunctions (e : t) : Set.t =
938
  match view e with
×
939
  | Binop (Ty_bool, And, e1, e2) ->
×
940
    let s1 = split_conjunctions e1 in
941
    let s2 = split_conjunctions e2 in
×
942
    Set.union s1 s2
×
943
  | _ -> Set.singleton e
×
944

945
let rec split_disjunctions (e : t) : Set.t =
946
  match view e with
×
947
  | Binop (Ty_bool, Or, e1, e2) ->
×
948
    let s1 = split_disjunctions e1 in
949
    let s2 = split_disjunctions e2 in
×
950
    Set.union s1 s2
×
951
  | _ -> Set.singleton e
×
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc