• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

daisytuner / sdfglib / 20623330469

31 Dec 2025 04:51PM UTC coverage: 39.635% (-0.08%) from 39.712%
20623330469

Pull #421

github

web-flow
Merge 6f97fcd37 into 3b72c335e
Pull Request #421: Extend tensor library nodes with primitive type support and refactor CMathNode to use enums

14997 of 49248 branches covered (30.45%)

Branch coverage included in aggregate %.

247 of 620 new or added lines in 52 files covered. (39.84%)

37 existing lines in 4 files now uncovered.

12875 of 21074 relevant lines covered (61.09%)

89.41 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

0.0
/src/data_flow/library_nodes/math/tensor/elementwise_ops/minimum_node.cpp
1
#include "sdfg/data_flow/library_nodes/math/tensor/elementwise_ops/minimum_node.h"
2

3
#include "sdfg/analysis/analysis.h"
4
#include "sdfg/builder/structured_sdfg_builder.h"
5
#include "sdfg/data_flow/library_nodes/math/cmath/cmath_node.h"
6
#include "sdfg/data_flow/library_nodes/math/tensor/tensor_node.h"
7
#include "sdfg/types/type.h"
8

9
namespace sdfg {
10
namespace math {
11
namespace tensor {
12

13
MinimumNode::MinimumNode(
×
14
    size_t element_id,
15
    const DebugInfo& debug_info,
16
    const graph::Vertex vertex,
17
    data_flow::DataFlowGraph& parent,
18
    const std::vector<symbolic::Expression>& shape
19
)
20
    : ElementWiseBinaryNode(element_id, debug_info, vertex, parent, LibraryNodeType_Minimum, shape) {}
×
21

22
bool MinimumNode::expand_operation(
×
23
    builder::StructuredSDFGBuilder& builder,
24
    analysis::AnalysisManager& analysis_manager,
25
    structured_control_flow::Sequence& body,
26
    const std::string& input_name_a,
27
    const std::string& input_name_b,
28
    const std::string& output_name,
29
    const types::IType& input_type_a,
30
    const types::IType& input_type_b,
31
    const types::IType& output_type,
32
    const data_flow::Subset& subset
33
) {
34
    auto& code_block = builder.add_block(body);
×
35
    data_flow::AccessNode* input_node_a;
36
    if (builder.subject().exists(input_name_a)) {
×
37
        input_node_a = &builder.add_access(code_block, input_name_a);
×
38
    } else {
×
39
        input_node_a = &builder.add_constant(code_block, input_name_a, input_type_a);
×
40
    }
41
    data_flow::AccessNode* input_node_b;
42
    if (builder.subject().exists(input_name_b)) {
×
43
        input_node_b = &builder.add_access(code_block, input_name_b);
×
44
    } else {
×
45
        input_node_b = &builder.add_constant(code_block, input_name_b, input_type_b);
×
46
    }
47
    auto& output_node = builder.add_access(code_block, output_name);
×
48

49
    bool is_int = types::is_integer(input_type_a.primitive_type());
×
50

51
    if (is_int) {
×
52
        // Use tasklets for integer types - distinguish between signed and unsigned
NEW
53
        auto tasklet_code = TensorNode::get_integer_minmax_tasklet(input_type_a.primitive_type(), false);
×
NEW
54
        auto& tasklet = builder.add_tasklet(code_block, tasklet_code, "_out", {"_in1", "_in2"});
×
55

56
        if (input_type_a.type_id() == types::TypeID::Scalar) {
×
57
            builder.add_computational_memlet(code_block, *input_node_a, tasklet, "_in1", {}, input_type_a);
×
58
        } else {
×
59
            builder.add_computational_memlet(code_block, *input_node_a, tasklet, "_in1", subset, input_type_a);
×
60
        }
61
        if (input_type_b.type_id() == types::TypeID::Scalar) {
×
62
            builder.add_computational_memlet(code_block, *input_node_b, tasklet, "_in2", {}, input_type_b);
×
63
        } else {
×
64
            builder.add_computational_memlet(code_block, *input_node_b, tasklet, "_in2", subset, input_type_b);
×
65
        }
66
        builder.add_computational_memlet(code_block, tasklet, "_out", output_node, subset, output_type);
×
67
    } else {
×
68
        // Use intrinsics for floating-point types with correct suffix
NEW
69
        auto& node = builder.add_library_node<
×
NEW
70
            cmath::CMathNode>(code_block, this->debug_info(), cmath::CMathFunction::fmin, input_type_a.primitive_type());
×
71

72
        if (input_type_a.type_id() == types::TypeID::Scalar) {
×
73
            builder.add_computational_memlet(code_block, *input_node_a, node, "_in1", {}, input_type_a, DebugInfo());
×
74
        } else {
×
75
            builder.add_computational_memlet(code_block, *input_node_a, node, "_in1", subset, input_type_a, DebugInfo());
×
76
        }
77
        if (input_type_b.type_id() == types::TypeID::Scalar) {
×
78
            builder.add_computational_memlet(code_block, *input_node_b, node, "_in2", {}, input_type_b, DebugInfo());
×
79
        } else {
×
80
            builder.add_computational_memlet(code_block, *input_node_b, node, "_in2", subset, input_type_b, DebugInfo());
×
81
        }
82
        builder.add_computational_memlet(code_block, node, "_out", output_node, subset, output_type, DebugInfo());
×
83
    }
84

85
    return true;
×
86
}
×
87

88
std::unique_ptr<data_flow::DataFlowNode> MinimumNode::
89
    clone(size_t element_id, const graph::Vertex vertex, data_flow::DataFlowGraph& parent) const {
×
90
    return std::unique_ptr<
×
91
        data_flow::DataFlowNode>(new MinimumNode(element_id, this->debug_info(), vertex, parent, this->shape_));
×
92
}
×
93

94
} // namespace tensor
95
} // namespace math
96
} // namespace sdfg
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc