• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

dsavransky / EXOSIMS / 20437726026

22 Dec 2025 04:24PM UTC coverage: 65.46% (-0.2%) from 65.7%
20437726026

push

github

web-flow
Merge pull request #451 from CoreySpohn/ang-diam-filter

Improve angular diameter filtering in TargetList

1 of 15 new or added lines in 2 files covered. (6.67%)

43 existing lines in 6 files now uncovered.

9802 of 14974 relevant lines covered (65.46%)

0.65 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

76.17
/EXOSIMS/Prototypes/OpticalSystem.py
1
# -*- coding: utf-8 -*-
2
import copy
1✔
3
import numbers
1✔
4
import os.path
1✔
5
import warnings
1✔
6

7
import astropy.io.fits as fits
1✔
8
import astropy.units as u
1✔
9
import numpy as np
1✔
10
import scipy.interpolate
1✔
11
import scipy.optimize
1✔
12
from synphot import Observation, SourceSpectrum, SpectralElement
1✔
13
from synphot.models import Box1D, Gaussian1D
1✔
14

15
from EXOSIMS.util._numpy_compat import copy_if_needed
1✔
16
from EXOSIMS.util.get_dirs import get_cache_dir
1✔
17
from EXOSIMS.util.keyword_fun import get_all_args
1✔
18
from EXOSIMS.util.utils import dictToSortedStr, genHexStr
1✔
19
from EXOSIMS.util.vprint import vprint
1✔
20

21

22
class OpticalSystem(object):
1✔
23
    r""":ref:`OpticalSystem` Prototype
24

25
    Args:
26
        obscurFac (float):
27
            Obscuration factor (fraction of primary mirror area obscured by secondary
28
            and spiders). Defaults to 0.1. Must be between 0 and 1.
29
            See :py:attr:`~EXOSIMS.Prototypes.OpticalSystem.OpticalSystem.pupilArea`
30
            attribute definition.
31
        shapeFac (float):
32
            Shape Factor. Determines the ellipticity of the primary mirror.
33
            Defaults to np.pi/4 (circular aperture). See
34
            :py:attr:`~EXOSIMS.Prototypes.OpticalSystem..OpticalSystem.pupilArea`
35
            attribute definition.
36
        pupilDiam (float):
37
            Primary mirror major diameter (in meters).  Defaults to 4.
38
        intCutoff (float):
39
            Integration time cutoff (in days).  Determines the maximum time that is
40
            allowed per integration, and is used to limit integration target
41
            :math:`\Delta\mathrm{mag}`. Defaults to 50.
42
        scienceInstruments (list(dict)):
43
            List of dicts defining all science instruments. Minimally must contain
44
            one science instrument. Each dictionary must minimally contain a ``name``
45
            keyword, which must be unique to each instrument and must include the
46
            substring ``imager`` (for imaging devices) or ``spectro`` (for
47
            spectrometers). By default, this keyword is set to
48
            ``[{'name': 'imager'}]``, creating a single imaging science
49
            instrument. Additional parameters are filled in with default values set
50
            by the keywords below. For more details on science instrument definitions
51
            see :ref:`OpticalSystem`.
52
        QE  (float):
53
            Default quantum efficiency. Only used when not set in science instrument
54
            definition.  Defaults to 0.9
55
        optics (float):
56
            Total attenuation due to science instrument optics.  This is the net
57
            attenuation due to all optics in the science instrument path after the
58
            primary mirror, excluding any starlight suppression system (i.e.,
59
            coronagraph) optics. Only used when not set in science instrument
60
            definition. Defaults to 0.5
61
        FoV (float):
62
            Default instrument half-field of view (in arcseconds). Only used when not
63
            set in science instrument definition. Defaults to 10
64
        pixelNumber (float):
65
            Default number of pixels across the detector. Only used when not set
66
            in science instrument definition. Defaults to 1000.
67
        pixelSize (float):
68
            Default pixel pitch (nominal distance between adjacent pixel centers,
69
            in meters). Only used when not set in science instrument definition.
70
            Defaults to 1e-5
71
        pixelScale (float):
72
            Default pixel scale (instantaneous field of view of each pixel,
73
            in arcseconds). Only used when not set in science instrument definition.
74
            Defaults to 0.02.
75
        sread (float):
76
            Default read noise (in electrons/pixel/read).  Only used when not set
77
            in science instrument definition. Defaults to 1e-6
78
        idark (float):
79
            Default dark current (in electrons/pixel/s).  Only used when not set
80
            in science instrument definition. Defaults to 1e-4
81
        texp (float):
82
            Default single exposure time (in s).  Only used when not set
83
            in science instrument definition. Defaults to 100
84
        Rs (float):
85
            Default spectral resolving power.   Only used when not set
86
            in science instrument definition. Only applies to spetrometers.
87
            Defaults to 50.
88
        lenslSamp (float):
89
            Default lenslet sampling (number of pixels per lenslet rows or columns).
90
            Only used when not set in science instrument definition. Defaults to 2
91
        starlightSuppressionSystems (list(dict)):
92
            List of dicts defining all starlight suppression systems. Minimally must
93
            contain one system. Each dictionary must minimally contain a ``name``
94
            keyword, which must be unique to each system. By default, this keyword is
95
            set to ``[{'name': 'coronagraph'}]``, creating a single coronagraphic
96
            starlight suppression system. Additional parameters are filled in with
97
            default values set by the keywords below. For more details on starlight
98
            suppression system definitions see :ref:`OpticalSystem`.
99
        lam (float):
100
            Default central wavelength of starlight suppression system (in nm).
101
            Only used when not set in starlight suppression system definition.
102
            Defaults to 500
103
        BW (float):
104
            Default fractional bandwidth. Only used when not set in starlight
105
            suppression system definition. Defaults to 0.2
106
        occ_trans (float):
107
            Default coronagraphic transmission. Only used when not set in starlight
108
            suppression system definition. Defaults to 0.2
109
        core_thruput (float):
110
            Default core throughput. Only used when not set in starlight suppression
111
            system definition.  Defaults to 0.1
112
        core_contrast (float):
113
            Default core contrast. Only used when not set in starlight suppression
114
            system definition. Defaults to 1e-10
115
        contrast_floor (float, optional):
116
            Default contrast floor. Only used when not set in starlight suppression
117
            system definition. If not None, sets absolute contrast floor.
118
            Defaults to None
119
        core_platescale (float, optional):
120
            Default core platescale.  Only used when not set in starlight suppression
121
            system definition. Defaults to None. Units determiend by
122
            ``input_angle_units``.
123
        input_angle_units (str, optional):
124
            Default angle units of all starlightSuppressionSystems-related inputs
125
            (as applicable). This includes all CSV input tables or FITS input tables
126
            without a UNIT keyword in the header.
127
            Only used when not set in starlight suppression system definition.
128
            None, 'unitless' or 'LAMBDA/D' are all interepreted as :math:`\\lambda/D`
129
            units. Otherwise must be a string that is parsable as an astropy angle unit.
130
            Defaults to 'arcsec'.
131
        ohTime (float):
132
            Default overhead time (in days).  Only used when not set in starlight
133
            suppression system definition. Time is added to every observation (on
134
            top of observatory settling time). Defaults to 1
135
        observingModes (list(dict), optional):
136
            List of dicts defining observing modes. These are essentially combinations
137
            of instruments and starlight suppression systems, identified by their
138
            names in keywords ``instName`` and ``systName``, respectively.  One mode
139
            must be identified as the default detection mode (by setting keyword
140
            ``detectionMode`` to True in the mode definition. If None (default)
141
            a single observing mode is generated combining the first instrument in
142
            ``scienceInstruments`` with the first starlight suppression system in
143
            ``starlightSuppressionSystems``, and is marked as the detection mode.
144
            Additional parameters are filled in with default values set by the
145
            keywords below.  For more details on mode definitions see
146
            :ref:`OpticalSystem`.
147
        SNR (float):
148
            Default target signal to noise ratio.  Only used when not set in observing
149
            mode definition. Defaults to 5
150
        timeMultiplier (float):
151
            Default integration time multiplier.  Only used when not set in observing
152
            mode definition. Every integration time calculated for an observing mode
153
            is scaled by this factor.  For example, if an observing mode requires two
154
            rolls per observation (i.e., if it covers only 180 degrees of the field),
155
            then this quantity should be set to 2 for that mode.  However, in some cases
156
            (i.e., spectroscopic followup) it may not be necessary to integrate on the
157
            full field, in which case this quantity could be set to 1. Defaults to 1
158
        IWA (float):
159
            Default :term:`IWA` (in input_angle_units).  Only used when not set in
160
            starlight suppression system definition. Defaults to 0.1
161
        OWA (float):
162
            Default :term:`OWA` (in input_angle_units). Only used when not set in
163
            starlight suppression system definition. Defaults to numpy.Inf
164
        stabilityFact (float):
165
            Stability factor. Defaults to 1
166
        cachedir (str, optional):
167
            Full path to cachedir.
168
            If None (default) use default (see :ref:`EXOSIMSCACHE`)
169
        koAngles_Sun (list(float)):
170
            Default [Min, Max] keepout angles for Sun.  Only used when not set in
171
            starlight suppression system definition.  Defaults to [0,180]
172
        koAngles_Earth (list(float)):
173
            Default [Min, Max] keepout angles for Earth.  Only used when not set in
174
            starlight suppression system definition. Defaults to [0,180]
175
        koAngles_Moon (list(float)):
176
            Default [Min, Max] keepout angles for the moon.  Only used when not set in
177
            starlight suppression system definition.  Defaults to [0,180]
178
        koAngles_Small (list(float)):
179
            Default [Min, Max] keepout angles for all other bodies.  Only used when
180
            not set in starlight suppression system definition.
181
            Defaults to [0,180],
182
        binaryleakfilepath (str, optional):
183
            If set, full path to binary leak definition file. Defaults to None
184
        texp_flag (bool):
185
            Toggle use of planet shot noise value for frame exposure time
186
            (overriides instrument texp value). Defaults to False.
187
        bandpass_model (str):
188
            Default model to use for mode bandpasses. Must be one of 'gaussian' or 'box'
189
            (case insensitive). Only used if not set in mode definition. Defaults to
190
            box.
191
        bandpass_step (float):
192
            Default step size (in nm) to use when generating Box-model bandpasses. Only
193
            used if not set in mode definition. Defaults to 0.1.
194
        use_core_thruput_for_ez (bool):
195
            If True, compute exozodi contribution using core_thruput.
196
            If False (default) use occ_trans
197
        csv_angsep_colname (str):
198
            Default column name to use for the angular separation column for CSV data.
199
            Only used when not set in starlight suppression system definition.
200
            Defaults to r_as (matching the default input_angle_units). These two inputs
201
            should be updated together.
202
        **specs:
203
            :ref:`sec:inputspec`
204

205
    Attributes:
206
        _outspec (dict):
207
            :ref:`sec:outspec`
208
        allowed_observingMode_kws (list):
209
            List of allowed keywords in observingMode dictionaries
210
        allowed_scienceInstrument_kws (list):
211
            List of allowed keywords in scienceInstrument dictionaries
212
        allowed_starlightSuppressionSystem_kws (list):
213
            List of allowed keywords in starlightSuppressionSystem dictionaries
214
        cachedir (str):
215
            Path to the EXOSIMS cache directory (see :ref:`EXOSIMSCACHE`)
216
        default_vals (dict):
217
            All inputs not assigned to object attributes are considered to be default
218
            values to be used for filling in information in the optical system
219
            definition, and are copied into this dictionary for storage.
220
        haveOcculter (bool):
221
            One or more starlight suppresion systems are starshade-based
222
        intCutoff (astropy.units.quantity.Quantity):
223
            Maximum allowable continuous integration time.  Time units.
224
        IWA (astropy.units.quantity.Quantity):
225
            Minimum inner working angle.
226
        obscurFac (float):
227
            Obscuration factor (fraction of primary mirror area obscured by secondary
228
            and spiders).
229
        observingModes (list):
230
            List of dicts defining observing modes. These are essentially combinations
231
            of instruments and starlight suppression systems, identified by their
232
            names in keywords ``instName`` and ``systName``, respectively.  One mode
233
            must be identified as the default detection mode (by setting keyword
234
            ``detectionMode`` to True in the mode definition. If None (default)
235
            a single observing mode is generated combining the first instrument in
236
            ``scienceInstruments`` with the first starlight suppression system in
237
            ``starlightSuppressionSystems``, and is marked as the detection mode.
238
            Additional parameters are filled in with default values set by the
239
            keywords below.  For more details on mode definitions see
240
            :ref:`OpticalSystem`.
241
        OWA (astropy.units.quantity.Quantity):
242
            Maximum outer working angle.
243
        pupilArea (astropy.units.quantity.Quantity):
244
            Total effective pupil area:
245

246
            .. math::
247

248
                A  = (1 - F_o)F_sD^2
249

250
            where :math:`F_o` is the obscuration factor, :math:`F_s` is the shape
251
            factor, and :math:`D` is the pupil diameter.
252
        pupilDiam (astropy.units.quantity.Quantity):
253
            Pupil major diameter. Length units.
254
        scienceInstruments (list):
255
            List of dicts defining all science instruments. Minimally must contain
256
            one science instrument. Each dictionary must minimally contain a ``name``
257
            keyword, which must be unique to each instrument and must include the
258
            substring ``imager`` (for imaging devices) or ``spectro`` (for
259
            spectrometers). By default, this keyword is set to
260
            ``[{'name': 'imager'}]``, creating a single imaging science
261
            instrument. Additional parameters are filled in with default values set
262
            by the keywords below. For more details on science instrument definitions
263
            see :ref:`OpticalSystem`.
264
        shapeFac (float):
265
            Primary mirror shape factor.
266
        stabilityFact (float):
267
            Telescope stability factor.
268
        starlightSuppressionSystems (list):
269
            List of dicts defining all starlight suppression systems. Minimally must
270
            contain one system. Each dictionary must minimally contain a ``name``
271
            keyword, which must be unique to each system. By default, this keyword is
272
            set to ``[{'name': 'coronagraph'}]``, creating a single coronagraphic
273
            starlight suppression system. Additional parameters are filled in with
274
            default values set by the keywords below. For more details on starlight
275
            suppression system definitions see :ref:`OpticalSystem`.
276
        texp_flag (bool):
277
            Toggle use of planet shot noise value for frame exposure time
278
            (overriides instrument texp value).
279
        use_core_thruput_for_ez (bool):
280
            Toggle use of core_thruput (instead of occ_trans) in computing exozodi flux.
281

282
    """
283

284
    _modtype = "OpticalSystem"
1✔
285

286
    def __init__(
1✔
287
        self,
288
        obscurFac=0.1,
289
        shapeFac=np.pi / 4,
290
        pupilDiam=4,
291
        intCutoff=50,
292
        scienceInstruments=[{"name": "imager"}],
293
        QE=0.9,
294
        optics=0.5,
295
        FoV=10,
296
        pixelNumber=1000,
297
        pixelSize=1e-5,
298
        pixelScale=0.02,
299
        sread=1e-6,
300
        idark=1e-4,
301
        texp=100,
302
        Rs=50,
303
        lenslSamp=2,
304
        starlightSuppressionSystems=[{"name": "coronagraph"}],
305
        lam=500,
306
        BW=0.2,
307
        occ_trans=0.2,
308
        core_thruput=0.1,
309
        core_contrast=1e-10,
310
        contrast_floor=None,
311
        core_platescale=None,
312
        core_platescale_units=None,
313
        input_angle_units="arcsec",
314
        ohTime=1,
315
        observingModes=None,
316
        SNR=5,
317
        timeMultiplier=1.0,
318
        IWA=0.1,
319
        OWA=np.inf,
320
        stabilityFact=1,
321
        cachedir=None,
322
        koAngles_Sun=[0, 180],
323
        koAngles_Earth=[0, 180],
324
        koAngles_Moon=[0, 180],
325
        koAngles_Small=[0, 180],
326
        binaryleakfilepath=None,
327
        texp_flag=False,
328
        bandpass_model="box",
329
        bandpass_step=0.1,
330
        use_core_thruput_for_ez=False,
331
        csv_angsep_colname="r_as",
332
        **specs,
333
    ):
334
        # start the outspec
335
        self._outspec = {}
1✔
336

337
        # load the vprint function (same line in all prototype module constructors)
338
        self.vprint = vprint(specs.get("verbose", True))
1✔
339

340
        # set attributes from inputs
341
        self.obscurFac = float(obscurFac)  # obscuration factor (fraction of PM area)
1✔
342
        self.shapeFac = float(shapeFac)  # shape factor
1✔
343
        self.pupilDiam = float(pupilDiam) * u.m  # entrance pupil diameter
1✔
344
        self.intCutoff = float(intCutoff) * u.d  # integration time cutoff
1✔
345
        self.stabilityFact = float(stabilityFact)  # stability factor for telescope
1✔
346
        self.texp_flag = bool(texp_flag)
1✔
347
        self.use_core_thruput_for_ez = bool(use_core_thruput_for_ez)
1✔
348

349
        # get cache directory
350
        self.cachedir = get_cache_dir(cachedir)
1✔
351
        specs["cachedir"] = self.cachedir
1✔
352

353
        # if binary leakage model provided, let's grab that as well
354
        if binaryleakfilepath is not None:
1✔
355
            binaryleakfilepathnorm = os.path.normpath(
×
356
                os.path.expandvars(binaryleakfilepath)
357
            )
358

359
            assert os.path.exists(
×
360
                binaryleakfilepathnorm
361
            ), "Binary leakage model data file not found at {}".format(
362
                binaryleakfilepath
363
            )
364

365
            binaryleakdata = np.genfromtxt(binaryleakfilepathnorm, delimiter=",")
×
366

367
            self.binaryleakmodel = scipy.interpolate.interp1d(
×
368
                binaryleakdata[:, 0], binaryleakdata[:, 1], bounds_error=False
369
            )
370
        self._outspec["binaryleakfilepath"] = binaryleakfilepath
1✔
371

372
        # populate outspec with all attributes assigned so far
373
        for att in self.__dict__:
1✔
374
            if att not in [
1✔
375
                "vprint",
376
                "_outspec",
377
            ]:
378
                dat = self.__dict__[att]
1✔
379
                self._outspec[att] = dat.value if isinstance(dat, u.Quantity) else dat
1✔
380

381
        # consistency check IWA/OWA defaults
382
        if OWA == 0:
1✔
383
            OWA = np.inf
1✔
384
        assert IWA < OWA, "Input default IWA must be smaller than input default OWA."
1✔
385

386
        # get all inputs that haven't been assiged to attributes will be treated as
387
        # default values (and should also go into outspec)
388
        kws = get_all_args(self.__class__)
1✔
389
        ignore_kws = [
1✔
390
            "self",
391
            "scienceInstruments",
392
            "starlightSuppressionSystems",
393
            "observingModes",
394
            "binaryleakfilepath",
395
        ]
396
        kws = list(
1✔
397
            (set(kws) - set(ignore_kws) - set(self.__dict__.keys())).intersection(
398
                set(locals().keys())
399
            )
400
        )
401
        self.default_vals = {}
1✔
402
        for kw in kws:
1✔
403
            self.default_vals[kw] = locals()[kw]
1✔
404
            if kw not in self._outspec:
1✔
405
                self._outspec[kw] = locals()[kw]
1✔
406

407
        # pupil collecting area (obscured PM)
408
        self.pupilArea = (1 - self.obscurFac) * self.shapeFac * self.pupilDiam**2
1✔
409

410
        # load Vega's spectrum for later calculations
411
        self.vega_spectrum = SourceSpectrum.from_vega()
1✔
412

413
        # populate science instruments (must have one defined)
414
        assert isinstance(scienceInstruments, list) and (
1✔
415
            len(scienceInstruments) > 0
416
        ), "No science instrument defined."
417
        self.populate_scienceInstruments(scienceInstruments)
1✔
418

419
        # populate starlight suppression systems (must have one defined)
420
        assert isinstance(starlightSuppressionSystems, list) and (
1✔
421
            len(starlightSuppressionSystems) > 0
422
        ), "No starlight suppression systems defined."
423
        self.populate_starlightSuppressionSystems(starlightSuppressionSystems)
1✔
424

425
        # if no observing mode defined, create a default mode from the first instrument
426
        # and first starlight suppression system. then populate all observing modes
427
        if observingModes is None:
1✔
428
            inst = self.scienceInstruments[0]
1✔
429
            syst = self.starlightSuppressionSystems[0]
1✔
430
            observingModes = [
1✔
431
                {
432
                    "detectionMode": True,
433
                    "instName": inst["name"],
434
                    "systName": syst["name"],
435
                }
436
            ]
437
        else:
438
            assert isinstance(observingModes, list) and (
1✔
439
                len(observingModes) > 0
440
            ), "No observing modes defined."
441

442
        self.populate_observingModes(observingModes)
1✔
443

444
        # populate fundamental IWA and OWA - the extrema of both values for all modes
445
        IWAs = [
1✔
446
            x.get("IWA").to(u.arcsec).value
447
            for x in self.observingModes
448
            if x.get("IWA") is not None
449
        ]
450
        if len(IWAs) > 0:
1✔
451
            self.IWA = min(IWAs) * u.arcsec
1✔
452
        else:
453
            self.IWA = float(IWA) * u.arcsec
×
454

455
        OWAs = [
1✔
456
            x.get("OWA").to(u.arcsec).value
457
            for x in self.observingModes
458
            if x.get("OWA") is not None
459
        ]
460
        if len(OWAs) > 0:
1✔
461
            self.OWA = max(OWAs) * u.arcsec
1✔
462
        else:
463
            self.OWA = float(OWA) * u.arcsec if OWA != 0 else np.inf * u.arcsec
×
464

465
        assert self.IWA < self.OWA, "Fundamental IWA must be smaller that the OWA."
1✔
466

467
        # provide every observing mode with a unique identifier
468
        self.genObsModeHex()
1✔
469

470
        self.unit_conv = {}
1✔
471
        self.inv_s = 1 / u.s
1✔
472
        self.s2d = (1 * u.s).to_value(u.d)
1✔
473
        self.arcsec2rad = (1 * u.arcsec).to_value(u.rad)
1✔
474

475
    def __str__(self):
1✔
476
        """String representation of the Optical System object
477

478
        When the command 'print' is used on the Optical System object, this
479
        method will print the attribute values contained in the object
480

481
        """
482

483
        for att in self.__dict__:
1✔
484
            print("%s: %r" % (att, getattr(self, att)))
1✔
485

486
        return "Optical System class object attributes"
1✔
487

488
    def populate_scienceInstruments(self, scienceInstruments):
1✔
489
        """Helper method to parse input scienceInstrument dictionaries and assign
490
        default values, as needed. Also creates the allowed_scienceInstrument_kws
491
        attribute.
492

493
        Args:
494
            scienceInstruments (list):
495
                List of scienceInstrument dicts.
496

497
        """
498

499
        self.scienceInstruments = copy.deepcopy(scienceInstruments)
1✔
500
        self._outspec["scienceInstruments"] = []
1✔
501
        instnames = []
1✔
502

503
        for ninst, inst in enumerate(self.scienceInstruments):
1✔
504
            assert isinstance(
1✔
505
                inst, dict
506
            ), "Science instruments must be defined as dicts."
507
            assert "name" in inst and isinstance(
1✔
508
                inst["name"], str
509
            ), "All science instruments must have key 'name'."
510
            instnames.append(inst["name"])
1✔
511

512
            # quantum efficiency can be a single number of a filename
513
            inst["QE"] = inst.get("QE", self.default_vals["QE"])
1✔
514
            self._outspec["scienceInstruments"].append(inst.copy())
1✔
515
            if isinstance(inst["QE"], str):
1✔
516
                # Load data and create interpolant
517
                dat, hdr = self.get_param_data(
×
518
                    inst["QE"],
519
                    # left_col_name="lambda", # TODO: start enforcing these
520
                    # param_name="QE",
521
                    expected_ndim=2,
522
                    expected_first_dim=2,
523
                )
524
                lam, D = (dat[0].astype(float), dat[1].astype(float))
×
525
                assert np.all(D >= 0) and np.all(
×
526
                    D <= 1
527
                ), "All QE values must be positive and smaller than 1."
528
                if isinstance(hdr, fits.Header):
×
529
                    if "UNITS" in hdr:
×
530
                        lam = ((lam * u.Unit(hdr["UNITS"])).to(u.nm)).value
×
531

532
                # parameter values outside of lam
533
                Dinterp1 = scipy.interpolate.interp1d(
×
534
                    lam,
535
                    D,
536
                    kind="cubic",
537
                    fill_value=0.0,
538
                    bounds_error=False,
539
                )
540
                inst["QE"] = (
×
541
                    lambda l: np.array(Dinterp1(l.to("nm").value), ndmin=1) / u.photon
542
                )
543
            elif isinstance(inst["QE"], numbers.Number):
1✔
544
                assert (
1✔
545
                    inst["QE"] >= 0 and inst["QE"] <= 1
546
                ), "QE must be positive and smaller than 1."
547
                inst["QE"] = (
1✔
548
                    lambda l, QE=float(inst["QE"]): np.array([QE] * l.size, ndmin=1)
549
                    / u.photon
550
                )
551
            else:
552
                inst["QE"] = self.default_vals["QE"]
×
553
                warnings.warn(
×
554
                    (
555
                        "QE input is not string or number for instrument "
556
                        f" {inst['name']}. Value set to default."
557
                    )
558
                )
559

560
            # load all required detector specifications
561
            # specify dictionary of keys and units
562
            kws = {
1✔
563
                "optics": None,  # attenuation due to instrument optics
564
                "FoV": u.arcsec,  # angular half-field of view of instrument
565
                "pixelNumber": None,  # array format
566
                "pixelSize": u.m,  # pixel pitch
567
                "pixelScale": u.arcsec,  # pixel scale (angular IFOV)
568
                "idark": 1 / u.s,  # dark-current rate
569
                "sread": None,  # effective readout noise
570
                "texp": u.s,  # default exposure time per frame
571
            }
572

573
            for kw in kws:
1✔
574
                inst[kw] = float(inst.get(kw, self.default_vals[kw]))
1✔
575
                if kws[kw] is not None:
1✔
576
                    inst[kw] *= kws[kw]
1✔
577

578
            # start tracking allowed_scienceInstrument_kws
579
            self.allowed_scienceInstrument_kws = ["name", "QE"] + list(kws.keys())
1✔
580

581
            # do some basic consistency checking on pixelScale and FoV:
582
            predFoV = np.arctan(inst["pixelNumber"] * np.tan(inst["pixelScale"] / 2))
1✔
583
            # generate warning if FoV is larger than prediction (but allow for
584
            # approximate equality)
585
            if (inst["FoV"] > predFoV) and not (np.isclose(inst["FoV"], predFoV)):
1✔
586
                warnings.warn(
×
587
                    f'Input FoV ({inst["FoV"]}) is larger than FoV computed '
588
                    f"from pixelScale ({predFoV.to(u.arcsec) :.2f}) for "
589
                    f'instrument {inst["name"]}. This feels like a mistake.'
590
                )
591

592
            # parameters specific to spectrograph
593
            if "spec" in inst["name"].lower():
1✔
594
                # spectral resolving power
595
                inst["Rs"] = float(inst.get("Rs", self.default_vals["Rs"]))
1✔
596
                # lenslet sampling, number of pixel per lenslet rows or cols
597
                inst["lenslSamp"] = float(
1✔
598
                    inst.get("lenslSamp", self.default_vals["lenslSamp"])
599
                )
600
            else:
601
                inst["Rs"] = 1.0
1✔
602
                inst["lenslSamp"] = 1.0
1✔
603

604
            self.allowed_scienceInstrument_kws += ["Rs", "lenslSamp"]
1✔
605

606
            # calculate focal length and f-number as needed
607
            if "focal" in inst:
1✔
608
                inst["focal"] = float(inst["focal"]) * u.m
1✔
609
                inst["fnumber"] = float(inst["focal"] / self.pupilDiam)
1✔
610
            elif ("fnumber") in inst:
1✔
611
                inst["fnumber"] = float(inst["fnumber"])
×
612
                inst["focal"] = inst["fnumber"] * self.pupilDiam
×
613
            else:
614
                inst["focal"] = (
1✔
615
                    inst["pixelSize"] / 2 / np.tan(inst["pixelScale"] / 2)
616
                ).to(u.m)
617
                inst["fnumber"] = float(inst["focal"] / self.pupilDiam)
1✔
618

619
            self.allowed_scienceInstrument_kws += ["focal", "fnumber"]
1✔
620

621
            # consistency check parameters
622
            predFocal = (inst["pixelSize"] / 2 / np.tan(inst["pixelScale"] / 2)).to(u.m)
1✔
623
            if not (np.isclose(predFocal.value, inst["focal"].to(u.m).value)):
1✔
624
                warnings.warn(
×
625
                    f'Input focal length ({inst["focal"] :.2f}) does not '
626
                    f"match value from pixelScale ({predFocal :.2f}) for "
627
                    f'instrument {inst["name"]}. This feels like a mistkae.'
628
                )
629

630
            # populate updated detector specifications to outspec
631
            for att in inst:
1✔
632
                if att not in ["QE"]:
1✔
633
                    dat = inst[att]
1✔
634
                    self._outspec["scienceInstruments"][ninst][att] = (
1✔
635
                        dat.value if isinstance(dat, u.Quantity) else dat
636
                    )
637

638
        # ensure that all instrument names are unique:
639
        assert (
1✔
640
            len(instnames) == np.unique(instnames).size
641
        ), "Instrument names muse be unique."
642

643
        # call additional instrument setup
644
        self.populate_scienceInstruments_extra()
1✔
645

646
    def populate_scienceInstruments_extra(self):
1✔
647
        """Additional setup for science instruments.  This is intended for overloading
648
        in downstream implementations and is intentionally left blank in the prototype.
649
        """
650

651
        pass
1✔
652

653
    def populate_starlightSuppressionSystems(self, starlightSuppressionSystems):
1✔
654
        """Helper method to parse input starlightSuppressionSystem dictionaries and
655
        assign default values, as needed. Also creates the
656
        allowed_starlightSuppressionSystem_kws attribute.
657

658
        Args:
659
            starlightSuppressionSystems (list):
660
                List of starlightSuppressionSystem dicts.
661

662
        """
663

664
        self.starlightSuppressionSystems = copy.deepcopy(starlightSuppressionSystems)
1✔
665
        self.haveOcculter = False
1✔
666
        self._outspec["starlightSuppressionSystems"] = []
1✔
667
        systnames = []
1✔
668

669
        for nsyst, syst in enumerate(self.starlightSuppressionSystems):
1✔
670
            assert isinstance(
1✔
671
                syst, dict
672
            ), "Starlight suppression systems must be defined as dicts."
673
            assert "name" in syst and isinstance(
1✔
674
                syst["name"], str
675
            ), "All starlight suppression systems must have key 'name'."
676
            systnames.append(syst["name"])
1✔
677

678
            # determine system wavelength (lam), bandwidth (deltaLam) and bandwidth
679
            # fraction (BW)
680
            # use deltaLam if given, otherwise use BW
681
            syst["lam"] = float(syst.get("lam", self.default_vals["lam"])) * u.nm
1✔
682
            syst["deltaLam"] = (
1✔
683
                float(
684
                    syst.get(
685
                        "deltaLam",
686
                        syst["lam"].to("nm").value
687
                        * syst.get("BW", self.default_vals["BW"]),
688
                    )
689
                )
690
                * u.nm
691
            )
692
            syst["BW"] = float(syst["deltaLam"] / syst["lam"])
1✔
693

694
            # populate all required default_vals
695
            names = [
1✔
696
                "occ_trans",
697
                "core_thruput",
698
                "core_platescale",
699
                "input_angle_units",
700
                "core_platescale_units",
701
                "contrast_floor",
702
                "csv_angsep_colname",
703
            ]
704
            # fill contrast from default only if core_mean_intensity not set
705
            if "core_mean_intensity" not in syst:
1✔
706
                names.append("core_contrast")
1✔
707
            for n in names:
1✔
708
                syst[n] = syst.get(n, self.default_vals[n])
1✔
709

710
            # start tracking allowed keywords
711
            self.allowed_starlightSuppressionSystem_kws = [
1✔
712
                "name",
713
                "lam",
714
                "deltaLam",
715
                "BW",
716
                "core_mean_intensity",
717
                "optics",
718
                "occulter",
719
                "ohTime",
720
                "core_platescale",
721
                "IWA",
722
                "OWA",
723
                "core_area",
724
            ]
725
            self.allowed_starlightSuppressionSystem_kws += names
1✔
726
            if "core_contrast" not in self.allowed_starlightSuppressionSystem_kws:
1✔
727
                self.allowed_starlightSuppressionSystem_kws.append("core_contrast")
1✔
728

729
            # attenuation due to optics specific to the coronagraph not caputred by the
730
            # coronagraph throughput curves. Defaults to 1.
731
            syst["optics"] = float(syst.get("optics", 1.0))
1✔
732

733
            # set an occulter, for an external or hybrid system
734
            syst["occulter"] = syst.get("occulter", False)
1✔
735
            if syst["occulter"]:
1✔
736
                self.haveOcculter = True
1✔
737

738
            # copy system definition to outspec
739
            self._outspec["starlightSuppressionSystems"].append(syst.copy())
1✔
740

741
            # now we populate everything that has units
742

743
            # overhead time:
744
            syst["ohTime"] = (
1✔
745
                float(syst.get("ohTime", self.default_vals["ohTime"])) * u.d
746
            )
747

748
            # figure out the angle unit we're assuming for all inputs
749
            syst["input_angle_unit_value"] = self.get_angle_unit_from_header(None, syst)
1✔
750

751
            # if platescale was set, give it units
752
            if syst["core_platescale"] is not None:
1✔
753
                # check for units to use
754
                if (syst["core_platescale_units"] is None) or (
1✔
755
                    syst["core_platescale_units"] in ["unitless", "LAMBDA/D"]
756
                ):
757
                    platescale_unit = (syst["lam"] / self.pupilDiam).to(
1✔
758
                        u.arcsec, equivalencies=u.dimensionless_angles()
759
                    )
760
                else:
761
                    platescale_unit = 1 * u.Unit(syst["core_platescale_units"])
×
762

763
                syst["core_platescale"] = (
1✔
764
                    syst["core_platescale"] * platescale_unit
765
                ).to(u.arcsec)
766

767
            # if IWA/OWA are given, assign them units (otherwise they'll be set from
768
            # table data or defaults (whichever comes first).
769
            if "IWA" in syst:
1✔
770
                syst["IWA"] = (float(syst["IWA"]) * syst["input_angle_unit_value"]).to(
1✔
771
                    u.arcsec
772
                )
773
            if "OWA" in syst:
1✔
774
                # Zero OWA aliased to inf OWA
775
                if (syst["OWA"] == 0) or (syst["OWA"] == np.inf):
1✔
776
                    syst["OWA"] = np.inf * u.arcsec
1✔
777
                else:
778
                    syst["OWA"] = (
1✔
779
                        float(syst["OWA"]) * syst["input_angle_unit_value"]
780
                    ).to(u.arcsec)
781

782
            # get the system's keepout angles
783
            names = [
1✔
784
                "koAngles_Sun",
785
                "koAngles_Earth",
786
                "koAngles_Moon",
787
                "koAngles_Small",
788
            ]
789
            for n in names:
1✔
790
                syst[n] = [float(x) for x in syst.get(n, self.default_vals[n])] * u.deg
1✔
791

792
            self.allowed_starlightSuppressionSystem_kws += names
1✔
793

794
            # now we're going to populate everything that's callable
795

796
            # first let's handle core mean intensity
797
            if "core_mean_intensity" in syst:
1✔
798
                syst = self.get_core_mean_intensity(
1✔
799
                    syst, param_name="core_mean_intensity"
800
                )
801

802
                # ensure that platescale has also been set
803
                assert syst["core_platescale"] is not None, (
1✔
804
                    f"In system {syst['name']}, core_mean_intensity "
805
                    "is set, but core_platescale is not.  This is not allowed."
806
                )
807
            else:
808
                syst["core_mean_intensity"] = None
1✔
809

810
            if "core_contrast" in syst:
1✔
811
                syst = self.get_coro_param(
1✔
812
                    syst,
813
                    "core_contrast",
814
                    fill=1.0,
815
                    expected_ndim=2,
816
                    expected_first_dim=2,
817
                    min_val=0.0,
818
                )
819
            else:
820
                syst["core_contrast"] = None
1✔
821

822
            # now get the throughputs
823
            syst = self.get_coro_param(
1✔
824
                syst,
825
                "occ_trans",
826
                expected_ndim=2,
827
                expected_first_dim=2,
828
                min_val=0.0,
829
                max_val=(np.inf if syst["occulter"] else 1.0),
830
            )
831
            syst = self.get_coro_param(
1✔
832
                syst,
833
                "core_thruput",
834
                expected_ndim=2,
835
                expected_first_dim=2,
836
                min_val=0.0,
837
                max_val=(np.inf if syst["occulter"] else 1.0),
838
            )
839

840
            # finally, for core_area, if none is supplied, then set to area of
841
            # \sqrt{2}/2 lambda/D radius aperture
842
            if (
1✔
843
                ("core_area" not in syst)
844
                or (syst["core_area"] is None)
845
                or (syst["core_area"] == 0)
846
            ):
847
                # need to put this in the proper unit
848
                angunit = self.get_angle_unit_from_header(None, syst)
1✔
849

850
                syst["core_area"] = (
1✔
851
                    (
852
                        (np.pi / 2)
853
                        * (syst["lam"] / self.pupilDiam).to(
854
                            u.arcsec, equivalencies=u.dimensionless_angles()
855
                        )
856
                        ** 2
857
                        / angunit**2
858
                    )
859
                    .decompose()
860
                    .value
861
                )
862
            syst = self.get_coro_param(
1✔
863
                syst,
864
                "core_area",
865
                expected_ndim=2,
866
                expected_first_dim=2,
867
                min_val=0.0,
868
            )
869

870
            # at this point, we must have set an IWA/OWA, but lets make sure
871
            for key in ["IWA", "OWA"]:
1✔
872
                assert (
1✔
873
                    (key in syst)
874
                    and isinstance(syst[key], u.Quantity)
875
                    and (syst[key].unit == u.arcsec)
876
                ), f"{key} not found or has the wrong unit in system {syst['name']}."
877

878
            # populate system specifications to outspec
879
            for att in syst:
1✔
880
                if att not in [
1✔
881
                    "occ_trans",
882
                    "core_thruput",
883
                    "core_contrast",
884
                    "core_mean_intensity",
885
                    "core_area",
886
                    "input_angle_unit_value",
887
                    "IWA",
888
                    "OWA",
889
                ]:
890
                    dat = syst[att]
1✔
891
                    self._outspec["starlightSuppressionSystems"][nsyst][att] = (
1✔
892
                        dat.value if isinstance(dat, u.Quantity) else dat
893
                    )
894

895
        # ensure that all starlight suppression system names are unique:
896
        assert (
1✔
897
            len(systnames) == np.unique(systnames).size
898
        ), "Starlight suppression system names muse be unique."
899

900
        # call additional setup
901
        self.populate_starlightSuppressionSystems_extra()
1✔
902

903
    def populate_starlightSuppressionSystems_extra(self):
1✔
904
        """Additional setup for starlight suppression systems.  This is intended for
905
        overloading in downstream implementations and is intentionally left blank in
906
        the prototype.
907
        """
908

909
        pass
1✔
910

911
    def populate_observingModes(self, observingModes):
1✔
912
        """Helper method to parse input observingMode dictionaries and assign default
913
        values, as needed. Also creates the allowed_observingMode_kws attribute.
914

915
        Args:
916
            observingModes (list):
917
                List of observingMode dicts.
918

919
        """
920

921
        self.observingModes = observingModes
1✔
922
        self._outspec["observingModes"] = []
1✔
923
        for nmode, mode in enumerate(self.observingModes):
1✔
924
            assert isinstance(mode, dict), "Observing modes must be defined as dicts."
1✔
925
            assert (
1✔
926
                "instName" in mode and "systName" in mode
927
            ), "All observing modes must have keys 'instName' and 'systName'."
928
            assert np.any(
1✔
929
                [mode["instName"] == inst["name"] for inst in self.scienceInstruments]
930
            ), f"The mode's instrument name {mode['instName']} does not exist."
931
            assert np.any(
1✔
932
                [
933
                    mode["systName"] == syst["name"]
934
                    for syst in self.starlightSuppressionSystems
935
                ]
936
            ), f"The mode's system name {mode['systName']} does not exist."
937
            self._outspec["observingModes"].append(mode.copy())
1✔
938

939
            # loading mode specifications
940
            mode["SNR"] = float(mode.get("SNR", self.default_vals["SNR"]))
1✔
941
            mode["timeMultiplier"] = float(
1✔
942
                mode.get("timeMultiplier", self.default_vals["timeMultiplier"])
943
            )
944
            mode["detectionMode"] = mode.get("detectionMode", False)
1✔
945
            mode["inst"] = [
1✔
946
                inst
947
                for inst in self.scienceInstruments
948
                if inst["name"] == mode["instName"]
949
            ][0]
950
            mode["syst"] = [
1✔
951
                syst
952
                for syst in self.starlightSuppressionSystems
953
                if syst["name"] == mode["systName"]
954
            ][0]
955

956
            # start tracking allowed keywords
957
            self.allowed_observingMode_kws = [
1✔
958
                "instName",
959
                "systName",
960
                "SNR",
961
                "timeMultiplier",
962
                "detectionMode",
963
                "lam",
964
                "deltaLam",
965
                "BW",
966
                "bandpass_model",
967
                "bandpass_step",
968
            ]
969

970
            # get mode wavelength and bandwidth (get system's values by default)
971
            # when provided, always use deltaLam instead of BW (bandwidth fraction)
972
            syst_lam = mode["syst"]["lam"].to("nm").value
1✔
973
            syst_BW = mode["syst"]["BW"]
1✔
974
            mode["lam"] = float(mode.get("lam", syst_lam)) * u.nm
1✔
975
            mode["deltaLam"] = (
1✔
976
                float(mode.get("deltaLam", mode["lam"].value * mode.get("BW", syst_BW)))
977
                * u.nm
978
            )
979
            mode["BW"] = float(mode["deltaLam"] / mode["lam"])
1✔
980

981
            # get mode IWA and OWA: rescale if the mode wavelength is different from
982
            # the wavelength at which the system is defined
983
            mode["IWA"] = mode["syst"]["IWA"]
1✔
984
            mode["OWA"] = mode["syst"]["OWA"]
1✔
985
            if mode["lam"] != mode["syst"]["lam"]:
1✔
986
                mode["IWA"] = mode["IWA"] * mode["lam"] / mode["syst"]["lam"]
1✔
987
                mode["OWA"] = mode["OWA"] * mode["lam"] / mode["syst"]["lam"]
1✔
988

989
            # OWA must be bounded by FOV:
990
            if mode["OWA"] > mode["inst"]["FoV"]:
1✔
991
                mode["OWA"] = mode["inst"]["FoV"]
1✔
992

993
            # generate the mode's bandpass
994
            # TODO: Add support for custom filter profiles
995
            mode["bandpass_model"] = mode.get(
1✔
996
                "bandpass_model", self.default_vals["bandpass_model"]
997
            ).lower()
998
            assert mode["bandpass_model"] in [
1✔
999
                "gaussian",
1000
                "box",
1001
            ], "bandpass_model must be one of ['gaussian', 'box']"
1002
            mode["bandpass_step"] = (
1✔
1003
                float(mode.get("bandpass_step", self.default_vals["bandpass_step"]))
1004
                * u.nm
1005
            )
1006
            if mode["bandpass_model"] == "box":
1✔
1007
                mode["bandpass"] = SpectralElement(
1✔
1008
                    Box1D,
1009
                    x_0=mode["lam"],
1010
                    width=mode["deltaLam"],
1011
                    step=mode["bandpass_step"].to(u.AA).value,
1012
                )
1013
            else:
1014
                mode["bandpass"] = SpectralElement(
×
1015
                    Gaussian1D,
1016
                    mean=mode["lam"],
1017
                    stddev=mode["deltaLam"] / np.sqrt(2 * np.pi),
1018
                )
1019

1020
            # check for out of range wavelengths
1021
            # currently capped to 10 um
1022
            assert (
1✔
1023
                mode["bandpass"].waveset.max() < 10 * u.um
1024
            ), "Bandpasses beyond 10 um are not supported."
1025

1026
            # evaluate zero-magnitude flux for this band from vega spectrum
1027
            # NB: This is flux, not flux density! The bandpass is already factored in.
1028
            mode["F0"] = Observation(
1✔
1029
                self.vega_spectrum, mode["bandpass"], force="taper"
1030
            ).integrate()
1031

1032
            # Evaluate the V-band zero magnitude flux density
1033

1034
            # populate system specifications to outspec
1035
            for att in mode:
1✔
1036
                if att not in [
1✔
1037
                    "inst",
1038
                    "syst",
1039
                    "F0",
1040
                    "bandpass",
1041
                ]:
1042
                    dat = mode[att]
1✔
1043
                    self._outspec["observingModes"][nmode][att] = (
1✔
1044
                        dat.value if isinstance(dat, u.Quantity) else dat
1045
                    )
1046

1047
            # populate some final mode attributes (computed from the others)
1048
            # define total mode attenution
1049
            mode["attenuation"] = mode["inst"]["optics"] * mode["syst"]["optics"]
1✔
1050

1051
            # effective mode bandwidth (including any IFS spectral resolving power)
1052
            mode["deltaLam_eff"] = (
1✔
1053
                mode["lam"] / mode["inst"]["Rs"]
1054
                if "spec" in mode["inst"]["name"].lower()
1055
                else mode["deltaLam"]
1056
            )
1057

1058
            # total attenuation due to non-coronagraphic optics:
1059
            mode["losses"] = (
1✔
1060
                self.pupilArea
1061
                * mode["inst"]["QE"](mode["lam"])
1062
                * mode["attenuation"]
1063
                * mode["deltaLam_eff"]
1064
                / mode["deltaLam"]
1065
            )
1066

1067
        # check for only one detection mode
1068
        allModes = self.observingModes
1✔
1069
        detModes = list(filter(lambda mode: mode["detectionMode"], allModes))
1✔
1070
        assert len(detModes) <= 1, "More than one detection mode specified."
1✔
1071

1072
        # if not specified, default detection mode is first imager mode
1073
        if len(detModes) == 0:
1✔
1074
            imagerModes = list(
1✔
1075
                filter(lambda mode: "imag" in mode["inst"]["name"], allModes)
1076
            )
1077
            if imagerModes:
1✔
1078
                imagerModes[0]["detectionMode"] = True
1✔
1079
            # if no imager mode, default detection mode is first observing mode
1080
            else:
1081
                allModes[0]["detectionMode"] = True
×
1082

1083
        self.populate_observingModes_extra()
1✔
1084

1085
    def populate_observingModes_extra(self):
1✔
1086
        """Additional setup for observing modes  This is intended for overloading in
1087
        downstream implementations and is intentionally left blank in the prototype.
1088
        """
1089

1090
        pass
1✔
1091

1092
    def genObsModeHex(self):
1✔
1093
        """Generate a unique hash for every observing mode to be used in downstream
1094
        identification and caching. Also adds an integer index to the mode corresponding
1095
        to its order in the observingModes list.
1096

1097
        The hash will be based on the _outspec entries for the obsmode, its science
1098
        instrument and its starlight suppression system.
1099
        """
1100

1101
        for nmode, mode in enumerate(self.observingModes):
1✔
1102
            inst = [
1✔
1103
                inst
1104
                for inst in self._outspec["scienceInstruments"]
1105
                if inst["name"] == mode["instName"]
1106
            ][0]
1107
            syst = [
1✔
1108
                syst
1109
                for syst in self._outspec["starlightSuppressionSystems"]
1110
                if syst["name"] == mode["systName"]
1111
            ][0]
1112

1113
            modestr = "{},{},{}".format(
1✔
1114
                dictToSortedStr(self._outspec["observingModes"][nmode]),
1115
                dictToSortedStr(inst),
1116
                dictToSortedStr(syst),
1117
            )
1118

1119
            mode["hex"] = genHexStr(modestr)
1✔
1120
            mode["index"] = nmode
1✔
1121

1122
    def get_core_mean_intensity(self, syst, param_name="core_mean_intensity"):
1✔
1123
        """Load and process core_mean_intensity data
1124

1125
        Args:
1126
            syst (dict):
1127
                Dictionary containing the parameters of one starlight suppression system
1128
            param_name (str):
1129
                Keyword name. Defaults to core_mean_intensity
1130

1131
        Returns:
1132
            dict:
1133
                Updated dictionary of starlight suppression system parameters
1134

1135
        """
1136

1137
        fill = 1.0
1✔
1138
        assert param_name in syst, f"{param_name} not found in system {syst['name']}."
1✔
1139

1140
        if isinstance(syst[param_name], str):
1✔
1141
            if ("csv_names" in syst) and (param_name in syst["csv_names"]):
×
1142
                fparam_name = syst["csv_names"][param_name]
×
1143
            else:
1144
                fparam_name = param_name
×
1145
            dat, hdr = self.get_param_data(
×
1146
                syst[param_name],
1147
                left_col_name=syst["csv_angsep_colname"],
1148
                param_name=fparam_name,
1149
                expected_ndim=2,
1150
            )
1151
            dat = dat.transpose()  # flip such that data is in rows
×
1152
            WA, D = dat[0].astype(float), dat[1:].astype(float)
×
1153

1154
            # check values as needed
1155
            assert np.all(
×
1156
                D > 0
1157
            ), f"{param_name} in {syst['name']} must be >0 everywhere."
1158

1159
            # get angle unit scale WA
1160
            angunit = self.get_angle_unit_from_header(hdr, syst)
×
1161
            WA = (WA * angunit).to(u.arcsec).value
×
1162

1163
            # get platescale from header (if this is a FITS header)
1164
            if isinstance(hdr, fits.Header) and ("PIXSCALE" in hdr):
×
1165
                # use the header unit preferentially. otherwise drop back to the
1166
                # core_platescale_units keyword
1167
                if "UNITS" in hdr:
×
1168
                    platescale = (float(hdr["PIXSCALE"]) * angunit).to(u.arcsec)
×
1169
                else:
1170
                    if (syst["core_platescale_units"] is None) or (
×
1171
                        syst["core_platescale_units"] in ["unitless", "LAMBDA/D"]
1172
                    ):
1173
                        platescale_unit = (syst["lam"] / self.pupilDiam).to(
×
1174
                            u.arcsec, equivalencies=u.dimensionless_angles()
1175
                        )
1176
                    else:
1177
                        platescale_unit = 1 * u.Unit(syst["core_platescale_units"])
×
1178
                    platescale = (float(hdr["PIXSCALE"]) * platescale_unit).to(u.arcsec)
×
1179

1180
                if (syst.get("core_platescale") is not None) and (
×
1181
                    syst["core_platescale"] != platescale
1182
                ):
1183
                    warnings.warn(
×
1184
                        "platescale for core_mean_intensity in system "
1185
                        f"{syst['name']} does not match input value.  "
1186
                        "Overwriting with value from FITS file but you "
1187
                        "should check your inputs."
1188
                    )
1189
                syst["core_platescale"] = platescale
×
1190

1191
            # handle case where only one data row is present
1192
            if D.shape[0] == 1:
×
1193
                D = np.squeeze(D)
×
1194

1195
                # table interpolate function
1196
                Dinterp = scipy.interpolate.interp1d(
×
1197
                    WA,
1198
                    D,
1199
                    kind="linear",
1200
                    fill_value=fill,
1201
                    bounds_error=False,
1202
                )
1203
                # create a callable lambda function. for coronagraphs, we need to scale
1204
                # the angular separation by wavelength, but for occulters we just need
1205
                # to ensure that we're within the wavelength range
1206
                if syst["occulter"]:
×
1207
                    minl = syst["lam"] - syst["deltaLam"] / 2
×
1208
                    maxl = syst["lam"] + syst["deltaLam"] / 2
×
1209
                    syst[param_name] = (
×
1210
                        lambda lam, s, d=0 * u.arcsec, Dinterp=Dinterp, minl=minl, maxl=maxl, fill=fill: (  # noqa: E501
1211
                            np.array(Dinterp(s.to("arcsec").value), ndmin=1) - fill
1212
                        )
1213
                        * np.array((minl < lam) & (lam < maxl), ndmin=1).astype(int)
1214
                        + fill
1215
                    )
1216
                else:
1217
                    syst[param_name] = (
×
1218
                        lambda lam, s, d=0 * u.arcsec, Dinterp=Dinterp, lam0=syst[
1219
                            "lam"
1220
                        ]: np.array(
1221
                            Dinterp((s * lam0 / lam).to("arcsec").value), ndmin=1
1222
                        )
1223
                    )
1224

1225
            # and now the general case of multiple rows
1226
            else:
1227
                # grab stellar diameters from header info
1228
                diams = np.zeros(len(D))
×
1229
                # FITS files
1230
                if isinstance(hdr, fits.Header):
×
1231
                    for j in range(len(D)):
×
1232
                        k = f"DIAM{j :03d}"
×
1233
                        assert k in hdr, (
×
1234
                            f"Expected keyword {k} not found in header "
1235
                            f"of file {syst[param_name]} for system "
1236
                            f"{syst['name']}"
1237
                        )
1238
                        diams[j] = float(hdr[k])
×
1239
                # TODO: support for CSV files
1240
                else:
1241
                    raise NotImplementedError(
×
1242
                        "No CSV support for 2D core_mean_intensity"
1243
                    )
1244

1245
                # determine units and convert as needed
1246
                diams = (diams * angunit).to(u.arcsec).value
×
1247

1248
                # Store the maximum supported diameter for angular diameter filtering
NEW
1249
                syst["core_mean_intensity_max_diam"] = np.max(diams) * u.arcsec
×
1250

UNCOV
1251
                Dinterp = scipy.interpolate.RegularGridInterpolator(
×
1252
                    (WA, diams), D.transpose(), bounds_error=False, fill_value=1.0
1253
                )
1254

1255
                # create a callable lambda function. for coronagraphs, we need to scale
1256
                # the angular separation and stellar diameter by wavelength, but for
1257
                # occulters we just need to ensure that we're within the wavelength
1258
                # range
1259
                if syst["occulter"]:
×
1260
                    minl = syst["lam"] - syst["deltaLam"] / 2
×
1261
                    maxl = syst["lam"] + syst["deltaLam"] / 2
×
1262
                    syst[param_name] = (
×
1263
                        lambda lam, s, d=0 * u.arcsec, Dinterp=Dinterp, minl=minl, maxl=maxl, fill=fill: (  # noqa: E501
1264
                            np.array(
1265
                                Dinterp((s.to("arcsec").value, d.to("arcsec").value)),
1266
                                ndmin=1,
1267
                            )
1268
                            - fill
1269
                        )
1270
                        * np.array((minl < lam) & (lam < maxl), ndmin=1).astype(int)
1271
                        + fill
1272
                    )
1273
                else:
1274
                    lam0 = syst["lam"]
×
1275
                    lam0_unit = lam0.unit
×
1276
                    lam0_val = lam0.value
×
1277

1278
                    def core_mean_intens_fits_multi(lam, s, d):
×
1279
                        lam_val = lam.to_value(lam0_unit)
×
1280
                        lam_ratio = lam0_val / lam_val
×
1281
                        # Scale the working angle by the wavelength ratio
1282
                        s_scaled_as = s.to_value(u.arcsec) * lam_ratio
×
1283
                        # Scale the stellar diameter by the wavelength ratio
1284
                        d_scaled_as = d.to_value(u.arcsec) * lam_ratio
×
1285
                        return np.array(Dinterp((s_scaled_as, d_scaled_as)), ndmin=1)
×
1286

1287
                    syst[param_name] = core_mean_intens_fits_multi
×
1288

1289
            # update IWA/OWA in system as needed
1290
            syst = self.update_syst_WAs(syst, WA, param_name)
×
1291

1292
        elif isinstance(syst[param_name], numbers.Number):
1✔
1293
            # ensure paramter is within bounds
1294
            D = float(syst[param_name])
1✔
1295
            assert D > 0, f"{param_name} in {syst['name']} must be > 0."
1✔
1296

1297
            # ensure you have values for IWA/OWA, otherwise use defaults
1298
            syst = self.update_syst_WAs(syst, None, None)
1✔
1299
            IWA = syst["IWA"].to(u.arcsec).value
1✔
1300
            OWA = syst["OWA"].to(u.arcsec).value
1✔
1301

1302
            # same as for interpolant: coronagraphs scale with wavelength, occulters
1303
            # don't
1304
            if syst["occulter"]:
1✔
1305
                minl = syst["lam"] - syst["deltaLam"] / 2
×
1306
                maxl = syst["lam"] + syst["deltaLam"] / 2
×
1307

1308
                syst[param_name] = (
×
1309
                    lambda lam, s, d=0 * u.arcsec, D=D, IWA=IWA, OWA=OWA, minl=minl, maxl=maxl, fill=fill: (  # noqa: E501
1310
                        np.array(
1311
                            (IWA <= s.to("arcsec").value)
1312
                            & (s.to("arcsec").value <= OWA)
1313
                            & (minl < lam)
1314
                            & (lam < maxl),
1315
                            ndmin=1,
1316
                        ).astype(float)
1317
                        * (D - fill)
1318
                        + fill
1319
                    )
1320
                )
1321

1322
            else:
1323
                syst[param_name] = (
1✔
1324
                    lambda lam, s, d=0 * u.arcsec, D=D, lam0=syst[
1325
                        "lam"
1326
                    ], IWA=IWA, OWA=OWA, fill=fill: (
1327
                        np.array(
1328
                            (IWA <= (s * lam0 / lam).to("arcsec").value)
1329
                            & ((s * lam0 / lam).to("arcsec").value <= OWA),
1330
                            ndmin=1,
1331
                        ).astype(float)
1332
                    )
1333
                    * (D - fill)
1334
                    + fill
1335
                )
1336
        elif syst[param_name] is None:
×
1337
            syst[param_name] = None
×
1338
        else:
1339
            raise TypeError(
×
1340
                f"{param_name} for system {syst['name']} is neither a "
1341
                f"string nor a number. I don't know what to do with that."
1342
            )
1343

1344
        return syst
1✔
1345

1346
    def get_angle_unit_from_header(self, hdr, syst):
1✔
1347
        """Helper method. Extract angle unit from header, if it exists.
1348

1349
        Args:
1350
            hdr (astropy.io.fits.header.Header or list):
1351
                FITS header for data or header row from CSV
1352
            syst (dict):
1353
                Dictionary containing the parameters of one starlight suppression system
1354

1355
        Returns:
1356
            astropy.units.Unit:
1357
                The angle unit.
1358
        """
1359
        # if this is a FITS header, grab value from UNITS key if it exists
1360
        if isinstance(hdr, fits.Header) and ("UNITS" in hdr):
1✔
1361
            if hdr["UNITS"] in ["unitless", "LAMBDA/D"]:
×
1362
                angunit = (syst["lam"] / self.pupilDiam).to(
×
1363
                    u.arcsec, equivalencies=u.dimensionless_angles()
1364
                )
1365
            else:
1366
                angunit = 1 * u.Unit(hdr["UNITS"])
×
1367
        # otherwise, use the input_angle_units key
1368
        else:
1369
            # check if we've already computed this
1370
            if "input_angle_unit_value" in syst:
1✔
1371
                angunit = syst["input_angle_unit_value"]
1✔
1372
            else:
1373
                # if we're here, we have to do it from scratch
1374
                if (syst["input_angle_units"] is None) or (
1✔
1375
                    syst["input_angle_units"] in ["unitless", "LAMBDA/D"]
1376
                ):
1377
                    angunit = (syst["lam"] / self.pupilDiam).to(
×
1378
                        u.arcsec, equivalencies=u.dimensionless_angles()
1379
                    )
1380
                else:
1381
                    angunit = 1 * u.Unit(syst["input_angle_units"])
1✔
1382

1383
        # final consistency check before returning
1384
        assert (
1✔
1385
            angunit.unit.physical_type == "angle"
1386
        ), f"Angle unit for system {syst['name']} is not an angle."
1387

1388
        return angunit
1✔
1389

1390
    def update_syst_WAs(self, syst, WA0, param_name):
1✔
1391
        """Helper method. Check system IWA/OWA and update from table
1392
        data, as needed. Alternatively, set from defaults.
1393

1394
        Args:
1395
            syst (dict):
1396
                Dictionary containing the parameters of one starlight suppression system
1397
            WA0 (~numpy.ndarray, optional):
1398
                Array of angles from table data. Must be in arcseconds. If None, then
1399
                just set from defaults.
1400
            param_name (str, optional):
1401
                Name of parameter the table data belongs to. Must be set if WA is set.
1402

1403
        Returns:
1404
            dict:
1405
                Updated dictionary of starlight suppression system parameters
1406

1407
        """
1408

1409
        # if WA not given, then we're going to be setting defaults, as needed.
1410
        if WA0 is None:
1✔
1411
            if "IWA" not in syst:
1✔
1412
                syst["IWA"] = (
1✔
1413
                    float(self.default_vals["IWA"]) * syst["input_angle_unit_value"]
1414
                ).to(u.arcsec)
1415

1416
            if "OWA" not in syst:
1✔
1417
                syst["OWA"] = (
1✔
1418
                    float(self.default_vals["OWA"]) * syst["input_angle_unit_value"]
1419
                ).to(u.arcsec)
1420

1421
            return syst
1✔
1422

1423
        # otherwise, update IWA from table value
1424
        WA = WA0 * u.arcsec
1✔
1425
        if ("IWA" in syst) and (np.min(WA) > syst["IWA"]):
1✔
1426
            warnings.warn(
×
1427
                f"{param_name} has larger IWA than current system value "
1428
                f"for {syst['name']}. Updating to match table, but you "
1429
                "should check your inputs."
1430
            )
1431
            syst["IWA"] = np.min(WA)
×
1432
        elif "IWA" not in syst:
1✔
1433
            syst["IWA"] = np.min(WA)
×
1434

1435
        # update OWA (if not an occulter)
1436
        if not (syst["occulter"]) and ("OWA" in syst) and (np.max(WA) < syst["OWA"]):
1✔
1437
            warnings.warn(
1✔
1438
                f"{param_name} has smaller OWA than current system "
1439
                f"value for {syst['name']}. Updating to match table, but "
1440
                "you should check your inputs."
1441
            )
1442
            syst["OWA"] = np.max(WA)
1✔
1443
        elif "OWA" not in syst:
1✔
1444
            syst["OWA"] = np.max(WA)
×
1445

1446
        return syst
1✔
1447

1448
    def get_coro_param(
1✔
1449
        self,
1450
        syst,
1451
        param_name,
1452
        fill=0.0,
1453
        expected_ndim=None,
1454
        expected_first_dim=None,
1455
        min_val=None,
1456
        max_val=None,
1457
        interp_kind="linear",
1458
        update_WAs=True,
1459
    ):
1460
        """For a given starlightSuppressionSystem, this method loads an input
1461
        parameter from a table (fits or csv file) or a scalar value. It then creates a
1462
        callable lambda function, which depends on the wavelength of the system
1463
        and the angular separation of the observed planet.
1464

1465
        Args:
1466
            syst (dict):
1467
                Dictionary containing the parameters of one starlight suppression system
1468
            param_name (str):
1469
                Name of the parameter that must be loaded
1470
            fill (float):
1471
                Fill value for working angles outside of the input array definition
1472
            expected_ndim (int, optional):
1473
                Expected number of dimensions.  Only checked if not None. Defaults None.
1474
            expected_first_dim (int, optional):
1475
                Expected size of first dimension of data.  Only checked if not None.
1476
                Defaults None
1477
            min_val (float, optional):
1478
                Minimum allowed value of parameter. Defaults to None (no check).
1479
            max_val (float, optional):
1480
                Maximum allowed value of paramter. Defaults to None (no check).
1481
            interp_kind (str):
1482
                Type of interpolant to use.  See documentation for
1483
                :py:meth:`~scipy.interpolate.interp1d`. Defaults to linear.
1484
            update_WAs (bool):
1485
                If True, update IWA/OWA based on extent of table data.  Defaults False
1486
                If using nearest-neighbor interpolation for a parameter, this value
1487
                should probably be set to False.
1488

1489

1490
        Returns:
1491
            dict:
1492
                Updated dictionary of starlight suppression system parameters
1493

1494
        .. note::
1495

1496
            The created lambda function handles the specified wavelength by
1497
            rescaling the specified working angle by a factor syst['lam']/mode['lam']
1498

1499
        .. note::
1500

1501
            If the input parameter is taken from a table, the IWA and OWA of that
1502
            system are constrained by the limits of the allowed WA on that table.
1503

1504
        """
1505

1506
        assert param_name in syst, f"{param_name} not found in system {syst['name']}."
1✔
1507
        if isinstance(syst[param_name], str):
1✔
1508
            if ("csv_names" in syst) and (param_name in syst["csv_names"]):
1✔
1509
                fparam_name = syst["csv_names"][param_name]
×
1510
            else:
1511
                fparam_name = param_name
1✔
1512
            dat, hdr = self.get_param_data(
1✔
1513
                syst[param_name],
1514
                left_col_name=syst["csv_angsep_colname"],
1515
                param_name=fparam_name,
1516
                expected_ndim=expected_ndim,
1517
                expected_first_dim=expected_first_dim,
1518
            )
1519
            WA, D = dat[0].astype(float), dat[1].astype(float)
1✔
1520

1521
            # check values as needed
1522
            if min_val is not None:
1✔
1523
                assert np.all(D >= min_val), (
1✔
1524
                    f"{param_name} in {syst['name']} may not "
1525
                    f"have values less than {min_val}."
1526
                )
1527
            if max_val is not None:
1✔
1528
                assert np.all(D <= max_val), (
1✔
1529
                    f"{param_name} in {syst['name']} may "
1530
                    f"not have values greater than {max_val}."
1531
                )
1532

1533
            # check for units
1534
            angunit = self.get_angle_unit_from_header(hdr, syst)
1✔
1535
            WA = (WA * angunit).to_value(u.arcsec)
1✔
1536

1537
            # for core_area only, also need to scale the data
1538
            if param_name == "core_area":
1✔
1539
                D = (D * angunit**2).to_value(u.arcsec**2)
×
1540
                outunit = u.arcsec**2
×
1541

1542
            # update IWA/OWA as needed
1543
            if update_WAs:
1✔
1544
                syst = self.update_syst_WAs(syst, WA, param_name)
1✔
1545

1546
            # table interpolate function
1547
            Dinterp = scipy.interpolate.interp1d(
1✔
1548
                WA,
1549
                D,
1550
                kind=interp_kind,
1551
                fill_value=fill,
1552
                bounds_error=False,
1553
            )
1554
            # create a callable lambda function. for coronagraphs, we need to scale the
1555
            # angular separation by wavelength, but for occulters we just need to
1556
            # ensure that we're within the wavelength range. for core_area, we also
1557
            # need to scale the output by wavelengh^2.
1558
            if syst["occulter"]:
1✔
1559
                minl = syst["lam"] - syst["deltaLam"] / 2
×
1560
                maxl = syst["lam"] + syst["deltaLam"] / 2
×
1561
                if param_name == "core_area":
×
1562
                    outunit = 1 * u.arcsec**2
×
1563
                else:
1564
                    outunit = 1
×
1565
                syst[param_name] = (
×
1566
                    lambda lam, s, Dinterp=Dinterp, minl=minl, maxl=maxl, fill=fill: (
1567
                        (np.array(Dinterp(s.to("arcsec").value), ndmin=1) - fill)
1568
                        * np.array((minl < lam) & (lam < maxl), ndmin=1).astype(int)
1569
                        + fill
1570
                    )
1571
                    * outunit
1572
                )
1573
            else:
1574
                lam0 = syst["lam"]
1✔
1575
                if param_name == "core_area":
1✔
1576
                    lam0_val = lam0.value
×
1577
                    lam0_unit = lam0.unit
×
1578

1579
                    def coro_core_area_float(lam, s):
×
1580
                        # Convert lam to the same unit as lam0, if the units already
1581
                        # match then this is a no-op
1582
                        lam_val = lam.to_value(lam0_unit)
×
1583
                        lam_ratio = lam0_val / lam_val
×
1584
                        # Scale the provided separations to the lam0 wavelength
1585
                        s_scaled_as = s.to_value(u.arcsec) * lam_ratio
×
1586
                        # Interpolate with np.interp and attach units in place
1587
                        return (
×
1588
                            np.interp(s_scaled_as, WA, D, left=fill, right=fill)
1589
                            << outunit
1590
                        )
1591

1592
                    syst[param_name] = coro_core_area_float
×
1593
                else:
1594
                    # if all we need is a linear interpolant, allow the numpy
1595
                    # interpolant to be built. For any other kind, use the original
1596
                    # scipy interpolant
1597
                    if interp_kind == "linear":
1✔
1598
                        syst[param_name] = self.create_coro_fits_param_func(
1✔
1599
                            WA, D, lam0, fill
1600
                        )
1601
                    else:
1602
                        syst[param_name] = lambda lam, s, Dinterp=Dinterp, lam0=syst[
×
1603
                            "lam"
1604
                        ]: np.array(
1605
                            Dinterp((s * lam0 / lam).to_value("arcsec")), ndmin=1
1606
                        )
1607

1608
        # now the case where we just got a scalar input
1609
        elif isinstance(syst[param_name], numbers.Number):
1✔
1610
            # ensure paramter is within bounds
1611
            D = float(syst[param_name])
1✔
1612
            if min_val is not None:
1✔
1613
                assert D >= min_val, (
1✔
1614
                    f"{param_name} in {syst['name']} may not "
1615
                    f"have values less than {min_val}."
1616
                )
1617
            if max_val is not None:
1✔
1618
                assert D <= max_val, (
1✔
1619
                    f"{param_name} in {syst['name']} may "
1620
                    f"not have values greater than {min_val}."
1621
                )
1622

1623
            # for core_area only, need to make sure that the units are right
1624
            if param_name == "core_area":
1✔
1625
                angunit = self.get_angle_unit_from_header(None, syst)
1✔
1626
                D = (D * angunit**2).to(u.arcsec**2).value
1✔
1627

1628
            # ensure you have values for IWA/OWA, otherwise use defaults
1629
            syst = self.update_syst_WAs(syst, None, None)
1✔
1630
            IWA = syst["IWA"].to_value(u.arcsec)
1✔
1631
            OWA = syst["OWA"].to_value(u.arcsec)
1✔
1632

1633
            # same as for interpolant: coronagraphs scale with wavelength, occulters
1634
            # don't
1635
            if syst["occulter"]:
1✔
1636
                minl = syst["lam"] - syst["deltaLam"] / 2
1✔
1637
                maxl = syst["lam"] + syst["deltaLam"] / 2
1✔
1638
                if param_name == "core_area":
1✔
1639
                    outunit = 1 * u.arcsec**2
1✔
1640
                else:
1641
                    outunit = 1
1✔
1642

1643
                syst[param_name] = (
1✔
1644
                    lambda lam, s, D=D, IWA=IWA, OWA=OWA, minl=minl, maxl=maxl, fill=fill: (  # noqa: E501
1645
                        (
1646
                            np.array(
1647
                                (IWA <= s.to_value("arcsec"))
1648
                                & (s.to_value("arcsec") <= OWA)
1649
                                & (minl < lam)
1650
                                & (lam < maxl),
1651
                                ndmin=1,
1652
                            ).astype(float)
1653
                            * (D - fill)
1654
                            + fill
1655
                        )
1656
                        * outunit
1657
                    )
1658
                )
1659
            # coronagraph:
1660
            else:
1661
                lam0 = syst["lam"]
1✔
1662
                lam0_val = lam0.value
1✔
1663
                lam0_unit = lam0.unit
1✔
1664
                D_minus_fill = D - fill
1✔
1665

1666
                if param_name == "core_area":
1✔
1667
                    outunit = u.arcsec**2
1✔
1668

1669
                    def coro_core_area_float(lam, s):
1✔
1670
                        # Convert lam to the same unit as lam0, if the units already match
1671
                        # then this is a no-op
1672
                        lam_val = lam.to_value(lam0_unit)
1✔
1673
                        lam_ratio = lam0_val / lam_val
1✔
1674
                        # Scale the provided separations to the lam0 wavelength
1675
                        s_scaled_as = s.to_value(u.arcsec) * lam_ratio
1✔
1676
                        # Create a mask that is True when s is inside the dark zone
1677
                        dz_mask = np.array(
1✔
1678
                            (IWA <= s_scaled_as) & (s_scaled_as <= OWA),
1679
                            ndmin=1,
1680
                            dtype=float,
1681
                        )
1682
                        # Multiply the mask by the core area and scale by the wavelength
1683
                        # ratio squared
1684
                        core_area = dz_mask * D_minus_fill * (1 / lam_ratio) ** 2 + fill
1✔
1685
                        # Attach units in place and return
1686
                        return core_area << outunit
1✔
1687

1688
                    syst[param_name] = coro_core_area_float
1✔
1689
                else:
1690
                    syst[param_name] = self.create_coro_float_param_func(
1✔
1691
                        D, lam0, IWA, OWA, fill
1692
                    )
1693

1694
        # finally the case where the input is None
1695
        elif syst[param_name] is None:
×
1696
            syst[param_name] = None
×
1697
        # anything else (not string, number, or None) throws an error
1698
        else:
1699
            raise TypeError(
×
1700
                f"{param_name} for system {syst['name']} is neither a "
1701
                f"string nor a number. I don't know what to do with that."
1702
            )
1703

1704
        return syst
1✔
1705

1706
    def create_coro_fits_param_func(self, WA, D, lam0, fill):
1✔
1707
        """
1708
        Create a function for a coronagraph parameter that was provided as a fits
1709
        file.
1710

1711
        The returned function minimizes the number of operations and uses closures
1712
        to capture the values of the parameters to avoid recalculating them on
1713
        each call.
1714

1715
        Args:
1716
            WA (astropy.units.Quantity):
1717
                Working angles from the input fits file in arcsec
1718
            D (float):
1719
                Parameter values from the input fits file
1720
            lam0 (astropy.units.Quantity):
1721
                Design wavelength of the coronagraph
1722
            fill (float):
1723
                Fill value for the parameter
1724

1725
        Returns:
1726
            function:
1727
                A function that takes a wavelength and a separation and returns the
1728
                parameter value.
1729

1730
        """
1731
        lam0_val = lam0.value
1✔
1732
        lam0_unit = lam0.unit
1✔
1733

1734
        def func(lam, s):
1✔
1735
            # Convert lam to the same unit as lam0, if the units already match
1736
            # then this is a no-op
1737
            lam_val = lam.to_value(lam0_unit)
×
1738
            lam_ratio = lam0_val / lam_val
×
1739
            # Scale the provided separations to the lam0 wavelength
1740
            s_scaled_as = s.to_value(u.arcsec) * lam_ratio
×
1741
            # Use np.interp to get the parameter value
1742
            return np.interp(s_scaled_as, WA, D, left=fill, right=fill)
×
1743

1744
        return func
1✔
1745

1746
    def create_coro_float_param_func(self, D, lam0, IWA, OWA, fill):
1✔
1747
        """
1748
        Create a function for a coronagraph parameter that was provided as a float.
1749

1750
        The returned function minimizes the number of operations and uses closures
1751
        to capture the values of the parameters to avoid recalculating them on
1752
        each call.
1753

1754
        Args:
1755
            D (float):
1756
                Value of the parameter from the input file
1757
            lam0 (astropy.units.Quantity):
1758
                Design wavelength of the coronagraph
1759
            IWA (float):
1760
                Inner working angle of the coronagraph in arcsec
1761
            OWA (float):
1762
                Outer working angle of the coronagraph in arcsec
1763
            fill (float):
1764
                Fill value for the parameter
1765

1766
        Returns:
1767
            function:
1768
                A function that takes a wavelength and a separation and returns the
1769
                parameter value.
1770
        """
1771
        lam0_unit = lam0.unit
1✔
1772
        lam0_val = lam0.value
1✔
1773
        D_minus_fill = D - fill
1✔
1774

1775
        def func(lam, s):
1✔
1776
            # Convert lam to the same unit as lam0, if the units already match
1777
            # then this is a no-op
1778
            lam_val = lam.to_value(lam0_unit)
1✔
1779
            lam_ratio = lam0_val / lam_val
1✔
1780
            # Scale the provided separations to the lam0 wavelength
1781
            s_scaled_as = s.to_value(u.arcsec) * lam_ratio
1✔
1782
            # Create a mask that is True when s is inside the dark zone
1783
            dz_mask = np.array(
1✔
1784
                (IWA <= s_scaled_as) & (s_scaled_as <= OWA), ndmin=1, dtype=float
1785
            )
1786
            # Multiply the mask by the parameter value and add the fill value
1787
            return dz_mask * D_minus_fill + fill
1✔
1788

1789
        return func
1✔
1790

1791
    def get_param_data(
1✔
1792
        self,
1793
        ipth,
1794
        left_col_name=None,
1795
        param_name=None,
1796
        expected_ndim=None,
1797
        expected_first_dim=None,
1798
    ):
1799
        """Gets the data from a file, used primarily to create interpolants for
1800
        coronagraph parameters
1801

1802
        Args:
1803
            ipth (str):
1804
                String to file location, will also work with any other path object
1805
            left_col_name (str,optional):
1806
                For CSV files only. String representing the column containing the
1807
                independent parameter to be extracted. This is for use in the case
1808
                where the CSV file contains multiple columns and only two need to be
1809
                returned. Defaults None.
1810
            param_name (str, optional):
1811
                For CSV files only. String representing the column containing the
1812
                dependent parameter to be extracted. This is for use in the case where
1813
                the CSV file contains multiple columns and only two need to be returned.
1814
                Defaults None.
1815
            expected_ndim (int, optional):
1816
                Expected number of dimensions.  Only checked if not None. Defaults None.
1817
            expected_first_dim (int, optional):
1818
                Expected size of first dimension of data.  Only checked if not None.
1819
                Defaults None
1820

1821
        Returns:
1822
            tuple:
1823
                dat (~numpy.ndarray):
1824
                    Data array
1825
                hdr (list or astropy.io.fits.header.Header):
1826
                    Data header.  For CVS files this is a list of column header strings.
1827

1828
        .. note::
1829

1830
            CSV files *must* have a single header row
1831

1832
        """
1833
        # Check that path represents a valid file
1834
        pth = os.path.normpath(os.path.expandvars(ipth))
1✔
1835
        assert os.path.isfile(pth), f"{ipth} is not a valid file."
1✔
1836

1837
        # Check for fits or csv file
1838
        ext = pth.split(".")[-1]
1✔
1839
        assert ext.lower() in ["fits", "csv"], f"{pth} must be a fits or csv file."
1✔
1840
        if ext.lower() == "fits":
1✔
1841
            with fits.open(pth) as f:
1✔
1842
                dat = f[0].data.squeeze()
1✔
1843
                hdr = f[0].header
1✔
1844
        else:
1845
            # Need to get all of the headers and data, then associate them in the same
1846
            # ndarray that the fits files would generate. Note that CSV data must be 2D
1847
            # If only one row is found, force into 2D shape.
1848
            try:
×
1849
                table_vals = np.array(
×
1850
                    np.genfromtxt(pth, delimiter=",", skip_header=1, comments="#"),
1851
                    ndmin=2,
1852
                    copy=copy_if_needed,
1853
                )
1854

1855
                hdr = np.genfromtxt(
×
1856
                    pth,
1857
                    delimiter=",",
1858
                    skip_footer=len(table_vals),
1859
                    dtype=str,
1860
                    comments="#",
1861
                )
1862
            except UnicodeDecodeError:
×
1863
                table_vals = np.array(
×
1864
                    np.genfromtxt(
1865
                        pth,
1866
                        delimiter=",",
1867
                        skip_header=1,
1868
                        comments="#",
1869
                        encoding="latin1",
1870
                    ),
1871
                    ndmin=2,
1872
                    copy=copy_if_needed,
1873
                )
1874
                hdr = np.genfromtxt(
×
1875
                    pth,
1876
                    delimiter=",",
1877
                    skip_footer=len(table_vals),
1878
                    dtype=str,
1879
                    comments="#",
1880
                    encoding="latin1",
1881
                )
1882

1883
            # remove any rows that are all NaNs
1884
            table_vals = table_vals[~np.all(np.isnan(table_vals), axis=1)]
×
1885

1886
            if left_col_name is not None:
×
1887
                assert (
×
1888
                    param_name is not None
1889
                ), "If left_col_name is nont None, param_name cannot be None."
1890

1891
                assert (
×
1892
                    left_col_name in hdr
1893
                ), f"{left_col_name} not found in table header for file {ipth}"
1894
                assert (
×
1895
                    param_name in hdr
1896
                ), f"{param_name} not found in table header for file {ipth}"
1897

1898
                left_column_location = np.where(hdr == left_col_name)[0][0]
×
1899
                param_location = np.where(hdr == param_name)[0][0]
×
1900
                dat = np.vstack(
×
1901
                    [table_vals[:, left_column_location], table_vals[:, param_location]]
1902
                ).T
1903
                hdr = [left_col_name, param_name]
×
1904
            else:
1905
                dat = table_vals
×
1906

1907
        if expected_ndim is not None:
1✔
1908
            assert len(dat.shape) == expected_ndim, (
1✔
1909
                f"Data shape did not match expected {expected_ndim} "
1910
                f"dimensions for file {ipth}"
1911
            )
1912

1913
        if expected_first_dim is not None:
1✔
1914
            assert expected_first_dim in dat.shape, (
1✔
1915
                f"Expected first dimension size {expected_first_dim} not found in any "
1916
                f"data dimension for file {ipth}."
1917
            )
1918

1919
            if dat.shape[0] != expected_first_dim:
1✔
1920
                assert len(dat.shape) == 2, (
1✔
1921
                    f"Data in file {ipth} contains a dimension of expected size "
1922
                    f"{expected_first_dim}, but it is not the first dimension, and the "
1923
                    "data has dimensionality of > 2, so I do not know how to reshape "
1924
                    "it."
1925
                )
1926

1927
                dat = dat.transpose()
1✔
1928

1929
        return dat, hdr
1✔
1930

1931
    def Cp_Cb_Csp(self, TL, sInds, fZ, JEZ, dMag, WA, mode, returnExtra=False, TK=None):
1✔
1932
        """Calculates electron count rates for planet signal, background noise,
1933
        and speckle residuals.
1934

1935
        Args:
1936
            TL (:ref:`TargetList`):
1937
                TargetList class object
1938
            sInds (~numpy.ndarray(int)):
1939
                Integer indices of the stars of interest
1940
            fZ (~astropy.units.Quantity(~numpy.ndarray(float))):
1941
                Surface brightness of local zodiacal light in units of 1/arcsec2
1942
            JEZ (~astropy.units.Quantity(~numpy.ndarray(float))):
1943
                Intensity of exo-zodiacal light in units of ph/s/m2/arcsec2
1944
            dMag (~numpy.ndarray(float)):
1945
                Differences in magnitude between planets and their host star
1946
            WA (~astropy.units.Quantity(~numpy.ndarray(float))):
1947
                Working angles of the planets of interest in units of arcsec
1948
            mode (dict):
1949
                Selected observing mode
1950
            returnExtra (bool):
1951
                Optional flag, default False, set True to return additional rates for
1952
                validation
1953
            TK (:ref:`TimeKeeping`, optional):
1954
                Optional TimeKeeping object (default None), used to model detector
1955
                degradation effects where applicable.
1956

1957

1958
        Returns:
1959
            tuple:
1960
                C_p (~astropy.units.Quantity(~numpy.ndarray(float))):
1961
                    Planet signal electron count rate in units of 1/s
1962
                C_b (~astropy.units.Quantity(~numpy.ndarray(float))):
1963
                    Background noise electron count rate in units of 1/s
1964
                C_sp (~astropy.units.Quantity(~numpy.ndarray(float))):
1965
                    Residual speckle spatial structure (systematic error)
1966
                    in units of 1/s
1967

1968
        """
1969

1970
        # grab all count rates
1971
        C_star, C_p, C_sr, C_z, C_ez, C_dc, C_bl, Npix = self.Cp_Cb_Csp_helper(
1✔
1972
            TL, sInds, fZ, JEZ, dMag, WA, mode
1973
        )
1974

1975
        # readout noise
1976
        inst = mode["inst"]
1✔
1977
        C_rn = Npix * inst["sread"] / inst["texp"]
1✔
1978

1979
        # background signal rate
1980
        C_b = C_sr + C_z + C_ez + C_bl + C_dc + C_rn
1✔
1981

1982
        # for characterization, Cb must include the planet
1983
        # C_sp = spatial structure to the speckle including post-processing contrast
1984
        # factor and stability factor
1985
        if not (mode["detectionMode"]):
1✔
1986
            C_b = C_b + C_p
1✔
1987
            C_sp = C_sr * TL.PostProcessing.ppFact_char(WA) * self.stabilityFact
1✔
1988
        else:
1989
            C_sp = C_sr * TL.PostProcessing.ppFact(WA) * self.stabilityFact
1✔
1990

1991
        if returnExtra:
1✔
1992
            # organize components into an optional fourth result
1993
            C_extra = dict(
×
1994
                C_sr=C_sr.to("1/s"),
1995
                C_z=C_z.to("1/s"),
1996
                C_ez=C_ez.to("1/s"),
1997
                C_dc=C_dc.to("1/s"),
1998
                C_rn=C_rn.to("1/s"),
1999
                C_star=C_star.to("1/s"),
2000
                C_bl=C_bl.to("1/s"),
2001
                Npix=Npix,
2002
            )
2003
            return C_p.to("1/s"), C_b.to("1/s"), C_sp.to("1/s"), C_extra
×
2004
        else:
2005
            return C_p.to("1/s"), C_b.to("1/s"), C_sp.to("1/s")
1✔
2006

2007
    def Cp_Cb_Csp_helper(self, TL, sInds, fZ, JEZ, dMag, WA, mode):
1✔
2008
        """Helper method for Cp_Cb_Csp that performs lots of common computations
2009
        Args:
2010
            TL (:ref:`TargetList`):
2011
                TargetList class object
2012
            sInds (~numpy.ndarray(int)):
2013
                Integer indices of the stars of interest
2014
            fZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2015
                Surface brightness of local zodiacal light in units of 1/arcsec2
2016
            JEZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2017
                Intensity of exo-zodiacal light in units of ph/s/m2/arcsec2
2018
            dMag (~numpy.ndarray(float)):
2019
                Differences in magnitude between planets and their host star
2020
            WA (~astropy.units.Quantity(~numpy.ndarray(float))):
2021
                Working angles of the planets of interest in units of arcsec
2022
            mode (dict):
2023
                Selected observing mode
2024

2025
        Returns:
2026
            tuple:
2027
                C_star (~astropy.units.Quantity(~numpy.ndarray(float))):
2028
                    Non-coronagraphic star count rate (1/s)
2029
                C_p0 (~astropy.units.Quantity(~numpy.ndarray(float))):
2030
                    Planet count rate (1/s)
2031
                C_sr (~astropy.units.Quantity(~numpy.ndarray(float))):
2032
                    Starlight residual count rate (1/s)
2033
                C_z (~astropy.units.Quantity(~numpy.ndarray(float))):
2034
                    Local zodi count rate (1/s)
2035
                C_ez (~astropy.units.Quantity(~numpy.ndarray(float))):
2036
                    Exozodi count rate (1/s)
2037
                C_dc (~astropy.units.Quantity(~numpy.ndarray(float))):
2038
                    Dark current count rate (1/s)
2039
                C_bl (~astropy.units.Quantity(~numpy.ndarray(float))):
2040
                    Background leak count rate (1/s)'
2041
                Npix (float):
2042
                    Number of pixels in photometric aperture
2043
        """
2044

2045
        # SET UP CONVERSION FACTORS FOR UNITS OF WA fZ and JEZ
2046
        # SOMETHING LIKE A DICTIONARY KEYED ON THOSE UNITS WITH ENTRIES FOR EACH CALCULATION
2047
        cache_conversions = (fZ.unit, JEZ.unit) not in self.unit_conv
1✔
2048
        convs_added = False
1✔
2049
        if cache_conversions:
1✔
2050
            convs = {}
1✔
2051
        else:
2052
            convs = self.unit_conv[(fZ.unit, JEZ.unit)]
1✔
2053

2054
        # get scienceInstrument and starlightSuppressionSystem and wavelength
2055
        inst = mode["inst"]
1✔
2056
        syst = mode["syst"]
1✔
2057
        lam = mode["lam"]
1✔
2058
        _lam = lam.to_value(u.nm)
1✔
2059
        _syst_lam = syst["lam"].to_value(u.nm)
1✔
2060

2061
        # coronagraph parameters
2062
        occ_trans = syst["occ_trans"](lam, WA)
1✔
2063
        core_thruput = syst["core_thruput"](lam, WA)
1✔
2064
        Omega = syst["core_area"](lam, WA)
1✔
2065

2066
        # number of pixels per lenslet
2067
        pixPerLens = inst["lenslSamp"] ** 2.0
1✔
2068

2069
        # number of detector pixels in the photometric aperture = Omega / theta^2
2070
        # Npix = pixPerLens * (Omega / inst["pixelScale"] ** 2.0).decompose().value
2071
        if cache_conversions or convs.get("Npix") is None:
1✔
2072
            Npix = pixPerLens * (Omega / inst["pixelScale"] ** 2.0)
1✔
2073
            if Npix[0].value != 0:
1✔
2074
                convs["Npix"] = (
1✔
2075
                    Npix[0].to_value(u.dimensionless_unscaled) / Npix[0].value
2076
                )
2077
                Npix = Npix.value * convs["Npix"]
1✔
2078
                convs_added = True
1✔
2079
        else:
2080
            Npix = (
1✔
2081
                pixPerLens
2082
                * (Omega.value / inst["pixelScale"].value ** 2.0)
2083
                * convs["Npix"]
2084
            )
2085

2086
        # get stellar residual intensity in the planet PSF core
2087
        # if core_mean_intensity is None, fall back to using core_contrast
2088
        if syst["core_mean_intensity"] is None:
1✔
2089
            core_contrast = syst["core_contrast"](lam, WA)
1✔
2090
            core_intensity = core_contrast * core_thruput
1✔
2091
        else:
2092
            # if we're here, we're using the core mean intensity
2093
            core_mean_intensity = syst["core_mean_intensity"](
1✔
2094
                lam, WA, TL.diameter[sInds]
2095
            )
2096
            # also, if we're here, we must have a platescale defined
2097
            # furthermore, if we're a coronagraph, we have to scale by wavelength
2098
            scale_factor = _lam / _syst_lam if not (syst["occulter"]) else 1
1✔
2099
            core_platescale = syst["core_platescale"] * scale_factor
1✔
2100

2101
            # core_intensity is the mean intensity times the number of map pixels
2102
            if cache_conversions or convs.get("core_intensity") is None:
1✔
2103
                core_intensity = core_mean_intensity * Omega / core_platescale**2
1✔
2104
                if core_intensity[0].value != 0:
1✔
2105
                    convs["core_intensity"] = (
1✔
2106
                        core_intensity[0].to_value(u.dimensionless_unscaled)
2107
                        / core_intensity[0].value
2108
                    )
2109
                    convs_added = True
1✔
2110
            else:
2111
                core_intensity = (
1✔
2112
                    core_mean_intensity
2113
                    * Omega.value
2114
                    / core_platescale.value**2
2115
                    * convs["core_intensity"]
2116
                )
2117

2118
            # finally, if a contrast floor was set, make sure we're not violating it
2119
            if syst["contrast_floor"] is not None:
1✔
2120
                below_contrast_floor = (
×
2121
                    core_intensity / core_thruput < syst["contrast_floor"]
2122
                )
2123
                core_intensity[below_contrast_floor] = (
×
2124
                    syst["contrast_floor"] * core_thruput[below_contrast_floor]
2125
                )
2126

2127
        # cast sInds to array
2128
        sInds = np.array(sInds, ndmin=1, copy=copy_if_needed)
1✔
2129

2130
        # Star fluxes (ph/m^2/s)
2131
        flux_star = TL.starFlux(sInds, mode)
1✔
2132

2133
        # ELECTRON COUNT RATES [ s^-1 ]
2134
        # non-coronagraphic star counts
2135
        if cache_conversions or convs.get("C_star") is None:
1✔
2136
            C_star = flux_star * mode["losses"]
1✔
2137
            if C_star[0].value != 0:
1✔
2138
                convs["C_star"] = C_star[0].to_value(self.inv_s) / C_star[0].value
1✔
2139
                C_star = C_star.value * convs["C_star"] << self.inv_s
1✔
2140
                convs_added = True
1✔
2141
        else:
2142
            C_star = (
1✔
2143
                flux_star.value * mode["losses"].value * convs["C_star"] << self.inv_s
2144
            )
2145
        _C_star = C_star.to_value(self.inv_s)
1✔
2146
        # planet counts:
2147
        # C_p0 = (C_star * 10.0 ** (-0.4 * dMag) * core_thruput).to("1/s")
2148
        if cache_conversions or convs.get("C_p0") is None:
1✔
2149
            C_p0 = C_star * 10.0 ** (-0.4 * dMag) * core_thruput
1✔
2150
            if C_p0[0].value != 0:
1✔
2151
                convs["C_p0"] = C_p0[0].to_value(self.inv_s) / C_p0[0].value
1✔
2152
                C_p0 = C_p0.value * convs["C_p0"] << self.inv_s
1✔
2153
                convs_added = True
1✔
2154
        else:
2155
            C_p0 = (
1✔
2156
                _C_star * 10.0 ** (-0.4 * dMag) * core_thruput * convs["C_p0"]
2157
                << self.inv_s
2158
            )
2159
        # starlight residual
2160
        # C_sr = (C_star * core_intensity).to("1/s")
2161
        if cache_conversions or convs.get("C_sr") is None:
1✔
2162
            C_sr = C_star * core_intensity
1✔
2163
            if C_sr[0].value != 0:
1✔
2164
                convs["C_sr"] = C_sr[0].to_value(self.inv_s) / C_sr[0].value
1✔
2165
                C_sr = C_sr.value * convs["C_sr"] << self.inv_s
1✔
2166
                convs_added = True
1✔
2167
        else:
2168
            C_sr = _C_star * core_intensity * convs["C_sr"] << self.inv_s
1✔
2169
        # zodiacal light
2170
        # C_z = (mode["F0"] * mode["losses"] * fZ * Omega * occ_trans).to("1/s")
2171
        if cache_conversions or convs.get("C_z") is None:
1✔
2172
            C_z = mode["F0"] * mode["losses"] * fZ * Omega * occ_trans
1✔
2173
            if C_z[0].value != 0:
1✔
2174
                convs["C_z"] = C_z[0].to_value(self.inv_s) / C_z[0].value
1✔
2175
                C_z = C_z.value * convs["C_z"] << self.inv_s
1✔
2176
                convs_added = True
1✔
2177
        else:
2178
            C_z = (
1✔
2179
                mode["F0"].value
2180
                * mode["losses"].value
2181
                * fZ.value
2182
                * Omega.value
2183
                * occ_trans
2184
                * convs["C_z"]
2185
                << self.inv_s
2186
            )
2187
        # exozodiacal light
2188
        if cache_conversions or convs.get("C_ez") is None:
1✔
2189
            if self.use_core_thruput_for_ez:
1✔
2190
                # C_ez = (JEZ * mode["losses"] * Omega * core_thruput).to("1/s")
2191
                C_ez = JEZ * mode["losses"] * Omega * core_thruput
×
2192
            else:
2193
                # C_ez = (JEZ * mode["losses"] * Omega * occ_trans).to("1/s")
2194
                C_ez = JEZ * mode["losses"] * Omega * occ_trans
1✔
2195
            if C_ez[0].value != 0:
1✔
2196
                convs["C_ez"] = C_ez[0].to_value(self.inv_s) / C_ez[0].value
1✔
2197
                C_ez = C_ez.value * convs["C_ez"] << self.inv_s
1✔
2198
                convs_added = True
1✔
2199
        else:
2200
            if self.use_core_thruput_for_ez:
1✔
2201
                C_ez = (
×
2202
                    JEZ.value
2203
                    * mode["losses"].value
2204
                    * Omega.value
2205
                    * core_thruput
2206
                    * convs["C_ez"]
2207
                    << self.inv_s
2208
                )
2209
            else:
2210
                C_ez = (
1✔
2211
                    JEZ.value
2212
                    * mode["losses"].value
2213
                    * Omega.value
2214
                    * occ_trans
2215
                    * convs["C_ez"]
2216
                    << self.inv_s
2217
                )
2218
        # dark current
2219
        C_dc = Npix * inst["idark"]
1✔
2220
        # only calculate binary leak if you have a model and relevant data
2221
        # in the targelist
2222
        if hasattr(self, "binaryleakmodel") and all(
1✔
2223
            hasattr(TL, attr)
2224
            for attr in ["closesep", "closedm", "brightsep", "brightdm"]
2225
        ):
2226
            cseps = TL.closesep[sInds]
×
2227
            cdms = TL.closedm[sInds]
×
2228
            bseps = TL.brightsep[sInds]
×
2229
            bdms = TL.brightdm[sInds]
×
2230

2231
            if cache_conversions:
×
2232
                convs["seps"] = self.arcsec2rad
×
2233
                convs["diam/lam"] = (1 * self.pupilDiam.unit / lam.unit).to_value(
×
2234
                    u.dimensionless_unscaled
2235
                )
2236
            # don't double count where the bright star is the close star
2237
            repinds = (cseps == bseps) & (cdms == bdms)
×
2238
            bseps[repinds] = np.nan
×
2239
            bdms[repinds] = np.nan
×
2240

2241
            crawleaks = self.binaryleakmodel(
×
2242
                (
2243
                    (cseps * convs["seps"])
2244
                    / lam.value
2245
                    * self.pupilDiam.value
2246
                    * convs["diam/lam"]
2247
                )
2248
            )
2249
            cleaks = crawleaks * 10 ** (-0.4 * cdms)
×
2250
            cleaks[np.isnan(cleaks)] = 0
×
2251

2252
            brawleaks = self.binaryleakmodel(
×
2253
                (
2254
                    (bseps * convs["seps"])
2255
                    / lam.value
2256
                    * self.pupilDiam.value
2257
                    * convs["diam/lam"]
2258
                )
2259
            )
2260
            bleaks = brawleaks * 10 ** (-0.4 * bdms)
×
2261
            bleaks[np.isnan(bleaks)] = 0
×
2262

2263
            C_bl = (cleaks + bleaks) * _C_star * core_thruput << self.inv_s
×
2264
        else:
2265
            C_bl = np.zeros(len(sInds)) << self.inv_s
1✔
2266

2267
        if cache_conversions or convs_added:
1✔
2268
            self.unit_conv[(fZ.unit, JEZ.unit)] = convs
1✔
2269
        return C_star, C_p0, C_sr, C_z, C_ez, C_dc, C_bl, Npix
1✔
2270

2271
    def calc_intTime(self, TL, sInds, fZ, JEZ, dMag, WA, mode, TK=None):
1✔
2272
        """Finds integration time to reach a given dMag at a particular WA with given
2273
        local and exozodi values for specific targets and for a specific observing mode.
2274

2275

2276
        Args:
2277
            TL (:ref:`TargetList`):
2278
                TargetList class object
2279
            sInds (numpy.ndarray(int)):
2280
                Integer indices of the stars of interest
2281
            fZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2282
                Surface brightness of local zodiacal light in units of 1/arcsec2
2283
            JEZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2284
                Intensity of exo-zodiacal light in units of ph/s/m2/arcsec2
2285
            dMag (numpy.ndarray(int)numpy.ndarray(float)):
2286
                Differences in magnitude between planets and their host star
2287
            WA (~astropy.units.Quantity(~numpy.ndarray(float))):
2288
                Working angles of the planets of interest in units of arcsec
2289
            mode (dict):
2290
                Selected observing mode
2291
            TK (:ref:`TimeKeeping`, optional):
2292
                Optional TimeKeeping object (default None), used to model detector
2293
                degradation effects where applicable.
2294

2295
        Returns:
2296
            ~astropy.units.Quantity(~numpy.ndarray(float)):
2297
                Integration times
2298

2299
        .. note::
2300

2301
            All infeasible integration times are returned as NaN values
2302

2303
        """
2304
        # count rates
2305
        C_p, C_b, C_sp = self.Cp_Cb_Csp(TL, sInds, fZ, JEZ, dMag, WA, mode, TK=TK)
1✔
2306

2307
        # get SNR threshold
2308
        SNR = mode["SNR"]
1✔
2309

2310
        with np.errstate(divide="ignore", invalid="ignore"):
1✔
2311
            intTime = np.true_divide(
1✔
2312
                SNR**2.0 * C_b, (C_p**2.0 - (SNR * C_sp) ** 2.0)
2313
            ).to("day")
2314

2315
        # infinite and negative values are set to NAN
2316
        intTime[np.isinf(intTime) | (intTime.value < 0.0)] = np.nan
1✔
2317

2318
        return intTime
1✔
2319

2320
    def calc_dMag_per_intTime(
1✔
2321
        self,
2322
        intTimes,
2323
        TL,
2324
        sInds,
2325
        fZ,
2326
        JEZ,
2327
        WA,
2328
        mode,
2329
        C_b=None,
2330
        C_sp=None,
2331
        TK=None,
2332
        analytic_only=False,
2333
    ):
2334
        """Finds achievable planet delta magnitude for one integration
2335
        time per star in the input list at one working angle.
2336

2337
        Args:
2338
            intTimes (~astropy.units.Quantity(~numpy.ndarray(float))):
2339
                Integration times in units of day
2340
            TL (:ref:`TargetList`):
2341
                TargetList class object
2342
            sInds (numpy.ndarray(int)):
2343
                Integer indices of the stars of interest
2344
            fZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2345
                Surface brightness of local zodiacal light in units of 1/arcsec2
2346
            JEZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2347
                Intensity of exo-zodiacal light in units of ph/s/m2/arcsec2
2348
            WA (~astropy.units.Quantity(~numpy.ndarray(float))):
2349
                Working angles of the planets of interest in units of arcsec
2350
            mode (dict):
2351
                Selected observing mode
2352
            C_b (~astropy.units.Quantity(~numpy.ndarray(float))):
2353
                Background noise electron count rate in units of 1/s (optional)
2354
            C_sp (~astropy.units.Quantity(~numpy.ndarray(float))):
2355
                Residual speckle spatial structure (systematic error) in units of 1/s
2356
                (optional)
2357
            TK (:ref:`TimeKeeping`, optional):
2358
                Optional TimeKeeping object (default None), used to model detector
2359
                degradation effects where applicable.
2360
            analytic_only (bool):
2361
                If True, return the analytic solution for dMag. Not used by the
2362
                Prototype OpticalSystem.
2363

2364
        Returns:
2365
            numpy.ndarray(float):
2366
                Achievable dMag for given integration time and working angle
2367

2368
        .. warning::
2369

2370
            The prototype implementation assumes the exact same integration time model
2371
            as the other prototype methods (specifically Cp_Cb_Csp and calc_intTime).
2372
            If either of these is overloaded, and, in particular, if C_b and/or C_sp are
2373
            not modeled as independent of C_p, then the analytical approach used here
2374
            will *not* work and must be replaced with numerical inversion.
2375

2376
        """
2377

2378
        # cast sInds to array
2379
        sInds = np.array(sInds, ndmin=1, copy=copy_if_needed)
1✔
2380

2381
        if (C_b is None) or (C_sp is None):
1✔
2382
            _, C_b, C_sp = self.Cp_Cb_Csp(
1✔
2383
                TL, sInds, fZ, JEZ, np.zeros(len(sInds)), WA, mode, TK=TK
2384
            )
2385

2386
        C_p = mode["SNR"] * np.sqrt(C_sp**2 + C_b / intTimes)  # planet count rate
1✔
2387
        core_thruput = mode["syst"]["core_thruput"](mode["lam"], WA)
1✔
2388
        flux_star = TL.starFlux(sInds, mode)
1✔
2389

2390
        dMag = -2.5 * np.log10(C_p / (flux_star * mode["losses"] * core_thruput))
1✔
2391

2392
        return dMag.value
1✔
2393

2394
    def ddMag_dt(
1✔
2395
        self, intTimes, TL, sInds, fZ, JEZ, WA, mode, C_b=None, C_sp=None, TK=None
2396
    ):
2397
        """Finds derivative of achievable dMag with respect to integration time.
2398

2399
        Args:
2400
            intTimes (~astropy.units.Quantity(~numpy.ndarray(float))):
2401
                Integration times in units of day
2402
            TL (:ref:`TargetList`):
2403
                TargetList class object
2404
            sInds (numpy.ndarray(int)):
2405
                Integer indices of the stars of interest
2406
            fZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2407
                Surface brightness of local zodiacal light in units of 1/arcsec2
2408
            JEZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2409
                Intensity of exo-zodiacal light in units of ph/s/m2/arcsec2
2410
            WA (~astropy.units.Quantity(~numpy.ndarray(float))):
2411
                Working angles of the planets of interest in units of arcsec
2412
            mode (dict):
2413
                Selected observing mode
2414
            C_b (~astropy.units.Quantity(~numpy.ndarray(float))):
2415
                Background noise electron count rate in units of 1/s (optional)
2416
            C_sp (~astropy.units.Quantity(~numpy.ndarray(float))):
2417
                Residual speckle spatial structure (systematic error) in units of 1/s
2418
                (optional)
2419
            TK (:ref:`TimeKeeping`, optional):
2420
                Optional TimeKeeping object (default None), used to model detector
2421
                degradation effects where applicable.
2422

2423
        Returns:
2424
            ~astropy.units.Quantity(~numpy.ndarray(float)):
2425
                Derivative of achievable dMag with respect to integration time
2426
                in units of 1/s
2427

2428
        """
2429
        # cast sInds to array
2430
        sInds = np.array(sInds, ndmin=1, copy=copy_if_needed)
1✔
2431

2432
        if (C_b is None) or (C_sp is None):
1✔
2433
            _, C_b, C_sp = self.Cp_Cb_Csp(
1✔
2434
                TL, sInds, fZ, JEZ, np.zeros(len(sInds)), WA, mode, TK=TK
2435
            )
2436

2437
        ddMagdt = 5 / 4 / np.log(10) * C_b / (C_b * intTimes + (C_sp * intTimes) ** 2)
1✔
2438

2439
        return ddMagdt.to("1/s")
1✔
2440

2441
    def calc_saturation_dMag(self, TL, sInds, fZ, JEZ, WA, mode, TK=None):
1✔
2442
        """
2443
        This calculates the delta magnitude for each target star that
2444
        corresponds to an infinite integration time.
2445

2446
        Args:
2447
            TL (:ref:`TargetList`):
2448
                TargetList class object
2449
            sInds (numpy.ndarray(int)):
2450
                Integer indices of the stars of interest
2451
            fZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2452
                Surface brightness of local zodiacal light in units of 1/arcsec2
2453
            JEZ (~astropy.units.Quantity(~numpy.ndarray(float))):
2454
                Intensity of exo-zodiacal light in units of ph/s/m2/arcsec2
2455
            WA (~astropy.units.Quantity(~numpy.ndarray(float))):
2456
                Working angles of the planets of interest in units of arcsec
2457
            mode (dict):
2458
                Selected observing mode
2459
            TK (:ref:`TimeKeeping`, optional):
2460
                Optional TimeKeeping object (default None), used to model detector
2461
                degradation effects where applicable.
2462

2463
        Returns:
2464
            ~numpy.ndarray(float):
2465
                Saturation (maximum achievable) dMag for each target star
2466
        """
2467

2468
        _, C_b, C_sp = self.Cp_Cb_Csp(
1✔
2469
            TL, sInds, fZ, JEZ, np.zeros(len(sInds)), WA, mode, TK=TK
2470
        )
2471

2472
        flux_star = TL.starFlux(sInds, mode)
1✔
2473
        core_thruput = mode["syst"]["core_thruput"](mode["lam"], WA)
1✔
2474

2475
        dMagmax = -2.5 * np.log10(
1✔
2476
            mode["SNR"] * C_sp / (flux_star * mode["losses"] * core_thruput)
2477
        )
2478

2479
        return dMagmax.value
1✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc