• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

formalsec / smtml / 442

13 Dec 2025 07:41PM UTC coverage: 45.333% (-0.3%) from 45.639%
442

push

github

filipeom
add some shortcuts on relop based on physical equality

6 of 19 new or added lines in 1 file covered. (31.58%)

3 existing lines in 3 files now uncovered.

879 of 1939 relevant lines covered (45.33%)

7.46 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

31.89
/src/smtml/expr.ml
1
(* SPDX-License-Identifier: MIT *)
2
(* Copyright (C) 2023-2024 formalsec *)
3
(* Written by the Smtml programmers *)
4

5
type t = expr Hc.hash_consed
6

7
and expr =
8
  | Val of Value.t
9
  | Ptr of
10
      { base : Bitvector.t
11
      ; offset : t
12
      }
13
  | Loc of Loc.t
14
  | Symbol of Symbol.t
15
  | List of t list
16
  | App of Symbol.t * t list
17
  | Unop of Ty.t * Ty.Unop.t * t
18
  | Binop of Ty.t * Ty.Binop.t * t * t
19
  | Triop of Ty.t * Ty.Triop.t * t * t * t
20
  | Relop of Ty.t * Ty.Relop.t * t * t
21
  | Cvtop of Ty.t * Ty.Cvtop.t * t
22
  | Naryop of Ty.t * Ty.Naryop.t * t list
23
  | Extract of t * int * int
24
  | Concat of t * t
25
  | Binder of Binder.t * t list * t
26

27
module Expr = struct
28
  type t = expr
29

30
  let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
31
    if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
4✔
32
    else false
×
33

34
  let equal (e1 : expr) (e2 : expr) : bool =
35
    match (e1, e2) with
500✔
36
    | Val v1, Val v2 -> Value.equal v1 v2
472✔
37
    | Loc a, Loc b -> Loc.compare a b = 0
×
38
    | Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
4✔
39
      Bitvector.equal b1 b2 && phys_equal o1 o2
4✔
40
    | Symbol s1, Symbol s2 -> Symbol.equal s1 s2
6✔
41
    | List l1, List l2 -> list_eq l1 l2
4✔
42
    | App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
×
43
    | Unop (t1, op1, e1), Unop (t2, op2, e2) ->
1✔
44
      Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
1✔
45
    | Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
12✔
46
      Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
12✔
47
      && phys_equal e3 e4
12✔
48
    | Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
1✔
49
      Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
1✔
50
      && phys_equal e3 e4
1✔
51
    | Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
×
52
      Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
×
53
      && phys_equal e3 e4 && phys_equal e5 e6
×
54
    | Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
×
55
      Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
×
56
    | Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
×
57
      Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
×
58
    | Extract (e1, h1, l1), Extract (e2, h2, l2) ->
×
59
      phys_equal e1 e2 && h1 = h2 && l1 = l2
×
60
    | Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
×
61
    | Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
×
62
      Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
×
63
    | ( ( Val _ | Ptr _ | Loc _ | Symbol _ | List _ | App _ | Unop _ | Binop _
×
64
        | Triop _ | Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _
×
65
        | Binder _ )
×
66
      , _ ) ->
67
      false
68

69
  let hash (e : expr) : int =
70
    let h x = Hashtbl.hash x in
1,022✔
71
    match e with
72
    | Val v -> h v
858✔
73
    | Ptr { base; offset } -> h (base, offset.tag)
22✔
74
    | Loc l -> h l
×
75
    | Symbol s -> h s
48✔
76
    | List v -> h v
16✔
77
    | App (x, es) -> h (x, es)
×
78
    | Unop (ty, op, e) -> h (ty, op, e.tag)
7✔
79
    | Cvtop (ty, op, e) -> h (ty, op, e.tag)
6✔
80
    | Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
38✔
81
    | Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
9✔
82
    | Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
×
83
    | Naryop (ty, op, es) -> h (ty, op, es)
×
84
    | Extract (e, hi, lo) -> h (e.tag, hi, lo)
14✔
85
    | Concat (e1, e2) -> h (e1.tag, e2.tag)
4✔
86
    | Binder (b, vars, e) -> h (b, vars, e.tag)
×
87
end
88

89
module Hc = Hc.Make [@inlined hint] (Expr)
90

91
let equal (hte1 : t) (hte2 : t) = phys_equal hte1 hte2 [@@inline]
221✔
92

93
let hash (hte : t) = hte.tag [@@inline]
4✔
94

95
module Key = struct
96
  type nonrec t = t
97

98
  let to_int hte = hash hte
×
99
end
100

101
let[@inline] make e = Hc.hashcons e
761✔
102

103
let[@inline] view (hte : t) = hte.node
559✔
104

105
let[@inline] compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag
×
106

107
let symbol s = make (Symbol s)
27✔
108

109
(** The return type of an expression *)
110
let rec ty (hte : t) : Ty.t =
111
  match view hte with
13✔
112
  | Val x -> Value.type_of x
×
113
  | Ptr _ -> Ty_bitv 32
×
114
  | Loc _ -> Ty_app
×
115
  | Symbol x -> Symbol.type_of x
10✔
116
  | List _ -> Ty_list
×
117
  | App (sym, _) -> begin match sym.ty with Ty_none -> Ty_app | ty -> ty end
×
118
  | Triop (_, Ite, _, hte1, hte2) ->
×
119
    let ty1 = ty hte1 in
120
    assert (
×
121
      let ty2 = ty hte2 in
122
      Ty.equal ty1 ty2 );
×
123
    ty1
124
  | Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
×
125
    match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
1✔
126
  | Unop (ty, _, _)
×
127
  | Binop (ty, _, _, _)
×
128
  | Triop (ty, _, _, _, _)
×
129
  | Relop (ty, _, _, _)
×
130
  | Cvtop (ty, _, _)
×
131
  | Naryop (ty, _, _) ->
×
132
    ty
133
  | Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
2✔
134
  | Concat (e1, e2) -> (
×
135
    match (ty e1, ty e2) with
×
136
    | Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
×
137
    | t1, t2 ->
×
138
      Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
139
  | Binder (_, _, e) -> ty e
×
140

141
let rec is_symbolic (v : t) : bool =
142
  match view v with
×
143
  | Val _ | Loc _ -> false
×
144
  | Symbol _ -> true
×
145
  | Ptr { offset; _ } -> is_symbolic offset
×
146
  | Unop (_, _, v) | Cvtop (_, _, v) | Extract (v, _, _) | Binder (_, _, v) ->
×
147
    is_symbolic v
148
  | Binop (_, _, v1, v2) | Relop (_, _, v1, v2) | Concat (v1, v2) ->
×
149
    is_symbolic v1 || is_symbolic v2
×
150
  | Triop (_, _, v1, v2, v3) ->
×
151
    is_symbolic v1 || is_symbolic v2 || is_symbolic v3
×
152
  | List vs | App (_, vs) | Naryop (_, _, vs) -> List.exists is_symbolic vs
×
153

154
let get_symbols (hte : t list) =
155
  let tbl = Hashtbl.create 64 in
1✔
156
  let rec symbols (hte : t) =
1✔
157
    match view hte with
13✔
158
    | Val _ | Loc _ -> ()
×
159
    | Ptr { offset; _ } -> symbols offset
×
160
    | Symbol s -> Hashtbl.replace tbl s ()
5✔
161
    | List es -> List.iter symbols es
×
162
    | App (_, es) -> List.iter symbols es
×
163
    | Unop (_, _, e1) -> symbols e1
×
164
    | Binop (_, _, e1, e2) ->
2✔
165
      symbols e1;
166
      symbols e2
2✔
167
    | Triop (_, _, e1, e2, e3) ->
×
168
      symbols e1;
169
      symbols e2;
×
170
      symbols e3
×
171
    | Relop (_, _, e1, e2) ->
3✔
172
      symbols e1;
173
      symbols e2
3✔
174
    | Cvtop (_, _, e) -> symbols e
×
175
    | Naryop (_, _, es) -> List.iter symbols es
×
176
    | Extract (e, _, _) -> symbols e
×
177
    | Concat (e1, e2) ->
×
178
      symbols e1;
179
      symbols e2
×
180
    | Binder (_, vars, e) ->
×
181
      List.iter symbols vars;
182
      symbols e
×
183
  in
184
  List.iter symbols hte;
185
  Hashtbl.fold (fun k () acc -> k :: acc) tbl []
1✔
186

187
let rec pp fmt (hte : t) =
188
  match view hte with
×
189
  | Val v -> Value.pp fmt v
×
190
  | Ptr { base; offset } -> Fmt.pf fmt "(Ptr %a %a)" Bitvector.pp base pp offset
×
191
  | Loc l -> Fmt.pf fmt "(loc %a)" Loc.pp l
×
192
  | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
×
193
  | List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
×
194
  | App (s, v) ->
×
195
    Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s (Fmt.list ~sep:Fmt.comma pp) v
×
196
  | Unop (ty, op, e) ->
×
197
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
198
  | Binop (ty, op, e1, e2) ->
×
199
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp e2
200
  | Triop (ty, op, e1, e2, e3) ->
×
201
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1 pp
202
      e2 pp e3
203
  | Relop (ty, op, e1, e2) ->
×
204
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp e2
205
  | Cvtop (ty, op, e) ->
×
206
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
207
  | Naryop (ty, op, es) ->
×
208
    Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
209
      (Fmt.list ~sep:Fmt.comma pp)
×
210
      es
211
  | Extract (e, h, l) -> Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
×
212
  | Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
×
213
  | Binder (b, vars, e) ->
×
214
    Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b (Fmt.list ~sep:Fmt.sp pp)
×
215
      vars pp e
216

217
let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
×
218

219
let pp_smtml fmt (es : t list) : unit =
220
  let def_num_printer = Num.get_default_printer () in
×
221
  Num.set_default_printer `Hexadecimal;
×
222
  Bitvector.set_default_printer `WithType;
×
223
  let pp_symbols fmt syms =
×
224
    Fmt.list ~sep:Fmt.cut
×
225
      (fun fmt sym ->
226
        let t = Symbol.type_of sym in
×
227
        Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
×
228
      fmt syms
229
  in
230
  let pp_asserts fmt es =
231
    Fmt.list ~sep:Fmt.cut
×
232
      (fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
×
233
      fmt es
234
  in
235
  let syms = get_symbols es in
236
  if List.length syms > 0 then Fmt.pf fmt "@[<v>%a@]@\n" pp_symbols syms;
×
237
  if List.length es > 0 then Fmt.pf fmt "@[<v>%a@]@\n" pp_asserts es;
×
238
  Fmt.string fmt "(check-sat)";
×
239
  Num.set_default_printer def_num_printer;
×
240
  Bitvector.set_default_printer `Pretty
×
241

242
let to_string e = Fmt.str "%a" pp e
×
243

244
let value (v : Value.t) : t = make (Val v) [@@inline]
665✔
245

246
let ptr base offset = make (Ptr { base = Bitvector.of_int32 base; offset })
7✔
247

248
let loc l = make (Loc l)
×
249

250
let list l = make (List l)
5✔
251

252
let app symbol args = make (App (symbol, args))
×
253

254
let[@inline] binder bt vars expr = make (Binder (bt, vars, expr))
×
255

256
let let_in vars body = binder Let_in vars body
×
257

258
let forall vars body = binder Forall vars body
×
259

260
let exists vars body = binder Exists vars body
×
261

262
let raw_unop ty op hte = make (Unop (ty, op, hte)) [@@inline]
4✔
263

264
let normalize_eq_or_ne op (ty', e1, e2) =
265
  let make_relop lhs rhs = Relop (ty', op, lhs, rhs) in
×
266
  let ty1, ty2 = (ty e1, ty e2) in
×
267
  if not (Ty.equal ty1 ty2) then make_relop e1 e2
×
268
  else begin
×
269
    match ty1 with
270
    | Ty_bitv m ->
×
271
      let binop = make (Binop (ty1, Sub, e1, e2)) in
272
      let zero = make (Val (Bitv (Bitvector.make Z.zero m))) in
×
273
      make_relop binop zero
×
274
    | Ty_int ->
×
275
      let binop = make (Binop (ty1, Sub, e1, e2)) in
276
      let zero = make (Val (Int Int.zero)) in
×
277
      make_relop binop zero
×
278
    | Ty_real ->
×
279
      let binop = make (Binop (ty1, Sub, e1, e2)) in
280
      let zero = make (Val (Real 0.)) in
×
281
      make_relop binop zero
×
282
    | _ -> make_relop e1 e2
×
283
  end
284

285
let negate_relop (hte : t) : t =
286
  let e =
×
287
    match view hte with
288
    | Relop (ty, Eq, e1, e2) -> normalize_eq_or_ne Ne (ty, e1, e2)
×
289
    | Relop (ty, Ne, e1, e2) -> normalize_eq_or_ne Eq (ty, e1, e2)
×
290
    | Relop (ty, Lt, e1, e2) -> Relop (ty, Le, e2, e1)
×
291
    | Relop (ty, LtU, e1, e2) -> Relop (ty, LeU, e2, e1)
×
292
    | Relop (ty, Le, e1, e2) -> Relop (ty, Lt, e2, e1)
×
293
    | Relop (ty, LeU, e1, e2) -> Relop (ty, LtU, e2, e1)
×
294
    | Relop (ty, Gt, e1, e2) -> Relop (ty, Le, e1, e2)
×
295
    | Relop (ty, GtU, e1, e2) -> Relop (ty, LeU, e1, e2)
×
296
    | Relop (ty, Ge, e1, e2) -> Relop (ty, Lt, e1, e2)
×
297
    | Relop (ty, GeU, e1, e2) -> Relop (ty, LtU, e1, e2)
×
298
    | _ -> Fmt.failwith "negate_relop: not a relop."
×
299
  in
300
  make e
301

302
let unop ty op hte =
303
  match (op, view hte) with
34✔
304
  | Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> raw_unop ty op hte
×
305
  | _, Val v -> value (Eval.unop ty op v)
23✔
306
  | Not, Unop (_, Not, hte') -> hte'
1✔
307
  | Not, Relop (Ty_fp _, _, _, _) -> raw_unop ty op hte
2✔
308
  | Not, Relop (_, _, _, _) -> negate_relop hte
×
309
  | Neg, Unop (_, Neg, hte') -> hte'
1✔
310
  | Trim, Cvtop (Ty_real, ToString, _) -> hte
×
311
  | Head, List (hd :: _) -> hd
1✔
312
  | Tail, List (_ :: tl) -> make (List tl)
1✔
313
  | Reverse, List es -> make (List (List.rev es))
2✔
314
  | Length, List es -> value (Int (List.length es))
1✔
315
  | _ -> raw_unop ty op hte
2✔
316

317
let raw_binop ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
25✔
318

319
let rec binop ty op hte1 hte2 =
320
  match (op, view hte1, view hte2) with
100✔
321
  | Ty.Binop.(String_in_re | Regexp_range), _, _ -> raw_binop ty op hte1 hte2
×
322
  | op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
68✔
323
  | Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
324
    if Bitvector.equal b1 b2 then binop ty Sub os1 os2
1✔
325
    else raw_binop ty op hte1 hte2
×
326
  | Add, Ptr { base; offset }, _ ->
2✔
327
    let m = Bitvector.numbits base in
328
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte2 })
2✔
329
  | Sub, Ptr { base; offset }, _ ->
1✔
330
    let m = Bitvector.numbits base in
331
    make (Ptr { base; offset = binop (Ty_bitv m) Sub offset hte2 })
1✔
332
  | Rem, Ptr { base; offset }, _ ->
1✔
333
    let m = Bitvector.numbits base in
334
    let rhs = value (Bitv base) in
1✔
335
    let addr = binop (Ty_bitv m) Add rhs offset in
1✔
336
    binop ty Rem addr hte2
1✔
337
  | Add, _, Ptr { base; offset } ->
1✔
338
    let m = Bitvector.numbits base in
339
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte1 })
1✔
340
  | Sub, _, Ptr { base; offset } ->
×
341
    let m = Bitvector.numbits base in
342
    let base = value (Bitv base) in
×
343
    binop ty Sub hte1 (binop (Ty_bitv m) Add base offset)
×
344
  | (Add | Or), Val (Bitv bv), _ when Bitvector.eqz bv -> hte2
×
345
  | (And | Div | DivU | Mul | Rem | RemU), Val (Bitv bv), _
×
346
    when Bitvector.eqz bv ->
3✔
347
    hte1
1✔
348
  | (Add | Or), _, Val (Bitv bv) when Bitvector.eqz bv -> hte1
×
349
  | (And | Mul), _, Val (Bitv bv) when Bitvector.eqz bv -> hte2
1✔
350
  | Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
1✔
351
    let v = value (Eval.binop ty Add v1 v2) in
1✔
352
    raw_binop ty Add x v
1✔
353
  | Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
1✔
354
    let v = value (Eval.binop ty Add v1 v2) in
1✔
355
    raw_binop ty Sub x v
1✔
356
  | Mul, Val (Bitv bv), _ when Bitvector.eq_one bv -> hte2
×
357
  | Mul, _, Val (Bitv bv) when Bitvector.eq_one bv -> hte1
×
358
  | Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
1✔
359
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
360
    raw_binop ty Mul x v
1✔
361
  | Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
1✔
362
    let v = value (Eval.binop ty Add v1 v2) in
1✔
363
    raw_binop ty Add v x
1✔
364
  | Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
1✔
365
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
366
    raw_binop ty Mul v x
1✔
367
  | At, List es, Val (Int n) ->
1✔
368
    (* TODO: use another datastructure? *)
369
    begin match List.nth_opt es n with None -> assert false | Some v -> v
1✔
370
    end
371
  | List_cons, _, List es -> make (List (hte1 :: es))
1✔
372
  | List_append, List _, (List [] | Val (List [])) -> hte1
×
373
  | List_append, (List [] | Val (List [])), List _ -> hte2
×
374
  | List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
1✔
375
  | List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
×
376
  | List_append, List l0, List l1 -> make (List (l0 @ l1))
×
377
  | _ -> raw_binop ty op hte1 hte2
14✔
378

379
let raw_triop ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
×
380

381
let triop ty op e1 e2 e3 =
382
  match (op, view e1, view e2, view e3) with
6✔
383
  | Ty.Triop.Ite, Val True, _, _ -> e2
1✔
384
  | Ite, Val False, _, _ -> e3
1✔
385
  | op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
4✔
386
  | Ite, _, Triop (_, Ite, c2, r1, r2), Triop (_, Ite, _, _, _) ->
×
387
    let else_ = raw_triop ty Ite e1 r2 e3 in
388
    let cond = binop Ty_bool And e1 c2 in
×
389
    raw_triop ty Ite cond r1 else_
×
390
  | _ -> raw_triop ty op e1 e2 e3
×
391

392
let raw_relop ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
5✔
393

394
let rec relop ty (op : Ty.Relop.t) hte1 hte2 =
395
  let both_phys_eq = phys_equal hte1 hte2 in
81✔
396
  let can_be_shortcuted =
81✔
397
    match ty with
NEW
398
    | Ty.Ty_bool | Ty_bitv _ | Ty_int | Ty_unit -> both_phys_eq
×
NEW
399
    | Ty_fp _ | Ty_app | Ty_list | Ty_real | Ty_regexp | Ty_roundingMode
×
NEW
400
    | Ty_none | Ty_str ->
×
401
      false
402
  in
403
  match (op, view hte1, view hte2) with
81✔
404
  | (Eq | Le | Ge | LeU | GeU), _, _ when can_be_shortcuted -> value True
3✔
405
  | (Ne | Lt | Gt | LtU | GtU), _, _ when can_be_shortcuted -> value False
3✔
406
  | op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
21✔
NEW
407
  | Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
×
408
    if Float.is_nan v || Float.is_infinite v then value True
×
NEW
409
    else if both_phys_eq then value False
×
410
    else raw_relop ty op hte1 hte2
×
411
  | _, Val (Real v), _ | _, _, Val (Real v) ->
×
412
    if Float.is_nan v || Float.is_infinite v then value False
×
413
    else
414
      (* TODO: it is possible to add a shortcut when `both_phys_eq` *)
NEW
415
      raw_relop ty op hte1 hte2
×
416
  | Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
×
417
  | Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
×
418
  | Eq, _, Val (App (`Op "symbol", [ Str _ ]))
×
419
  | Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
420
    value False
421
  | Ne, _, Val (App (`Op "symbol", [ Str _ ]))
×
422
  | Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
423
    value True
424
  | ( Eq
×
425
    , Symbol ({ ty = Ty_fp prec1; _ } as s1)
426
    , Symbol ({ ty = Ty_fp prec2; _ } as s2) )
NEW
427
    when both_phys_eq || (prec1 = prec2 && Symbol.equal s1 s2) ->
×
428
    raw_unop Ty_bool Not (raw_unop (Ty_fp prec1) Is_nan hte1)
×
429
  | Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
NEW
430
    if both_phys_eq then value True
×
NEW
431
    else if Bitvector.equal b1 b2 then relop Ty_bool Eq os1 os2
×
432
    else value False
1✔
433
  | Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
NEW
434
    if both_phys_eq then value False
×
NEW
435
    else if Bitvector.equal b1 b2 then relop Ty_bool Ne os1 os2
×
436
    else value True
1✔
437
  | ( (LtU | LeU)
1✔
438
    , Ptr { base = b1; offset = os1 }
439
    , Ptr { base = b2; offset = os2 } ) ->
NEW
440
    if both_phys_eq then value True
×
NEW
441
    else if Bitvector.equal b1 b2 then relop ty op os1 os2
×
442
    else
443
      let b1 = Value.Bitv b1 in
2✔
444
      let b2 = Value.Bitv b2 in
445
      value (if Eval.relop ty op b1 b2 then True else False)
1✔
446
  | ( op
2✔
447
    , Val (Bitv _ as n)
448
    , Ptr { base; offset = { node = Val (Bitv _ as o); _ } } ) ->
449
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
450
    value (if Eval.relop ty op n base then True else False)
1✔
451
  | op, Ptr { base; offset = { node = Val (Bitv _ as o); _ } }, Val (Bitv _ as n)
2✔
452
    ->
453
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
454
    value (if Eval.relop ty op base n then True else False)
1✔
455
  | op, List l1, List l2 -> relop_list op l1 l2
×
456
  | Gt, _, _ -> relop ty Lt hte2 hte1
2✔
457
  | GtU, _, _ -> relop ty LtU hte2 hte1
1✔
458
  | Ge, _, _ -> relop ty Le hte2 hte1
1✔
UNCOV
459
  | GeU, _, _ -> relop ty LeU hte2 hte1
×
460
  | _, _, _ -> raw_relop ty op hte1 hte2
5✔
461

462
and relop_list op l1 l2 =
463
  match (op, l1, l2) with
×
464
  | Eq, [], [] -> value True
×
465
  | Eq, _, [] | Eq, [], _ -> value False
×
466
  | Eq, l1, l2 ->
×
467
    if not (List.compare_lengths l1 l2 = 0) then value False
×
468
    else
469
      List.fold_left2
×
470
        (fun acc a b ->
471
          binop Ty_bool And acc
×
472
          @@
473
          match (ty a, ty b) with
×
474
          | Ty_real, Ty_real -> relop Ty_real Eq a b
×
475
          | _ -> relop Ty_bool Eq a b )
×
476
        (value True) l1 l2
×
477
  | Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
×
478
  | (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
479

480
let raw_cvtop ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
3✔
481

482
let rec cvtop theory op hte =
483
  match (op, view hte) with
28✔
484
  | Ty.Cvtop.String_to_re, _ -> raw_cvtop theory op hte
×
485
  | _, Val v -> value (Eval.cvtop theory op v)
23✔
486
  | String_to_float, Cvtop (Ty_real, ToString, hte) -> hte
×
487
  | ( Reinterpret_float
×
488
    , Cvtop (Ty_real, Reinterpret_int, { node = Symbol { ty = Ty_int; _ }; _ })
489
    ) ->
490
    hte
491
  | Zero_extend n, Ptr { base; offset } ->
1✔
492
    let offset = cvtop theory op offset in
493
    make (Ptr { base = Bitvector.zero_extend n base; offset })
1✔
494
  | WrapI64, Ptr { base; offset } ->
1✔
495
    let offset = cvtop theory op offset in
496
    make (Ptr { base = Bitvector.extract base ~high:31 ~low:0; offset })
1✔
497
  | WrapI64, Cvtop (Ty_bitv 64, Zero_extend 32, hte) ->
×
498
    assert (Ty.equal theory (ty hte) && Ty.equal theory (Ty_bitv 32));
×
499
    hte
500
  | _ -> raw_cvtop theory op hte
3✔
501

502
let raw_naryop ty op es = make (Naryop (ty, op, es)) [@@inline]
×
503

504
let naryop ty op es =
505
  if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
×
506
  then
507
    let vs =
7✔
508
      List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
18✔
509
    in
510
    value (Eval.naryop ty op vs)
7✔
511
  else
512
    match (ty, op, List.map view es) with
×
513
    | ( Ty_str
×
514
      , Concat
515
      , [ Naryop (Ty_str, Concat, l1); Naryop (Ty_str, Concat, l2) ] ) ->
516
      raw_naryop Ty_str Concat (l1 @ l2)
517
    | Ty_str, Concat, [ Naryop (Ty_str, Concat, htes); hte ] ->
×
518
      raw_naryop Ty_str Concat (htes @ [ make hte ])
×
519
    | Ty_str, Concat, [ hte; Naryop (Ty_str, Concat, htes) ] ->
×
520
      raw_naryop Ty_str Concat (make hte :: htes)
×
521
    | _ -> raw_naryop ty op es
×
522

523
let[@inline] raw_extract (hte : t) ~(high : int) ~(low : int) : t =
524
  make (Extract (hte, high, low))
7✔
525

526
let extract (hte : t) ~(high : int) ~(low : int) : t =
527
  match (view hte, high, low) with
12✔
528
  | Val (Bitv bv), high, low ->
3✔
529
    let high = (high * 8) - 1 in
530
    let low = low * 8 in
531
    value (Bitv (Bitvector.extract bv ~high ~low))
3✔
532
  | ( Cvtop
2✔
533
        ( _
534
        , (Zero_extend 24 | Sign_extend 24)
1✔
535
        , ({ node = Symbol { ty = Ty_bitv 8; _ }; _ } as sym) )
536
    , 1
537
    , 0 ) ->
538
    sym
539
  | Concat (_, e), h, l when Ty.size (ty e) = h - l -> e
2✔
540
  | Concat (e, _), 8, 4 when Ty.size (ty e) = 4 -> e
×
541
  | _ ->
5✔
542
    if high - low = Ty.size (ty hte) then hte else raw_extract hte ~high ~low
×
543

544
let raw_concat (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
2✔
545

546
(* TODO: don't rebuild so many values it generates unecessary hc lookups *)
547
let rec concat (msb : t) (lsb : t) : t =
548
  match (view msb, view lsb) with
6✔
549
  | Val (Bitv a), Val (Bitv b) -> value (Bitv (Bitvector.concat a b))
1✔
550
  | Val (Bitv _), Concat (({ node = Val (Bitv _); _ } as b), se) ->
×
551
    raw_concat (concat msb b) se
×
552
  | Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
3✔
553
    if h - l = Ty.size (ty s1) then s1 else raw_extract s1 ~high:h ~low:l
1✔
554
  | Extract (_, _, _), Concat (({ node = Extract (_, _, _); _ } as e2), e3) ->
×
555
    raw_concat (concat msb e2) e3
×
556
  | _ -> raw_concat msb lsb
2✔
557

558
let rec simplify_expr ?(in_relop = false) (hte : t) : t =
4✔
559
  match view hte with
16✔
560
  | Val _ | Symbol _ | Loc _ -> hte
×
561
  | Ptr { base; offset } ->
×
562
    let offset = simplify_expr ~in_relop offset in
563
    if not in_relop then make (Ptr { base; offset })
×
564
    else binop (Ty_bitv 32) Add (value (Bitv base)) offset
×
565
  | List es -> make @@ List (List.map (simplify_expr ~in_relop) es)
×
566
  | App (x, es) -> make @@ App (x, List.map (simplify_expr ~in_relop) es)
×
567
  | Unop (ty, op, e) ->
×
568
    let e = simplify_expr ~in_relop e in
569
    unop ty op e
×
570
  | Binop (ty, op, e1, e2) ->
6✔
571
    let e1 = simplify_expr ~in_relop e1 in
572
    let e2 = simplify_expr ~in_relop e2 in
6✔
573
    binop ty op e1 e2
6✔
574
  | Relop (ty, op, e1, e2) ->
×
575
    let e1 = simplify_expr ~in_relop:true e1 in
576
    let e2 = simplify_expr ~in_relop:true e2 in
×
577
    relop ty op e1 e2
×
578
  | Triop (ty, op, c, e1, e2) ->
×
579
    let c = simplify_expr ~in_relop c in
580
    let e1 = simplify_expr ~in_relop e1 in
×
581
    let e2 = simplify_expr ~in_relop e2 in
×
582
    triop ty op c e1 e2
×
583
  | Cvtop (ty, op, e) ->
×
584
    let e = simplify_expr ~in_relop e in
585
    cvtop ty op e
×
586
  | Naryop (ty, op, es) ->
×
587
    let es = List.map (simplify_expr ~in_relop) es in
588
    naryop ty op es
×
589
  | Extract (s, high, low) ->
×
590
    let s = simplify_expr ~in_relop s in
591
    extract s ~high ~low
×
592
  | Concat (e1, e2) ->
×
593
    let msb = simplify_expr ~in_relop e1 in
594
    let lsb = simplify_expr ~in_relop e2 in
×
595
    concat msb lsb
×
596
  | Binder _ ->
×
597
    (* Not simplifying anything atm *)
598
    hte
599

600
module Cache = Hashtbl.Make (struct
601
  type nonrec t = t
602

603
  let hash = hash
604

605
  let equal = equal
606
end)
607

608
let simplify =
609
  (* TODO: it may make sense to share the cache with simplify_expr ? *)
610
  let cache = Cache.create 512 in
611
  fun e ->
4✔
612
    match Cache.find_opt cache e with
2✔
613
    | Some simplified -> simplified
×
614
    | None ->
2✔
615
      let rec loop x =
616
        let x' = simplify_expr x in
4✔
617
        if equal x x' then begin
2✔
618
          Cache.add cache e x';
619
          x'
2✔
620
        end
621
        else loop x'
2✔
622
      in
623
      loop e
624

625
module Bool = struct
626
  open Ty
627

628
  let of_val = function
629
    | Val True -> Some true
×
630
    | Val False -> Some false
×
631
    | _ -> None
×
632

633
  let true_ = value True
4✔
634

635
  let false_ = value False
4✔
636

637
  let to_val b = if b then true_ else false_
×
638

639
  let v b = to_val b [@@inline]
×
640

641
  let not b =
642
    let bexpr = view b in
×
643
    match of_val bexpr with
×
644
    | Some b -> to_val (not b)
×
645
    | None -> (
×
646
      match bexpr with
647
      | Unop (Ty_bool, Not, cond) -> cond
×
648
      | _ -> unop Ty_bool Not b )
×
649

650
  let equal b1 b2 =
651
    match (view b1, view b2) with
×
652
    | Val True, Val True | Val False, Val False -> true_
×
653
    | _ -> relop Ty_bool Eq b1 b2
×
654

655
  let distinct b1 b2 =
656
    match (view b1, view b2) with
×
657
    | Val True, Val False | Val False, Val True -> true_
×
658
    | _ -> relop Ty_bool Ne b1 b2
×
659

660
  let and_ b1 b2 =
661
    match (of_val (view b1), of_val (view b2)) with
×
662
    | Some true, _ -> b2
×
663
    | _, Some true -> b1
×
664
    | Some false, _ | _, Some false -> false_
×
665
    | _ -> binop Ty_bool And b1 b2
×
666

667
  let or_ b1 b2 =
668
    match (of_val (view b1), of_val (view b2)) with
×
669
    | Some false, _ -> b2
×
670
    | _, Some false -> b1
×
671
    | Some true, _ | _, Some true -> true_
×
672
    | _ -> binop Ty_bool Or b1 b2
×
673

674
  let ite c r1 r2 = triop Ty_bool Ite c r1 r2
×
675
end
676

677
module Make (T : sig
678
  type elt
679

680
  val ty : Ty.t
681

682
  val value : elt -> Value.t
683
end) =
684
struct
685
  open Ty
686

687
  let v i = value (T.value i)
×
688

689
  let sym x = symbol Symbol.(x @: T.ty)
×
690

691
  let ( ~- ) e = unop T.ty Neg e
×
692

693
  let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
×
694

695
  let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
×
696

697
  let ( > ) e1 e2 = relop T.ty Gt e1 e2
×
698

699
  let ( >= ) e1 e2 = relop T.ty Ge e1 e2
×
700

701
  let ( < ) e1 e2 = relop T.ty Lt e1 e2
×
702

703
  let ( <= ) e1 e2 = relop T.ty Le e1 e2
×
704
end
705

706
module Bitv = struct
707
  open Ty
708

709
  module I8 = Make (struct
710
    type elt = int
711

712
    let ty = Ty_bitv 8
713

714
    let value i = Value.Bitv (Bitvector.of_int8 i)
×
715
  end)
716

717
  module I32 = Make (struct
718
    type elt = int32
719

720
    let ty = Ty_bitv 32
721

722
    let value i = Value.Bitv (Bitvector.of_int32 i)
×
723
  end)
724

725
  module I64 = Make (struct
726
    type elt = int64
727

728
    let ty = Ty_bitv 64
729

730
    let value i = Value.Bitv (Bitvector.of_int64 i)
×
731
  end)
732
end
733

734
module Fpa = struct
735
  open Ty
736

737
  module F32 = struct
738
    include Make (struct
739
      type elt = float
740

741
      let ty = Ty_fp 32
742

743
      let value f = Value.Num (F32 (Int32.bits_of_float f))
×
744
    end)
745

746
    (* Redeclare equality due to incorrect theory annotation *)
747
    let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
×
748

749
    let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
×
750
  end
751

752
  module F64 = struct
753
    include Make (struct
754
      type elt = float
755

756
      let ty = Ty_fp 64
757

758
      let value f = Value.Num (F64 (Int64.bits_of_float f))
×
759
    end)
760

761
    (* Redeclare equality due to incorrect theory annotation *)
762
    let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
×
763

764
    let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
×
765
  end
766
end
767

768
module Smtlib = struct
769
  let rec pp fmt (hte : t) =
770
    match view hte with
13✔
771
    | Val v -> Value.Smtlib.pp fmt v
3✔
772
    | Ptr _ -> assert false
773
    | Loc _ -> assert false
774
    | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
5✔
775
    | List _ -> assert false
776
    | App _ -> assert false
777
    | Unop (ty, op, e) ->
×
778
      Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Ty.Smtlib.pp_unop (ty, op) pp e
779
    | Binop (ty, op, e1, e2) ->
2✔
780
      Fmt.pf fmt "@[<hov 1>(%a@ %a@ %a)@]" Ty.Smtlib.pp_binop (ty, op) pp e1 pp
781
        e2
782
    | Triop _ -> assert false
783
    | Relop (ty, op, e1, e2) ->
3✔
784
      Fmt.pf fmt "@[<hov 1>(%a@ %a@ %a)@]" Ty.Smtlib.pp_relop (ty, op) pp e1 pp
785
        e2
786
    | Cvtop _ -> assert false
787
    | Naryop _ -> assert false
788
    | Extract _ -> assert false
789
    | Concat _ -> assert false
790
    | Binder _ -> assert false
791
end
792

793
let inline_symbol_values map e =
794
  let rec aux e =
2✔
795
    match view e with
2✔
796
    | Val _ | Loc _ -> e
×
797
    | Symbol symbol -> Option.value ~default:e (Symbol.Map.find_opt symbol map)
2✔
798
    | Ptr e ->
×
799
      let offset = aux e.offset in
800
      make @@ Ptr { e with offset }
×
801
    | List vs ->
×
802
      let vs = List.map aux vs in
803
      list vs
×
804
    | App (x, vs) ->
×
805
      let vs = List.map aux vs in
806
      app x vs
×
807
    | Unop (ty, op, v) ->
×
808
      let v = aux v in
809
      unop ty op v
×
810
    | Binop (ty, op, v1, v2) ->
×
811
      let v1 = aux v1 in
812
      let v2 = aux v2 in
×
813
      binop ty op v1 v2
×
814
    | Triop (ty, op, v1, v2, v3) ->
×
815
      let v1 = aux v1 in
816
      let v2 = aux v2 in
×
817
      let v3 = aux v3 in
×
818
      triop ty op v1 v2 v3
×
819
    | Cvtop (ty, op, v) ->
×
820
      let v = aux v in
821
      cvtop ty op v
×
822
    | Relop (ty, op, v1, v2) ->
×
823
      let v1 = aux v1 in
824
      let v2 = aux v2 in
×
825
      relop ty op v1 v2
×
826
    | Naryop (ty, op, vs) ->
×
827
      let vs = List.map aux vs in
828
      naryop ty op vs
×
829
    | Extract (e, high, low) ->
×
830
      let e = aux e in
831
      extract e ~high ~low
×
832
    | Concat (e1, e2) ->
×
833
      let e1 = aux e1 in
834
      let e2 = aux e2 in
×
835
      concat e1 e2
×
836
    | Binder (b, vars, e) ->
×
837
      let e = aux e in
838
      binder b vars e
×
839
  in
840
  aux e
841

842
module Set = struct
843
  include PatriciaTree.MakeHashconsedSet (Key) ()
844

845
  let hash = to_int
846

847
  let pp fmt v =
848
    Fmt.pf fmt "@[<hov 1>%a@]"
×
849
      (pretty ~pp_sep:(fun fmt () -> Fmt.pf fmt "@;") pp)
×
850
      v
851

852
  let get_symbols (set : t) =
853
    let tbl = Hashtbl.create 64 in
×
854
    let rec symbols hte =
×
855
      match view hte with
×
856
      | Val _ | Loc _ -> ()
×
857
      | Ptr { offset; _ } -> symbols offset
×
858
      | Symbol s -> Hashtbl.replace tbl s ()
×
859
      | List es -> List.iter symbols es
×
860
      | App (_, es) -> List.iter symbols es
×
861
      | Unop (_, _, e1) -> symbols e1
×
862
      | Binop (_, _, e1, e2) ->
×
863
        symbols e1;
864
        symbols e2
×
865
      | Triop (_, _, e1, e2, e3) ->
×
866
        symbols e1;
867
        symbols e2;
×
868
        symbols e3
×
869
      | Relop (_, _, e1, e2) ->
×
870
        symbols e1;
871
        symbols e2
×
872
      | Cvtop (_, _, e) -> symbols e
×
873
      | Naryop (_, _, es) -> List.iter symbols es
×
874
      | Extract (e, _, _) -> symbols e
×
875
      | Concat (e1, e2) ->
×
876
        symbols e1;
877
        symbols e2
×
878
      | Binder (_, vars, e) ->
×
879
        List.iter symbols vars;
880
        symbols e
×
881
    in
882
    iter symbols set;
883
    Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
884

885
  let map f set =
886
    fold
×
887
      (fun elt set ->
888
        let elt = f elt in
×
889
        add elt set )
×
890
      set empty
891

892
  let inline_symbol_values symbol_map set =
893
    map (inline_symbol_values symbol_map) set
×
894
end
895

896
let rec split_conjunctions (e : t) : Set.t =
897
  match view e with
×
898
  | Binop (Ty_bool, And, e1, e2) ->
×
899
    let s1 = split_conjunctions e1 in
900
    let s2 = split_conjunctions e2 in
×
901
    Set.union s1 s2
×
902
  | _ -> Set.singleton e
×
903

904
let rec split_disjunctions (e : t) : Set.t =
905
  match view e with
×
906
  | Binop (Ty_bool, Or, e1, e2) ->
×
907
    let s1 = split_disjunctions e1 in
908
    let s2 = split_disjunctions e2 in
×
909
    Set.union s1 s2
×
910
  | _ -> Set.singleton e
×
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc