• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

input-output-hk / constrained-generators / 457

10 Dec 2025 01:30PM UTC coverage: 76.948% (-0.5%) from 77.401%
457

push

github

web-flow
Merge 7c2c067b5 into 966f65f3c

15 of 15 new or added lines in 2 files covered. (100.0%)

24 existing lines in 5 files now uncovered.

3969 of 5158 relevant lines covered (76.95%)

1.45 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

75.38
/src/Constrained/NumOrd.hs
1
{-# LANGUAGE AllowAmbiguousTypes #-}
2
{-# LANGUAGE CPP #-}
3
{-# LANGUAGE ConstraintKinds #-}
4
{-# LANGUAGE DataKinds #-}
5
{-# LANGUAGE DefaultSignatures #-}
6
{-# LANGUAGE DerivingVia #-}
7
{-# LANGUAGE FlexibleContexts #-}
8
{-# LANGUAGE FlexibleInstances #-}
9
{-# LANGUAGE GADTs #-}
10
{-# LANGUAGE LambdaCase #-}
11
{-# LANGUAGE PatternSynonyms #-}
12
{-# LANGUAGE ScopedTypeVariables #-}
13
{-# LANGUAGE StandaloneDeriving #-}
14
{-# LANGUAGE TypeApplications #-}
15
{-# LANGUAGE TypeFamilies #-}
16
{-# LANGUAGE TypeOperators #-}
17
{-# LANGUAGE UndecidableInstances #-}
18
{-# LANGUAGE UndecidableSuperClasses #-}
19
{-# LANGUAGE ViewPatterns #-}
20
-- Random Natural, Arbitrary Natural, Uniform Natural
21
{-# OPTIONS_GHC -Wno-orphans #-}
22

23
-- | Everything we need to deal with numbers and comparisons between them
24
module Constrained.NumOrd (
25
  NumSpec (..),
26
  (>.),
27
  (<.),
28
  (-.),
29
  (>=.),
30
  (<=.),
31
  (+.),
32
  (*.),
33
  negate_,
34
  cardinality,
35
  caseBoolSpec,
36
  addSpecInt,
37
  emptyNumSpec,
38
  cardinalNumSpec,
39
  combineNumSpec,
40
  genFromNumSpec,
41
  shrinkWithNumSpec,
42
  fixupWithNumSpec,
43
  fixupWithTypeSpec,
44
  conformsToNumSpec,
45
  toPredsNumSpec,
46
  OrdLike (..),
47
  MaybeBounded (..),
48
  NumLike (..),
49
  HasDivision (..),
50
  Numeric,
51
  Number,
52
  nubOrd,
53
  IntW (..),
54
  OrdW (..),
55
) where
56

57
import Constrained.AbstractSyntax
58
import Constrained.Base
59
import Constrained.Conformance
60
import Constrained.Core (Value (..), unionWithMaybe)
61
import Constrained.FunctionSymbol
62
import Constrained.GenT
63
import Constrained.Generic
64
import Constrained.List
65
import Constrained.PrettyUtils
66
import Control.Applicative ((<|>))
67
import Control.Arrow (first)
68
import Data.Containers.ListUtils
69
import Data.Foldable
70
import Data.Kind
71
import Data.List (nub)
72
import Data.List.NonEmpty (NonEmpty ((:|)))
73
import qualified Data.List.NonEmpty as NE
74
import Data.Maybe
75
import Data.Typeable (typeOf)
76
import Data.Word
77
import GHC.Int
78
import GHC.Natural
79
import GHC.Real
80
import System.Random.Stateful (Random (..), Uniform (..))
81
import Test.QuickCheck (Arbitrary (arbitrary, shrink), choose, frequency)
82

83
-- | Witnesses for comparison operations (<=. and <. and <=. and >=.) on numbers
84
-- The other operations are defined in terms of these.
85
data OrdW (dom :: [Type]) (rng :: Type) where
86
  LessOrEqualW :: OrdLike a => OrdW '[a, a] Bool
87
  LessW :: OrdLike a => OrdW '[a, a] Bool
88
  GreaterOrEqualW :: OrdLike a => OrdW '[a, a] Bool
89
  GreaterW :: OrdLike a => OrdW '[a, a] Bool
90

91
deriving instance Eq (OrdW ds r)
×
92

93
instance Show (OrdW ds r) where
×
94
  show LessOrEqualW = "<=."
2✔
95
  show LessW = "<."
2✔
96
  show GreaterOrEqualW = ">=."
×
97
  show GreaterW = ">."
2✔
98

99
instance Semantics OrdW where
100
  semantics LessOrEqualW = (<=)
2✔
101
  semantics LessW = (<)
2✔
102
  semantics GreaterW = (>)
2✔
103
  semantics GreaterOrEqualW = (>=)
2✔
104

105
instance Syntax OrdW where
2✔
106
  isInfix _ = True
2✔
107

108
-- =============================================
109
-- OrdLike. Ord for Numbers in the Logic
110
-- =============================================
111

112
-- | Ancillary things we need to be able to implement `Logic` instances for
113
-- `OrdW` that make sense for a given type we are comparing things on.
114
class (Ord a, HasSpec a) => OrdLike a where
115
  leqSpec :: a -> Specification a
116
  default leqSpec ::
117
    ( GenericRequires a
118
    , OrdLike (SimpleRep a)
119
    ) =>
120
    a ->
121
    Specification a
122
  leqSpec = fromSimpleRepSpec . leqSpec . toSimpleRep
×
123

124
  ltSpec :: a -> Specification a
125
  default ltSpec ::
126
    ( OrdLike (SimpleRep a)
127
    , GenericRequires a
128
    ) =>
129
    a ->
130
    Specification a
131
  ltSpec = fromSimpleRepSpec . ltSpec . toSimpleRep
×
132

133
  geqSpec :: a -> Specification a
134
  default geqSpec ::
135
    ( OrdLike (SimpleRep a)
136
    , GenericRequires a
137
    ) =>
138
    a ->
139
    Specification a
140
  geqSpec = fromSimpleRepSpec . geqSpec . toSimpleRep
×
141

142
  gtSpec :: a -> Specification a
143
  default gtSpec ::
144
    ( OrdLike (SimpleRep a)
145
    , GenericRequires a
146
    ) =>
147
    a ->
148
    Specification a
149
  gtSpec = fromSimpleRepSpec . gtSpec . toSimpleRep
×
150

151
-- | This instance should be general enough for every type of Number that has a NumSpec as its TypeSpec
152
instance {-# OVERLAPPABLE #-} (Ord a, HasSpec a, MaybeBounded a, Num a, TypeSpec a ~ NumSpec a) => OrdLike a where
153
  leqSpec l = typeSpec $ NumSpecInterval Nothing (Just l)
2✔
154
  ltSpec l
2✔
155
    | Just b <- lowerBound
2✔
156
    , l == b =
1✔
157
        ErrorSpec (pure ("ltSpec @" ++ show (typeOf l) ++ " " ++ show l))
×
158
    | otherwise = typeSpec $ NumSpecInterval Nothing (Just (l - 1))
1✔
159
  geqSpec l = typeSpec $ NumSpecInterval (Just l) Nothing
2✔
160
  gtSpec l
2✔
161
    | Just b <- upperBound
2✔
162
    , l == b =
1✔
163
        ErrorSpec (pure ("gtSpec @" ++ show (typeOf l) ++ " " ++ show l))
×
164
    | otherwise = typeSpec $ NumSpecInterval (Just (l + 1)) Nothing
1✔
165

166
-- ========================================================================
167
-- helper functions for the TypeSpec for Numbers
168
-- ========================================================================
169

170
-- | Helper class for talking about things that _might_ be `Bounded`
171
class MaybeBounded a where
172
  lowerBound :: Maybe a
173
  upperBound :: Maybe a
174

175
  default lowerBound :: Bounded a => Maybe a
176
  lowerBound = Just minBound
2✔
177

178
  default upperBound :: Bounded a => Maybe a
179
  upperBound = Just maxBound
2✔
180

181
newtype Unbounded a = Unbounded a
182

183
instance MaybeBounded (Unbounded a) where
184
  lowerBound = Nothing
2✔
185
  upperBound = Nothing
2✔
186

187
instance MaybeBounded Int
2✔
188

189
instance MaybeBounded Int64
2✔
190

191
instance MaybeBounded Int32
2✔
192

193
instance MaybeBounded Int16
2✔
194

195
instance MaybeBounded Int8
2✔
196

197
instance MaybeBounded Word64
2✔
198

199
instance MaybeBounded Word32
2✔
200

201
instance MaybeBounded Word16
2✔
202

203
instance MaybeBounded Word8
2✔
204

205
deriving via Unbounded Integer instance MaybeBounded Integer
2✔
206

207
deriving via Unbounded (Ratio Integer) instance MaybeBounded (Ratio Integer)
×
208

209
deriving via Unbounded Float instance MaybeBounded Float
2✔
210

211
deriving via Unbounded Double instance MaybeBounded Double
2✔
212

213
instance MaybeBounded Natural where
214
  lowerBound = Just 0
2✔
215
  upperBound = Nothing
2✔
216

217
-- ===================================================================
218
-- The TypeSpec for numbers
219
-- ===================================================================
220

221
-- | t`TypeSpec` for numbers - represented as a single interval
222
data NumSpec n = NumSpecInterval (Maybe n) (Maybe n)
223

224
instance Ord n => Eq (NumSpec n) where
×
225
  NumSpecInterval ml mh == NumSpecInterval ml' mh'
2✔
226
    | isEmpty ml mh = isEmpty ml' mh'
2✔
227
    | isEmpty ml' mh' = isEmpty ml mh
1✔
228
    | otherwise = ml == ml' && mh == mh'
1✔
229
    where
230
      isEmpty (Just a) (Just b) = a > b
2✔
231
      isEmpty _ _ = False
2✔
232

233
instance Show n => Show (NumSpec n) where
×
234
  show (NumSpecInterval ml mu) = lb ++ ".." ++ ub
2✔
235
    where
236
      lb = "[" ++ maybe "" show ml
2✔
237
      ub = maybe "" show mu ++ "]"
2✔
238

239
instance Ord n => Semigroup (NumSpec n) where
×
240
  NumSpecInterval ml mu <> NumSpecInterval ml' mu' =
2✔
241
    NumSpecInterval
2✔
242
      (unionWithMaybe max ml ml')
2✔
243
      (unionWithMaybe min mu mu')
2✔
244

245
instance Ord n => Monoid (NumSpec n) where
×
246
  mempty = NumSpecInterval Nothing Nothing
2✔
247

248
-- ===========================================
249
-- Arbitrary for Num like things
250
-- ===========================================
251

252
instance (Arbitrary a, Ord a) => Arbitrary (NumSpec a) where
253
  arbitrary = do
2✔
254
    m <- arbitrary
2✔
255
    m' <- arbitrary
2✔
256
    frequency [(10, pure $ mkLoHiInterval m m'), (1, pure $ NumSpecInterval m m')]
2✔
257
    where
258
      mkLoHiInterval (Just a) (Just b) = NumSpecInterval (Just $ min a b) (Just $ max a b)
2✔
259
      mkLoHiInterval m m' = NumSpecInterval m m'
2✔
260
  shrink (NumSpecInterval m m') =
×
261
    uncurry NumSpecInterval <$> shrink (m, m')
×
262

263
#if !MIN_VERSION_QuickCheck(2, 17, 0)
264
instance Arbitrary Natural where
265
  arbitrary = wordToNatural . abs <$> arbitrary
×
266
  shrink n = [wordToNatural w | w <- shrink (naturalToWord n)]
2✔
267
#endif
268

269
instance Uniform Natural where
270
  uniformM g = wordToNatural . abs <$> uniformM g
×
271

272
instance Random Natural where
×
273
  randomR (lo, hi) g = first fromIntegral $ randomR (toInteger lo, toInteger hi) g
2✔
274

275
instance Random (Ratio Integer) where
×
276
  randomR (lo, hi) g =
2✔
277
    let (r, g') = random g
2✔
278
     in (lo + (hi - lo) * r, g')
1✔
279
  random g =
2✔
280
    let (d, g') = first ((+ 1) . abs) $ random g
2✔
281
        (n, g'') = randomR (0, d) g'
2✔
282
     in (n % d, g'')
1✔
283

284
-- ==============================================================================
285
-- Operations on NumSpec, that give it the required properties of a TypeSpec
286
-- ==============================================================================
287

288
-- | Admits anything
289
emptyNumSpec :: Ord a => NumSpec a
290
emptyNumSpec = mempty
2✔
291

292
guardNumSpec ::
293
  (Ord n, HasSpec n, TypeSpec n ~ NumSpec n) =>
294
  [String] ->
295
  NumSpec n ->
296
  Specification n
297
guardNumSpec msg s@(NumSpecInterval (Just a) (Just b))
2✔
298
  | a > b = ErrorSpec ("NumSpec has low bound greater than hi bound" :| (("   " ++ show s) : msg))
2✔
299
  | a == b = equalSpec a
2✔
300
guardNumSpec _ s = typeSpec s
2✔
301

302
-- | Conjunction
303
combineNumSpec ::
304
  (HasSpec n, Ord n, TypeSpec n ~ NumSpec n) =>
305
  NumSpec n ->
306
  NumSpec n ->
307
  Specification n
308
combineNumSpec s s' = guardNumSpec ["when combining two NumSpecs", "   " ++ show s, "   " ++ show s'] (s <> s')
2✔
309

310
-- | Generate a value that satisfies the spec
311
genFromNumSpec ::
312
  (MonadGenError m, Show n, Random n, Ord n, Num n, MaybeBounded n) =>
313
  NumSpec n ->
314
  GenT m n
315
genFromNumSpec (NumSpecInterval ml mu) = do
2✔
316
  n <- sizeT
2✔
317
  pureGen . choose =<< constrainInterval (ml <|> lowerBound) (mu <|> upperBound) (fromIntegral n)
2✔
318

319
-- TODO: fixme
320

321
-- | Try to shrink using a `NumSpec`
322
shrinkWithNumSpec :: Arbitrary n => NumSpec n -> n -> [n]
323
shrinkWithNumSpec _ = shrink
2✔
324

325
-- TODO: fixme
326

327
fixupWithNumSpec :: Arbitrary n => NumSpec n -> n -> Maybe n
328
fixupWithNumSpec _ = listToMaybe . shrink
2✔
329

330
constrainInterval ::
331
  (MonadGenError m, Ord a, Num a, Show a) => Maybe a -> Maybe a -> Integer -> m (a, a)
332
constrainInterval ml mu r =
2✔
333
  case (ml, mu) of
2✔
334
    (Nothing, Nothing) -> pure (-r', r')
2✔
335
    (Just l, Nothing)
336
      | l < 0 -> pure (max l (negate r'), r')
2✔
337
      | otherwise -> pure (l, l + 2 * r')
1✔
338
    (Nothing, Just u)
339
      | u > 0 -> pure (negate r', min u r')
2✔
340
      | otherwise -> pure (u - r' - r', u)
1✔
341
    (Just l, Just u)
342
      | l > u -> genError ("bad interval: " ++ show l ++ " " ++ show u)
1✔
343
      | u < 0 -> pure (safeSub l (safeSub l u r') r', u)
2✔
344
      | l >= 0 -> pure (l, safeAdd u (safeAdd u l r') r')
2✔
345
      -- TODO: this is a bit suspect if the bounds are lopsided
346
      | otherwise -> pure (max l (-r'), min u r')
1✔
347
  where
348
    r' = abs $ fromInteger r
2✔
349
    safeSub l a b
2✔
350
      | a - b > a = l
2✔
351
      | otherwise = max l (a - b)
1✔
352
    safeAdd u a b
2✔
353
      | a + b < a = u
2✔
354
      | otherwise = min u (a + b)
1✔
355

356
-- | Check that a value is in the spec
357
conformsToNumSpec :: Ord n => n -> NumSpec n -> Bool
358
conformsToNumSpec i (NumSpecInterval ml mu) = maybe True (<= i) ml && maybe True (i <=) mu
2✔
359

360
-- =======================================================================
361
-- Several of the methods of HasSpec that have default implementations
362
-- could benefit from type specific implementations for numbers. Those
363
-- implementations are found here
364
-- =====================================================================
365

366
-- | Builds a MemberSpec, but returns an Error spec if the list is empty
367
nubOrdMemberSpec :: Ord a => String -> [a] -> Specification a
368
nubOrdMemberSpec message xs =
2✔
369
  memberSpec
2✔
370
    (nubOrd xs)
2✔
371
    ( NE.fromList
×
372
        [ "In call to nubOrdMemberSpec"
×
373
        , "Called from context"
×
374
        , message
×
375
        , "The input is the empty list."
×
376
        ]
377
    )
378

379
lowBound :: Bounded n => Maybe n -> n
380
lowBound Nothing = minBound
2✔
381
lowBound (Just n) = n
×
382

383
highBound :: Bounded n => Maybe n -> n
384
highBound Nothing = maxBound
2✔
385
highBound (Just n) = n
×
386

387
-- | The exact count of the number elements in a Bounded NumSpec
388
countSpec :: forall n. (Bounded n, Integral n) => NumSpec n -> Integer
389
countSpec (NumSpecInterval lo hi) = if lo > hi then 0 else toInteger high - toInteger low + 1
1✔
390
  where
391
    high = highBound hi
2✔
392
    low = lowBound lo
2✔
393

394
-- | The exact number of elements in a Bounded Integral type.
395
finiteSize :: forall n. (Integral n, Bounded n) => Integer
396
finiteSize = toInteger (maxBound @n) - toInteger (minBound @n) + 1
2✔
397

398
-- | This is an optimizing version of  TypeSpec :: TypeSpec n -> [n] -> Specification n
399
--   for Bounded NumSpecs.
400
--                    notInNumSpec :: Bounded n => TypeSpec n -> [n] -> Specification n
401
--   We use this function to specialize the (HasSpec t) method 'typeSpecOpt' for Bounded n.
402
--   So given (TypeSpec interval badlist) we might want to transform it to (MemberSpec goodlist)
403
--   There are 2 opportunities where this can payoff big time.
404
--   1) Suppose the total count of the elements in the interval is < length badlist
405
--      we can then return (MemberSpec (filter elements (`notElem` badlist)))
406
--      this must be smaller than (TypeSpec interval badlist) because the filtered list must be smaller than badlist
407
--   2) Suppose the type 't' is finite with size N. If the length of the badlist > (N/2), then the number of possible
408
--      good things must be smaller than (length badlist), because (possible good + bad == N), so regardless of the
409
--      count of the interval (MemberSpec (filter elements (`notElem` badlist))) is better. Sometimes much better.
410
--      Example, let 'n' be the finite set {0,1,2,3,4,5,6,7,8,9} and the bad list be [0,1,3,4,5,6,8,9]
411
--      (TypeSpec [0..9]  [0,1,3,4,5,6,8,9]) = filter  {0,1,2,3,4,5,6,7,8,9} (`notElem` [0,1,3,4,5,6,8,9]) = [2,7]
412
--      So (MemberSpec [2,7]) is better than  (TypeSpec [0..9]  [0,1,3,4,5,6,8,9]). This works no matter what
413
--      the count of interval is. We only need the (length badlist > (N/2)).
414
notInNumSpec ::
415
  forall n.
416
  ( HasSpec n
417
  , TypeSpec n ~ NumSpec n
418
  , Bounded n
419
  , Integral n
420
  ) =>
421
  NumSpec n ->
422
  [n] ->
423
  Specification n
424
notInNumSpec ns@(NumSpecInterval a b) bad
2✔
425
  | toInteger (length bad) > (finiteSize @n `div` 2) || countSpec ns < toInteger (length bad) =
1✔
426
      nubOrdMemberSpec
×
427
        ("call to: (notInNumSpec " ++ show ns ++ " " ++ show bad ++ ")")
×
428
        [x | x <- [lowBound a .. highBound b], notElem x bad]
×
429
  | otherwise = TypeSpec @n ns bad
1✔
430

431
-- ==========================================================================
432
-- Num n => (NumSpec n) can support operation of Num as interval arithmetic.
433
-- So we will make a (Num (NumSpec Integer)) instance. We won't make other
434
-- instances, because  they would be subject to overflow.
435
-- Given operator ☉, then (a,b) ☉ (c,d) = (minimum s, maximum s) where s = [a ☉ c, a ☉ d, b ☉ c, b ☉ d]
436
-- There are simpler rules for (+) and (-), but for (*) we need to use the general rule.
437
-- ==========================================================================
438

439
guardEmpty :: (Ord n, Num n) => Maybe n -> Maybe n -> NumSpec n -> NumSpec n
440
guardEmpty (Just a) (Just b) s
2✔
441
  | a <= b = s
2✔
442
  | otherwise = NumSpecInterval (Just 1) (Just 0)
1✔
443
guardEmpty _ _ s = s
2✔
444

445
addNumSpec :: (Ord n, Num n) => NumSpec n -> NumSpec n -> NumSpec n
446
addNumSpec (NumSpecInterval x y) (NumSpecInterval a b) =
2✔
447
  guardEmpty x y $
2✔
448
    guardEmpty a b $
2✔
449
      NumSpecInterval ((+) <$> x <*> a) ((+) <$> y <*> b)
2✔
450

451
subNumSpec :: (Ord n, Num n) => NumSpec n -> NumSpec n -> NumSpec n
452
subNumSpec (NumSpecInterval x y) (NumSpecInterval a b) =
2✔
453
  guardEmpty x y $
2✔
454
    guardEmpty a b $
2✔
455
      NumSpecInterval ((-) <$> x <*> b) ((-) <$> y <*> a)
2✔
456

457
multNumSpec :: (Ord n, Num n) => NumSpec n -> NumSpec n -> NumSpec n
458
multNumSpec (NumSpecInterval a b) (NumSpecInterval c d) =
2✔
459
  guardEmpty a b $
2✔
460
    guardEmpty c d $
2✔
461
      NumSpecInterval (unT (minimum s)) (unT (maximum s))
2✔
462
  where
463
    s = [multT (neg a) (neg c), multT (neg a) (pos d), multT (pos b) (neg c), multT (pos b) (pos d)]
2✔
464

465
negNumSpec :: Num n => NumSpec n -> NumSpec n
466
negNumSpec (NumSpecInterval lo hi) = NumSpecInterval (negate <$> hi) (negate <$> lo)
2✔
467

468
instance Num (NumSpec Integer) where
469
  (+) = addNumSpec
2✔
470
  (-) = subNumSpec
2✔
471
  (*) = multNumSpec
2✔
472
  negate = negNumSpec
2✔
473
  fromInteger n = NumSpecInterval (Just (fromInteger n)) (Just (fromInteger n))
2✔
474
  abs = error "No abs in the Num (NumSpec  Integer) instance"
×
475
  signum = error "No signum in the Num (NumSpec  Integer) instance"
×
476

477
-- ========================================================================
478
-- Helper functions for interval multiplication
479
--  (a,b) * (c,d) = (minimum s, maximum s) where s = [a * c, a * d, b * c, b * d]
480

481
-- | T is a sort of special version of Maybe, with two Nothings.
482
--   Given:: NumSpecInterval (Maybe n) (Maybe n) -> Numspec
483
--   We can't distinguish between the two Nothings in (NumSpecInterval Nothing Nothing)
484
--   But using (NumSpecInterval NegInf PosInf) we can, In fact we can make a total ordering on 'T'
485
--   So an ascending Sorted [T x] would all the NegInf on the left and all the PosInf on the right, with
486
--   the Ok's sorted in between. I.e. [NegInf, NegInf, Ok 3, Ok 6, Ok 12, Pos Inf]
487
data T x = NegInf | Ok x | PosInf
488
  deriving (Show, Eq, Ord)
×
489

490
-- \| Conversion between (T x) and (Maybe x)
491
unT :: T x -> Maybe x
492
unT (Ok x) = Just x
2✔
493
unT _ = Nothing
2✔
494

495
-- | Use this on the lower bound. I.e. lo from pair (lo,hi)
496
neg :: Maybe x -> T x
497
neg Nothing = NegInf
2✔
498
neg (Just x) = Ok x
2✔
499

500
-- | Use this on the upper bound. I.e. hi from pair (lo,hi)
501
pos :: Maybe x -> T x
502
pos Nothing = PosInf
2✔
503
pos (Just x) = Ok x
2✔
504

505
-- | multiply two (T x), correctly handling the infinities NegInf and PosInf
506
multT :: Num x => T x -> T x -> T x
507
multT NegInf NegInf = PosInf
2✔
508
multT NegInf PosInf = NegInf
2✔
509
multT NegInf (Ok _) = NegInf
2✔
510
multT (Ok _) NegInf = NegInf
2✔
511
multT (Ok x) (Ok y) = Ok (x * y)
2✔
512
multT (Ok _) PosInf = PosInf
2✔
513
multT PosInf PosInf = PosInf
2✔
514
multT PosInf NegInf = NegInf
2✔
515
multT PosInf (Ok _) = PosInf
2✔
516

517
-- ========================================================================
518
-- We have
519
-- (1) Num Integer
520
-- (2) Num (NumSpec Integer)   And we need
521
-- (3) Num (Specification Integer)
522
-- We need this to implement the method cardinalTypeSpec of (HasSpec t).
523
-- cardinalTypeSpec :: HasSpec a => TypeSpec a -> Specification Integer
524
-- Basically for defining these two cases
525
-- cardinalTypeSpec (Cartesian x y) = (cardinality x) * (cardinality y)
526
-- cardinalTypeSpec (SumSpec leftspec rightspec) = (cardinality leftspec) + (cardinality rightspec)
527
-- So we define addSpecInt for (+)   and  multSpecInt for (*)
528

529
-- | What constraints we need to make HasSpec instance for a Haskell numeric type.
530
--   By abstracting over this, we can avoid making actual HasSpec instances until
531
--   all the requirements (HasSpec Bool, HasSpec(Sum a b)) have been met in
532
--   Constrained.TheKnot.
533
type Number n = (Num n, Enum n, TypeSpec n ~ NumSpec n, Num (NumSpec n), HasSpec n, Ord n)
534

535
-- | Addition on `Specification` for `Number`
536
addSpecInt ::
537
  Number n =>
538
  Specification n ->
539
  Specification n ->
540
  Specification n
541
addSpecInt x y = operateSpec " + " (+) (+) x y
1✔
542

543
subSpecInt ::
544
  Number n =>
545
  Specification n ->
546
  Specification n ->
547
  Specification n
548
subSpecInt x y = operateSpec " - " (-) (-) x y
1✔
549

550
multSpecInt ::
551
  Number n =>
552
  Specification n ->
553
  Specification n ->
554
  Specification n
555
multSpecInt x y = operateSpec " * " (*) (*) x y
×
556

557
-- | let 'n' be some numeric type, and 'f' and 'ft' be operations on 'n' and (TypeSpec n)
558
--   Then lift these operations from (TypeSpec n) to (Specification n)
559
--   Normally 'f' will be a (Num n) instance method (+,-,*) on n,
560
--   and 'ft' will be a a (Num (TypeSpec n)) instance method (+,-,*) on (TypeSpec n)
561
--   But this will work for any operations 'f' and 'ft' with the right types
562
operateSpec ::
563
  Number n =>
564
  String ->
565
  (n -> n -> n) ->
566
  (TypeSpec n -> TypeSpec n -> TypeSpec n) ->
567
  Specification n ->
568
  Specification n ->
569
  Specification n
570
operateSpec operator f ft (ExplainSpec es x) y = explainSpec es $ operateSpec operator f ft x y
1✔
571
operateSpec operator f ft x (ExplainSpec es y) = explainSpec es $ operateSpec operator f ft x y
×
572
operateSpec operator f ft x y = case (x, y) of
2✔
573
  (ErrorSpec xs, ErrorSpec ys) -> ErrorSpec (xs <> ys)
×
574
  (ErrorSpec xs, _) -> ErrorSpec xs
×
575
  (_, ErrorSpec ys) -> ErrorSpec ys
×
576
  (TrueSpec, _) -> TrueSpec
2✔
577
  (_, TrueSpec) -> TrueSpec
2✔
578
  (_, SuspendedSpec _ _) -> TrueSpec
×
579
  (SuspendedSpec _ _, _) -> TrueSpec
×
580
  (TypeSpec a bad1, TypeSpec b bad2) -> TypeSpec (ft a b) [f b1 b2 | b1 <- bad1, b2 <- bad2]
×
581
  (MemberSpec xs, MemberSpec ys) ->
582
    nubOrdMemberSpec
2✔
583
      (show x ++ operator ++ show y)
×
584
      [f x1 y1 | x1 <- NE.toList xs, y1 <- NE.toList ys]
2✔
585
  -- This block is all (MemberSpec{}, TypeSpec{}) with MemberSpec on the left
586
  (MemberSpec ys, TypeSpec (NumSpecInterval (Just i) (Just j)) bad) ->
587
    let xs = NE.toList ys
×
588
     in nubOrdMemberSpec
589
          (show x ++ operator ++ show y)
×
590
          [f x1 y1 | x1 <- xs, y1 <- [i .. j], not (elem y1 bad)]
×
591
  -- Somewhat loose spec here, but more accurate then TrueSpec, it is exact if 'xs' has one element (i.e. 'xs' = [i])
592
  (MemberSpec ys, TypeSpec (NumSpecInterval lo hi) bads) ->
593
    -- We use the specialized version of 'TypeSpec' 'typeSpecOpt'
594
    let xs = NE.toList ys
2✔
595
     in typeSpecOpt
596
          (NumSpecInterval (f (minimum xs) <$> lo) (f (maximum xs) <$> hi))
1✔
597
          [f x1 b | x1 <- xs, b <- bads]
1✔
598
  -- we flip the arguments, so we need to flip the functions as well
599
  (sleft, sright) -> operateSpec operator (\a b -> f b a) (\u v -> ft v u) sright sleft
1✔
600

601
-- | This is very liberal, since in lots of cases it returns TrueSpec.
602
--  for example all operations on SuspendedSpec, and certain
603
--  operations between TypeSpec and MemberSpec. Perhaps we should
604
--  remove it. Only the addSpec (+) and multSpec (*) methods are used.
605
--  But, it is kind of cool ...
606
--  In Fact we can use this to make Num(Specification n) instance for any 'n'.
607
--  But, only Integer is safe, because in all other types (+) and especially
608
--  (-) can lead to overflow or underflow failures.
609
instance Number Integer => Num (Specification Integer) where
×
610
  (+) = addSpecInt
2✔
611
  (-) = subSpecInt
×
612
  (*) = multSpecInt
×
613
  fromInteger n = TypeSpec (NumSpecInterval (Just n) (Just n)) []
×
614
  abs _ = TrueSpec
×
615
  signum _ = TrueSpec
×
616

617
-- ===========================================================================
618

619
-- | Put some (admittedly loose bounds) on the number of solutions that
620
--   'genFromTypeSpec' might return. For lots of types, there is no way to be very accurate.
621
--   Here we lift the HasSpec methods 'cardinalTrueSpec' and 'cardinalTypeSpec'
622
--   from (TypeSpec Integer) to (Specification Integer)
623
cardinality ::
624
  forall a. (Number Integer, HasSpec a) => Specification a -> Specification Integer
625
cardinality (ExplainSpec es s) = explainSpec es (cardinality s)
2✔
626
cardinality TrueSpec = cardinalTrueSpec @a
2✔
627
cardinality (MemberSpec es) = equalSpec (toInteger $ length (nub (NE.toList es)))
2✔
628
cardinality ErrorSpec {} = equalSpec 0
2✔
629
cardinality (TypeSpec s cant) =
630
  subSpecInt
2✔
631
    (cardinalTypeSpec @a s)
2✔
632
    (equalSpec (toInteger $ length (nub $ filter (\c -> conformsTo @a c s) cant)))
2✔
633
cardinality SuspendedSpec {} = cardinalTrueSpec @a
2✔
634

635
-- | A generic function to use as an instance for the HasSpec method
636
--   cardinalTypeSpec :: HasSpec a => TypeSpec a -> Specification Integer
637
--   for types 'n' such that (TypeSpec n ~ NumSpec n)
638
cardinalNumSpec ::
639
  forall n. (Integral n, MaybeBounded n, HasSpec n) => NumSpec n -> Specification Integer
640
cardinalNumSpec (NumSpecInterval (Just lo) (Just hi)) =
2✔
641
  if hi >= lo
1✔
642
    then equalSpec (toInteger hi - toInteger lo + 1)
2✔
UNCOV
643
    else equalSpec 0
×
644
cardinalNumSpec (NumSpecInterval Nothing (Just hi)) =
645
  case lowerBound @n of
2✔
646
    Just lo -> equalSpec (toInteger hi - toInteger lo)
2✔
647
    Nothing -> TrueSpec
×
648
cardinalNumSpec (NumSpecInterval (Just lo) Nothing) =
649
  case upperBound @n of
2✔
650
    Just hi -> equalSpec (toInteger hi - toInteger lo)
2✔
651
    Nothing -> TrueSpec
×
652
cardinalNumSpec (NumSpecInterval Nothing Nothing) = cardinalTrueSpec @n
2✔
653

654
-- ====================================================================
655
-- Now the operations on Numbers
656

657
-- | Everything we need to make the number operations make sense on a given type
658
class (Num a, HasSpec a, HasDivision a, OrdLike a) => NumLike a where
659
  subtractSpec :: a -> TypeSpec a -> Specification a
660
  default subtractSpec ::
661
    ( NumLike (SimpleRep a)
662
    , GenericRequires a
663
    ) =>
664
    a ->
665
    TypeSpec a ->
666
    Specification a
667
  subtractSpec a ts = fromSimpleRepSpec $ subtractSpec (toSimpleRep a) ts
×
668

669
  negateSpec :: TypeSpec a -> Specification a
670
  default negateSpec ::
671
    ( NumLike (SimpleRep a)
672
    , GenericRequires a
673
    ) =>
674
    TypeSpec a ->
675
    Specification a
676
  negateSpec = fromSimpleRepSpec . negateSpec @(SimpleRep a)
×
677

678
  safeSubtract :: a -> a -> Maybe a
679
  default safeSubtract ::
680
    (HasSimpleRep a, NumLike (SimpleRep a)) =>
681
    a ->
682
    a ->
683
    Maybe a
684
  safeSubtract a b = fromSimpleRep <$> safeSubtract @(SimpleRep a) (toSimpleRep a) (toSimpleRep b)
×
685

686
-- | Operations on numbers.
687
-- The reason there is no implementation of abs here is that you can't easily deal with abs
688
-- without specifications becoming very large. Consider the following example:
689
-- > constrained $ \ x -> [1000 <. abs_ x, abs_ x <. 1050]
690
-- The natural `Specification` here would be something like `(-1050, -1000) || (1000, 1050)`
691
-- - the disjoint union of two open, non-overlapping, intervals. However, this doesn't work
692
-- because number type-specs only support a single interval. You could fudge it in all sorts of ways
693
-- by using `chooseSpec` or by using the can't set (which would blow up to be 2000 elements large in this
694
-- case). In short, there is no _satisfactory_ solution here.
695
data IntW (as :: [Type]) b where
696
  AddW :: NumLike a => IntW '[a, a] a
697
  MultW :: NumLike a => IntW '[a, a] a
698
  NegateW :: NumLike a => IntW '[a] a
699
  SignumW :: NumLike a => IntW '[a] a
700

701
deriving instance Eq (IntW dom rng)
×
702

703
instance Show (IntW d r) where
×
704
  show AddW = "+"
2✔
705
  show NegateW = "negate_"
2✔
706
  show MultW = "*"
2✔
707
  show SignumW = "signum_"
2✔
708

709
instance Semantics IntW where
710
  semantics AddW = (+)
2✔
711
  semantics NegateW = negate
2✔
712
  semantics MultW = (*)
2✔
713
  semantics SignumW = signum
2✔
714

715
instance Syntax IntW where
2✔
716
  isInfix AddW = True
2✔
717
  isInfix NegateW = False
×
718
  isInfix MultW = True
×
719
  isInfix SignumW = False
×
720

721
class HasDivision a where
722
  doDivide :: a -> a -> a
723
  default doDivide ::
724
    ( HasDivision (SimpleRep a)
725
    , GenericRequires a
726
    ) =>
727
    a ->
728
    a ->
729
    a
730
  doDivide a b = fromSimpleRep $ doDivide (toSimpleRep a) (toSimpleRep b)
×
731

732
  divideSpec :: a -> TypeSpec a -> Specification a
733
  default divideSpec ::
734
    ( HasDivision (SimpleRep a)
735
    , GenericRequires a
736
    ) =>
737
    a ->
738
    TypeSpec a ->
739
    Specification a
740
  divideSpec a ts = fromSimpleRepSpec $ divideSpec (toSimpleRep a) ts
×
741

742
instance {-# OVERLAPPABLE #-} (HasSpec a, MaybeBounded a, Integral a, TypeSpec a ~ NumSpec a) => HasDivision a where
743
  doDivide = div
2✔
744

745
  divideSpec 0 _ = TrueSpec
1✔
746
  divideSpec a (NumSpecInterval (unionWithMaybe max lowerBound -> ml) (unionWithMaybe min upperBound -> mu)) = typeSpec ts
2✔
747
    where
748
      ts
2✔
749
        | a > 0 = NumSpecInterval ml' mu'
2✔
750
        | otherwise = NumSpecInterval mu' ml'
1✔
751
      ml' = adjustLowerBound <$> ml
2✔
752
      mu' = adjustUpperBound <$> mu
2✔
753

754
      -- NOTE: negate has different overflow semantics than div, so that's why we use negate below...
755

756
      adjustLowerBound l
2✔
757
        | a == 1 = l
2✔
758
        | a == -1 = negate l
2✔
759
        | otherwise =
×
760
            let r = l `div` a
2✔
761
             in if toInteger r * toInteger a < toInteger l
2✔
762
                  then r + signum a
2✔
763
                  else r
2✔
764

765
      adjustUpperBound u
2✔
766
        | a == 1 = u
2✔
767
        | a == -1 = negate u
2✔
768
        | otherwise =
×
769
            let r = u `div` a
2✔
770
             in if toInteger r * toInteger a > toInteger u
2✔
771
                  then r - signum a
2✔
772
                  else r
2✔
773

774
instance HasDivision (Ratio Integer) where
775
  doDivide = (/)
2✔
776

777
  divideSpec 0 _ = TrueSpec
1✔
778
  divideSpec a (NumSpecInterval ml mu) = typeSpec ts
2✔
779
    where
780
      ts
2✔
781
        | a > 0 = NumSpecInterval ml' mu'
1✔
782
        | otherwise = NumSpecInterval mu' ml'
×
783
      ml' = adjustLowerBound <$> ml
2✔
784
      mu' = adjustUpperBound <$> mu
1✔
785
      adjustLowerBound l =
2✔
786
        let r = l / a
2✔
787
            l' = r * a
2✔
788
         in if l' < l
1✔
789
              then r + (l - l') * 2 / a
×
790
              else r
2✔
791

792
      adjustUpperBound u =
×
793
        let r = u / a
×
794
            u' = r * a
×
795
         in if u < u'
×
796
              then r - (u' - u) * 2 / a
×
797
              else r
×
798

799
instance HasDivision Float where
800
  doDivide = (/)
2✔
801

802
  divideSpec 0 _ = TrueSpec
1✔
803
  divideSpec a (NumSpecInterval ml mu) = typeSpec ts
2✔
804
    where
805
      ts
2✔
806
        | a > 0 = NumSpecInterval ml' mu'
2✔
807
        | otherwise = NumSpecInterval mu' ml'
1✔
808
      ml' = adjustLowerBound <$> ml
2✔
809
      mu' = adjustUpperBound <$> mu
2✔
810
      adjustLowerBound l =
2✔
811
        let r = l / a
2✔
812
            l' = r * a
2✔
813
         in if l' < l
2✔
814
              then r + (l - l') * 2 / a
2✔
815
              else r
2✔
816

817
      adjustUpperBound u =
2✔
818
        let r = u / a
2✔
819
            u' = r * a
2✔
820
         in if u < u'
2✔
821
              then r - (u' - u) * 2 / a
2✔
822
              else r
2✔
823

824
instance HasDivision Double where
825
  doDivide = (/)
2✔
826

827
  divideSpec 0 _ = TrueSpec
1✔
828
  divideSpec a (NumSpecInterval ml mu) = typeSpec ts
2✔
829
    where
830
      ts
2✔
831
        | a > 0 = NumSpecInterval ml' mu'
2✔
832
        | otherwise = NumSpecInterval mu' ml'
1✔
833
      ml' = adjustLowerBound <$> ml
2✔
834
      mu' = adjustUpperBound <$> mu
2✔
835
      adjustLowerBound l =
2✔
836
        let r = l / a
2✔
837
            l' = r * a
2✔
838
         in if l' < l
2✔
839
              then r + (l - l') * 2 / a
2✔
840
              else r
2✔
841

842
      adjustUpperBound u =
2✔
843
        let r = u / a
2✔
844
            u' = r * a
2✔
845
         in if u < u'
2✔
846
              then r - (u' - u) * 2 / a
2✔
847
              else r
2✔
848

849
-- | A type that we can reason numerically about in constraints
850
type Numeric a = (HasSpec a, Ord a, Num a, TypeSpec a ~ NumSpec a, MaybeBounded a, HasDivision a)
851

852
instance {-# OVERLAPPABLE #-} Numeric a => NumLike a where
853
  subtractSpec a ts@(NumSpecInterval ml mu)
2✔
854
    | Just u <- mu
2✔
855
    , a > 0
2✔
856
    , Nothing <- safeSubtract a u =
2✔
857
        ErrorSpec $
2✔
858
          NE.fromList
×
859
            [ "Underflow in subtractSpec (" ++ showType @a ++ "):"
×
860
            , "  a = " ++ show a
×
861
            , "  ts = " ++ show ts
×
862
            ]
863
    | Just l <- ml
2✔
864
    , a < 0
2✔
865
    , Nothing <- safeSubtract a l =
2✔
866
        ErrorSpec $
2✔
867
          NE.fromList
×
868
            [ "Overflow in subtractSpec (" ++ showType @a ++ "):"
×
869
            , "  a = " ++ show a
×
870
            , "  ts = " ++ show ts
×
871
            ]
872
    | otherwise = typeSpec $ NumSpecInterval (safeSub a <$> ml) (safeSub a <$> mu)
1✔
873
    where
874
      safeSub :: a -> a -> a
875
      safeSub a1 x
2✔
876
        | Just r <- safeSubtract a1 x = r
2✔
877
        | a1 < 0 = fromJust upperBound
2✔
878
        | otherwise = fromJust lowerBound
1✔
879

880
  negateSpec (NumSpecInterval ml mu) = typeSpec $ NumSpecInterval (negate <$> mu) (negate <$> ml)
2✔
881

882
  safeSubtract a x
2✔
883
    | a > 0
2✔
884
    , Just lb <- lowerBound
2✔
885
    , lb + a > x =
2✔
886
        Nothing
2✔
887
    | a < 0
2✔
888
    , Just ub <- upperBound
2✔
889
    , ub + a < x =
2✔
890
        Nothing
2✔
891
    | otherwise = Just $ x - a
1✔
892

893
instance NumLike a => Num (Term a) where
2✔
894
  (+) = (+.)
2✔
895
  negate = negate_
2✔
896
  fromInteger = Lit . fromInteger
2✔
897
  (*) = (*.)
2✔
898
  signum = signum_
2✔
899
  abs = error "No implementation for abs @(Term a)"
×
900

901
invertMult :: (HasSpec a, Num a, HasDivision a) => a -> a -> Maybe a
902
invertMult a b =
2✔
903
  let r = a `doDivide` b in if r * b == a then Just r else Nothing
2✔
904

905
-- | Just a note that these instances won't work until we are in a context where
906
--   there is a HasSpec instance of 'a', which (NumLike a) demands.
907
--   This happens in Constrained.Experiment.TheKnot
908
instance Logic IntW where
1✔
909
  propagateTypeSpec AddW (HOLE :<: i) ts cant = subtractSpec i ts <> notMemberSpec (mapMaybe (safeSubtract i) cant)
2✔
910
  propagateTypeSpec AddW ctx ts cant = propagateTypeSpec AddW (flipCtx ctx) ts cant
2✔
911
  propagateTypeSpec NegateW (Unary HOLE) ts cant = negateSpec ts <> notMemberSpec (map negate cant)
2✔
912
  propagateTypeSpec MultW (HOLE :<: 0) ts cant
913
    | 0 `conformsToSpec` TypeSpec ts cant = TrueSpec
2✔
914
    | otherwise = ErrorSpec $ NE.fromList ["zero"]
1✔
915
  propagateTypeSpec MultW (HOLE :<: i) ts cant = divideSpec i ts <> notMemberSpec (mapMaybe (flip invertMult i) cant)
2✔
916
  propagateTypeSpec MultW ctx ts cant = propagateTypeSpec MultW (flipCtx ctx) ts cant
2✔
917
  propagateTypeSpec SignumW (Unary HOLE) ts cant =
918
    constrained $ \x ->
2✔
919
      [x `satisfies` notMemberSpec [0] | not $ ok 0]
2✔
920
        ++ [Assert $ 0 <=. x | not $ ok (-1)]
2✔
921
        ++ [Assert $ x <=. 0 | not $ ok 1]
2✔
922
    where
923
      ok = flip conformsToSpec (TypeSpec ts cant)
2✔
924

925
  propagateMemberSpec AddW (HOLE :<: i) es =
2✔
926
    memberSpec
2✔
927
      (nubOrd $ mapMaybe (safeSubtract i) (NE.toList es))
2✔
928
      ( NE.fromList
×
929
          [ "propagateSpecFn on (" ++ show i ++ " +. HOLE)"
×
930
          , "The Spec is a MemberSpec = " ++ show es -- show (MemberSpec @HasSpec @TS es)
×
931
          , "We can't safely subtract " ++ show i ++ " from any choice in the MemberSpec."
×
932
          ]
933
      )
934
  propagateMemberSpec AddW ctx es = propagateMemberSpec AddW (flipCtx ctx) es
2✔
935
  propagateMemberSpec NegateW (Unary HOLE) es = MemberSpec $ NE.nub $ fmap negate es
2✔
936
  propagateMemberSpec MultW (HOLE :<: 0) es
937
    | 0 `elem` es = TrueSpec
2✔
938
    | otherwise = ErrorSpec $ NE.fromList ["zero"]
1✔
939
  propagateMemberSpec MultW (HOLE :<: i) es = memberSpec (mapMaybe (flip invertMult i) (NE.toList es)) (NE.fromList ["propagateSpec"])
1✔
940
  propagateMemberSpec MultW ctx es = propagateMemberSpec MultW (flipCtx ctx) es
2✔
941
  propagateMemberSpec SignumW (Unary HOLE) es
942
    | all ((`notElem` [-1, 0, 1]) . signum) es =
1✔
943
        ErrorSpec $ NE.fromList ["signum for invalid member spec", show es]
×
944
    | otherwise = constrained $ \x ->
1✔
945
        [x `satisfies` notMemberSpec [0] | 0 `notElem` es]
2✔
946
          ++ [Assert $ 0 <=. x | -1 `notElem` es]
2✔
947
          ++ [Assert $ x <=. 0 | 1 `notElem` es]
2✔
948

949
  rewriteRules AddW (x :> y :> Nil) _ | x == y = Just $ 2 * x
2✔
950
  rewriteRules _ _ _ = Nothing
2✔
951

952
infix 4 +.
953

954
-- | `Term`-level `(+)`
955
(+.) :: NumLike a => Term a -> Term a -> Term a
956
(+.) = appTerm AddW
2✔
957

958
infixl 7 *.
959

960
-- | `Term`-level `(+)`
961
(*.) :: NumLike a => Term a -> Term a -> Term a
962
(*.) = appTerm MultW
2✔
963

964
-- | `Term`-level `negate`
965
negate_ :: NumLike a => Term a -> Term a
966
negate_ = appTerm NegateW
2✔
967

968
-- | `Term`-level `signum`
969
signum_ :: NumLike a => Term a -> Term a
970
signum_ = appTerm SignumW
2✔
971

972
infix 4 -.
973

974
-- | `Term`-level `(-)`
975
(-.) :: Numeric n => Term n -> Term n -> Term n
976
(-.) x y = x +. negate_ y
×
977

978
infixr 4 <=.
979

980
-- | `Term`-level `(<=)`
981
(<=.) :: forall a. OrdLike a => Term a -> Term a -> Term Bool
982
(<=.) = appTerm LessOrEqualW
2✔
983

984
infixr 4 <.
985

986
-- | `Term`-level `(<)`
987
(<.) :: forall a. OrdLike a => Term a -> Term a -> Term Bool
988
(<.) = appTerm LessW
2✔
989

990
infixr 4 >=.
991

992
-- | `Term`-level `(>=)`
993
(>=.) :: forall a. OrdLike a => Term a -> Term a -> Term Bool
994
(>=.) = appTerm GreaterOrEqualW
2✔
995

996
infixr 4 >.
997

998
-- | `Term`-level `(>)`
999
(>.) :: forall a. OrdLike a => Term a -> Term a -> Term Bool
1000
(>.) = appTerm GreaterW
2✔
1001

1002
-- | t`TypeSpec`-level `satisfies` to implement `toPreds` in
1003
-- `HasSpec` instance
1004
toPredsNumSpec ::
1005
  OrdLike n =>
1006
  Term n ->
1007
  NumSpec n ->
1008
  Pred
1009
toPredsNumSpec v (NumSpecInterval ml mu) =
2✔
1010
  fold $
2✔
1011
    [Assert $ Lit l <=. v | l <- maybeToList ml]
2✔
1012
      ++ [Assert $ v <=. Lit u | u <- maybeToList mu]
2✔
1013

1014
instance Logic OrdW where
×
1015
  propagate f ctxt (ExplainSpec [] s) = propagate f ctxt s
1✔
1016
  propagate f ctxt (ExplainSpec es s) = ExplainSpec es $ propagate f ctxt s
2✔
1017
  propagate _ _ TrueSpec = TrueSpec
2✔
1018
  propagate _ _ (ErrorSpec msgs) = ErrorSpec msgs
1✔
1019
  propagate GreaterW (HOLE :? x :> Nil) spec =
1020
    propagate LessW (x :! Unary HOLE) spec
2✔
1021
  propagate GreaterW (x :! Unary HOLE) spec =
1022
    propagate LessW (HOLE :? x :> Nil) spec
2✔
1023
  propagate LessOrEqualW (HOLE :? Value x :> Nil) (SuspendedSpec v ps) =
1024
    constrained $ \v' -> Let (App LessOrEqualW (v' :> Lit x :> Nil)) (v :-> ps)
2✔
1025
  propagate LessOrEqualW (Value x :! Unary HOLE) (SuspendedSpec v ps) =
1026
    constrained $ \v' -> Let (App LessOrEqualW (Lit x :> v' :> Nil)) (v :-> ps)
2✔
1027
  propagate LessOrEqualW (HOLE :? Value l :> Nil) spec =
1028
    caseBoolSpec spec $ \case True -> leqSpec l; False -> gtSpec l
2✔
1029
  propagate LessOrEqualW (Value l :! Unary HOLE) spec =
1030
    caseBoolSpec spec $ \case True -> geqSpec l; False -> ltSpec l
2✔
1031
  propagate GreaterOrEqualW (HOLE :? Value x :> Nil) spec =
1032
    propagate LessOrEqualW (Value x :! Unary HOLE) spec
2✔
1033
  propagate GreaterOrEqualW (x :! Unary HOLE) spec =
1034
    propagate LessOrEqualW (HOLE :? x :> Nil) spec
×
1035
  propagate LessW (HOLE :? Value x :> Nil) (SuspendedSpec v ps) =
1036
    constrained $ \v' -> Let (App LessW (v' :> Lit x :> Nil)) (v :-> ps)
2✔
1037
  propagate LessW (Value x :! Unary HOLE) (SuspendedSpec v ps) =
1038
    constrained $ \v' -> Let (App LessW (Lit x :> v' :> Nil)) (v :-> ps)
2✔
1039
  propagate LessW (HOLE :? Value l :> Nil) spec =
1040
    caseBoolSpec spec $ \case True -> ltSpec l; False -> geqSpec l
2✔
1041
  propagate LessW (Value l :! Unary HOLE) spec =
1042
    caseBoolSpec spec $ \case True -> gtSpec l; False -> leqSpec l
2✔
1043

1044
-- | @if-then-else@ on a specification, useful for writing `propagate` implementations
1045
-- of predicates, e.g.:
1046
-- > propagate LessW (Value l :! Unary HOLE) spec =
1047
-- >   caseBoolSpec spec $ \case True -> gtSpec l; False -> leqSpec l
1048
caseBoolSpec ::
1049
  HasSpec a => Specification Bool -> (Bool -> Specification a) -> Specification a
1050
caseBoolSpec spec cont = case possibleValues spec of
2✔
1051
  [] -> ErrorSpec (NE.fromList ["No possible values in caseBoolSpec"])
1✔
1052
  [b] -> cont b
2✔
1053
  _ -> mempty
2✔
1054
  where
1055
    -- This will always get the same result, and probably faster since running 2
1056
    -- conformsToSpec on True and False takes less time than simplifying the spec.
1057
    -- Since we are in TheKnot, we could keep the simplifySpec. Is there a good reason to?
1058
    possibleValues s = filter (flip conformsToSpec s) [True, False]
2✔
1059

1060
------------------------------------------------------------------------
1061
-- Instances of HasSpec for numeric types
1062
------------------------------------------------------------------------
1063

1064
instance HasSpec Integer where
×
1065
  type TypeSpec Integer = NumSpec Integer
1066
  emptySpec = emptyNumSpec
2✔
1067
  combineSpec = combineNumSpec
2✔
1068
  genFromTypeSpec = genFromNumSpec
2✔
1069
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1070
  fixupWithTypeSpec = fixupWithNumSpec
×
1071
  conformsTo = conformsToNumSpec
2✔
1072
  toPreds = toPredsNumSpec
2✔
1073
  cardinalTypeSpec = cardinalNumSpec
×
1074
  guardTypeSpec = guardNumSpec
2✔
1075

1076
instance HasSpec Int where
×
1077
  type TypeSpec Int = NumSpec Int
1078
  emptySpec = emptyNumSpec
2✔
1079
  combineSpec = combineNumSpec
2✔
1080
  genFromTypeSpec = genFromNumSpec
2✔
1081
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1082
  fixupWithTypeSpec = fixupWithNumSpec
2✔
1083
  conformsTo = conformsToNumSpec
2✔
1084
  toPreds = toPredsNumSpec
2✔
1085
  cardinalTypeSpec = cardinalNumSpec
2✔
1086
  guardTypeSpec = guardNumSpec
2✔
1087

1088
instance HasSpec (Ratio Integer) where
×
1089
  type TypeSpec (Ratio Integer) = NumSpec (Ratio Integer)
1090
  emptySpec = emptyNumSpec
2✔
1091
  combineSpec = combineNumSpec
2✔
1092
  genFromTypeSpec = genFromNumSpec
2✔
1093
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1094
  fixupWithTypeSpec = fixupWithNumSpec
×
1095
  conformsTo = conformsToNumSpec
2✔
1096
  toPreds = toPredsNumSpec
2✔
1097
  cardinalTypeSpec _ = TrueSpec
×
1098
  guardTypeSpec = guardNumSpec
2✔
1099

1100
instance HasSpec Natural where
×
1101
  type TypeSpec Natural = NumSpec Natural
1102
  emptySpec = emptyNumSpec
2✔
1103
  combineSpec = combineNumSpec
2✔
1104
  genFromTypeSpec = genFromNumSpec
2✔
1105
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1106
  fixupWithTypeSpec = fixupWithNumSpec
×
1107
  conformsTo = conformsToNumSpec
2✔
1108
  toPreds = toPredsNumSpec
×
1109
  cardinalTypeSpec (NumSpecInterval (fromMaybe 0 -> lo) (Just hi)) =
×
1110
    if lo < hi
×
1111
      then equalSpec (fromIntegral $ hi - lo + 1)
×
1112
      else equalSpec 0
×
1113
  cardinalTypeSpec _ = TrueSpec
×
1114
  guardTypeSpec = guardNumSpec
2✔
1115

1116
instance HasSpec Word8 where
×
1117
  type TypeSpec Word8 = NumSpec Word8
1118
  emptySpec = emptyNumSpec
2✔
1119
  combineSpec = combineNumSpec
2✔
1120
  genFromTypeSpec = genFromNumSpec
2✔
1121
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1122
  fixupWithTypeSpec = fixupWithNumSpec
×
1123
  conformsTo = conformsToNumSpec
2✔
1124
  toPreds = toPredsNumSpec
2✔
1125
  cardinalTypeSpec = cardinalNumSpec
×
1126
  cardinalTrueSpec = equalSpec 256
×
1127
  typeSpecOpt = notInNumSpec
2✔
1128
  guardTypeSpec = guardNumSpec
2✔
1129

1130
instance HasSpec Word16 where
×
1131
  type TypeSpec Word16 = NumSpec Word16
1132
  emptySpec = emptyNumSpec
2✔
1133
  combineSpec = combineNumSpec
2✔
1134
  genFromTypeSpec = genFromNumSpec
2✔
1135
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1136
  fixupWithTypeSpec = fixupWithNumSpec
×
1137
  conformsTo = conformsToNumSpec
2✔
1138
  toPreds = toPredsNumSpec
×
1139
  cardinalTypeSpec = cardinalNumSpec
×
1140
  cardinalTrueSpec = equalSpec 65536
×
1141
  guardTypeSpec = guardNumSpec
2✔
1142

1143
instance HasSpec Word32 where
×
1144
  type TypeSpec Word32 = NumSpec Word32
1145
  emptySpec = emptyNumSpec
2✔
1146
  combineSpec = combineNumSpec
2✔
1147
  genFromTypeSpec = genFromNumSpec
2✔
1148
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1149
  fixupWithTypeSpec = fixupWithNumSpec
×
1150
  conformsTo = conformsToNumSpec
2✔
1151
  toPreds = toPredsNumSpec
×
1152
  cardinalTypeSpec = cardinalNumSpec
×
1153
  guardTypeSpec = guardNumSpec
2✔
1154

1155
instance HasSpec Word64 where
×
1156
  type TypeSpec Word64 = NumSpec Word64
1157
  emptySpec = emptyNumSpec
2✔
1158
  combineSpec = combineNumSpec
2✔
1159
  genFromTypeSpec = genFromNumSpec
2✔
1160
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1161
  fixupWithTypeSpec = fixupWithNumSpec
×
1162
  conformsTo = conformsToNumSpec
2✔
1163
  toPreds = toPredsNumSpec
2✔
1164
  cardinalTypeSpec = cardinalNumSpec
2✔
1165
  guardTypeSpec = guardNumSpec
2✔
1166

1167
instance HasSpec Int8 where
×
1168
  type TypeSpec Int8 = NumSpec Int8
1169
  emptySpec = emptyNumSpec
2✔
1170
  combineSpec = combineNumSpec
2✔
1171
  genFromTypeSpec = genFromNumSpec
2✔
1172
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1173
  fixupWithTypeSpec = fixupWithNumSpec
×
1174
  conformsTo = conformsToNumSpec
2✔
1175
  toPreds = toPredsNumSpec
2✔
1176
  cardinalTrueSpec = equalSpec 256
×
1177
  cardinalTypeSpec = cardinalNumSpec
×
1178
  guardTypeSpec = guardNumSpec
2✔
1179

1180
instance HasSpec Int16 where
×
1181
  type TypeSpec Int16 = NumSpec Int16
1182
  emptySpec = emptyNumSpec
2✔
1183
  combineSpec = combineNumSpec
2✔
1184
  genFromTypeSpec = genFromNumSpec
2✔
1185
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1186
  fixupWithTypeSpec = fixupWithNumSpec
×
1187
  conformsTo = conformsToNumSpec
2✔
1188
  toPreds = toPredsNumSpec
×
1189
  cardinalTypeSpec = cardinalNumSpec
×
1190
  cardinalTrueSpec = equalSpec 65536
×
1191
  guardTypeSpec = guardNumSpec
2✔
1192

1193
instance HasSpec Int32 where
×
1194
  type TypeSpec Int32 = NumSpec Int32
1195
  emptySpec = emptyNumSpec
2✔
1196
  combineSpec = combineNumSpec
2✔
1197
  genFromTypeSpec = genFromNumSpec
2✔
1198
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1199
  fixupWithTypeSpec = fixupWithNumSpec
×
1200
  conformsTo = conformsToNumSpec
2✔
1201
  toPreds = toPredsNumSpec
×
1202
  cardinalTypeSpec = cardinalNumSpec
×
1203
  guardTypeSpec = guardNumSpec
2✔
1204

1205
instance HasSpec Int64 where
×
1206
  type TypeSpec Int64 = NumSpec Int64
1207
  emptySpec = emptyNumSpec
2✔
1208
  combineSpec = combineNumSpec
2✔
1209
  genFromTypeSpec = genFromNumSpec
2✔
1210
  shrinkWithTypeSpec = shrinkWithNumSpec
2✔
1211
  fixupWithTypeSpec = fixupWithNumSpec
×
1212
  conformsTo = conformsToNumSpec
2✔
1213
  toPreds = toPredsNumSpec
×
1214
  cardinalTypeSpec = cardinalNumSpec
×
1215
  guardTypeSpec = guardNumSpec
2✔
1216

1217
instance HasSpec Float where
×
1218
  type TypeSpec Float = NumSpec Float
1219
  emptySpec = emptyNumSpec
2✔
1220
  combineSpec = combineNumSpec
2✔
1221
  genFromTypeSpec = genFromNumSpec
2✔
1222
  shrinkWithTypeSpec = shrinkWithNumSpec
×
1223
  fixupWithTypeSpec = fixupWithNumSpec
×
1224
  conformsTo = conformsToNumSpec
2✔
1225
  toPreds = toPredsNumSpec
2✔
1226
  cardinalTypeSpec _ = TrueSpec
×
1227
  guardTypeSpec = guardNumSpec
2✔
1228

1229
instance HasSpec Double where
×
1230
  type TypeSpec Double = NumSpec Double
1231
  emptySpec = emptyNumSpec
2✔
1232
  combineSpec = combineNumSpec
2✔
1233
  genFromTypeSpec = genFromNumSpec
2✔
1234
  shrinkWithTypeSpec = shrinkWithNumSpec
×
1235
  fixupWithTypeSpec = fixupWithNumSpec
×
1236
  conformsTo = conformsToNumSpec
2✔
1237
  toPreds = toPredsNumSpec
2✔
1238
  cardinalTypeSpec _ = TrueSpec
×
1239
  guardTypeSpec = guardNumSpec
2✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc