• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

formalsec / smtml / 403

22 Oct 2025 11:14AM UTC coverage: 54.096% (+0.03%) from 54.065%
403

push

github

filipeom
upd examples.mld

951 of 1758 relevant lines covered (54.1%)

11.41 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

32.04
/src/smtml/expr.ml
1
(* SPDX-License-Identifier: MIT *)
2
(* Copyright (C) 2023-2024 formalsec *)
3
(* Written by the Smtml programmers *)
4

5
type t = expr Hc.hash_consed
6

7
and expr =
8
  | Val of Value.t
9
  | Ptr of
10
      { base : Bitvector.t
11
      ; offset : t
12
      }
13
  | Loc of Loc.t
14
  | Symbol of Symbol.t
15
  | List of t list
16
  | App of Symbol.t * t list
17
  | Unop of Ty.t * Ty.Unop.t * t
18
  | Binop of Ty.t * Ty.Binop.t * t * t
19
  | Triop of Ty.t * Ty.Triop.t * t * t * t
20
  | Relop of Ty.t * Ty.Relop.t * t * t
21
  | Cvtop of Ty.t * Ty.Cvtop.t * t
22
  | Naryop of Ty.t * Ty.Naryop.t * t list
23
  | Extract of t * int * int
24
  | Concat of t * t
25
  | Binder of Binder.t * t list * t
26

27
module Expr = struct
28
  type t = expr
29

30
  let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
31
    if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
4✔
32
    else false
×
33

34
  let equal (e1 : expr) (e2 : expr) : bool =
35
    match (e1, e2) with
499✔
36
    | Val v1, Val v2 -> Value.equal v1 v2
470✔
37
    | Loc a, Loc b -> Loc.compare a b = 0
×
38
    | Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
4✔
39
      Bitvector.equal b1 b2 && phys_equal o1 o2
4✔
40
    | Symbol s1, Symbol s2 -> Symbol.equal s1 s2
6✔
41
    | List l1, List l2 -> list_eq l1 l2
4✔
42
    | App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
×
43
    | Unop (t1, op1, e1), Unop (t2, op2, e2) ->
1✔
44
      Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
1✔
45
    | Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
12✔
46
      Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
12✔
47
      && phys_equal e3 e4
12✔
48
    | Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
2✔
49
      Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
2✔
50
      && phys_equal e3 e4
2✔
51
    | Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
×
52
      Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
×
53
      && phys_equal e3 e4 && phys_equal e5 e6
×
54
    | Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
×
55
      Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
×
56
    | Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
×
57
      Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
×
58
    | Extract (e1, h1, l1), Extract (e2, h2, l2) ->
×
59
      phys_equal e1 e2 && h1 = h2 && l1 = l2
×
60
    | Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
×
61
    | Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
×
62
      Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
×
63
    | ( ( Val _ | Ptr _ | Loc _ | Symbol _ | List _ | App _ | Unop _ | Binop _
×
64
        | Triop _ | Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _
×
65
        | Binder _ )
×
66
      , _ ) ->
67
      false
68

69
  let hash (e : expr) : int =
70
    let h x = Hashtbl.hash x in
993✔
71
    match e with
72
    | Val v -> h v
844✔
73
    | Ptr { base; offset } -> h (base, offset.tag)
22✔
74
    | Loc l -> h l
×
75
    | Symbol s -> h s
40✔
76
    | List v -> h v
16✔
77
    | App (x, es) -> h (x, es)
×
78
    | Unop (ty, op, e) -> h (ty, op, e.tag)
7✔
79
    | Cvtop (ty, op, e) -> h (ty, op, e.tag)
6✔
80
    | Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
34✔
81
    | Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
6✔
82
    | Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
×
83
    | Naryop (ty, op, es) -> h (ty, op, es)
×
84
    | Extract (e, hi, lo) -> h (e.tag, hi, lo)
14✔
85
    | Concat (e1, e2) -> h (e1.tag, e2.tag)
4✔
86
    | Binder (b, vars, e) -> h (b, vars, e.tag)
×
87
end
88

89
module Hc = Hc.Make [@inlined hint] (Expr)
90

91
let equal (hte1 : t) (hte2 : t) = phys_equal hte1 hte2 [@@inline]
221✔
92

93
let hash (hte : t) = hte.tag [@@inline]
4✔
94

95
module Key = struct
96
  type nonrec t = t
97

98
  let to_int hte = hash hte
×
99
end
100

101
let[@inline] make e = Hc.hashcons e
746✔
102

103
let[@inline] view (hte : t) = hte.node
527✔
104

105
let[@inline] compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag
×
106

107
let symbol s = make (Symbol s)
23✔
108

109
(** The return type of an expression *)
110
let rec ty (hte : t) : Ty.t =
111
  match view hte with
13✔
112
  | Val x -> Value.type_of x
×
113
  | Ptr _ -> Ty_bitv 32
×
114
  | Loc _ -> Ty_app
×
115
  | Symbol x -> Symbol.type_of x
10✔
116
  | List _ -> Ty_list
×
117
  | App (sym, _) -> begin match sym.ty with Ty_none -> Ty_app | ty -> ty end
×
118
  | Unop (ty, _, _) -> ty
×
119
  | Binop (ty, _, _, _) -> ty
×
120
  | Triop (_, Ite, _, hte1, hte2) ->
×
121
    let ty1 = ty hte1 in
122
    let ty2 = ty hte2 in
×
123
    assert (Ty.equal ty1 ty2);
×
124
    ty1
125
  | Triop (ty, _, _, _, _) -> ty
×
126
  | Relop (ty, _, _, _) -> ty
×
127
  | Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
×
128
    match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
1✔
129
  | Cvtop (ty, _, _) -> ty
×
130
  | Naryop (ty, _, _) -> ty
×
131
  | Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
2✔
132
  | Concat (e1, e2) -> (
×
133
    match (ty e1, ty e2) with
×
134
    | Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
×
135
    | t1, t2 ->
×
136
      Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
137
  | Binder (_, _, e) -> ty e
×
138

139
let rec is_symbolic (v : t) : bool =
140
  match view v with
×
141
  | Val _ -> false
×
142
  | Symbol _ -> true
×
143
  | Loc _ -> false
×
144
  | Ptr { offset; _ } -> is_symbolic offset
×
145
  | List vs -> List.exists is_symbolic vs
×
146
  | App (_, vs) -> List.exists is_symbolic vs
×
147
  | Unop (_, _, v) -> is_symbolic v
×
148
  | Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
149
  | Triop (_, _, v1, v2, v3) ->
×
150
    is_symbolic v1 || is_symbolic v2 || is_symbolic v3
×
151
  | Cvtop (_, _, v) -> is_symbolic v
×
152
  | Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
153
  | Naryop (_, _, vs) -> List.exists is_symbolic vs
×
154
  | Extract (e, _, _) -> is_symbolic e
×
155
  | Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
×
156
  | Binder (_, _, e) -> is_symbolic e
×
157

158
let get_symbols (hte : t list) =
159
  let tbl = Hashtbl.create 64 in
×
160
  let rec symbols (hte : t) =
×
161
    match view hte with
×
162
    | Val _ | Loc _ -> ()
×
163
    | Ptr { offset; _ } -> symbols offset
×
164
    | Symbol s -> Hashtbl.replace tbl s ()
×
165
    | List es -> List.iter symbols es
×
166
    | App (_, es) -> List.iter symbols es
×
167
    | Unop (_, _, e1) -> symbols e1
×
168
    | Binop (_, _, e1, e2) ->
×
169
      symbols e1;
170
      symbols e2
×
171
    | Triop (_, _, e1, e2, e3) ->
×
172
      symbols e1;
173
      symbols e2;
×
174
      symbols e3
×
175
    | Relop (_, _, e1, e2) ->
×
176
      symbols e1;
177
      symbols e2
×
178
    | Cvtop (_, _, e) -> symbols e
×
179
    | Naryop (_, _, es) -> List.iter symbols es
×
180
    | Extract (e, _, _) -> symbols e
×
181
    | Concat (e1, e2) ->
×
182
      symbols e1;
183
      symbols e2
×
184
    | Binder (_, vars, e) ->
×
185
      List.iter symbols vars;
186
      symbols e
×
187
  in
188
  List.iter symbols hte;
189
  Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
190

191
let rec pp fmt (hte : t) =
192
  match view hte with
×
193
  | Val v -> Value.pp fmt v
×
194
  | Ptr { base; offset } -> Fmt.pf fmt "(Ptr %a %a)" Bitvector.pp base pp offset
×
195
  | Loc l -> Fmt.pf fmt "(loc %a)" Loc.pp l
×
196
  | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
×
197
  | List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
×
198
  | App (s, v) ->
×
199
    Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s (Fmt.list ~sep:Fmt.comma pp) v
×
200
  | Unop (ty, op, e) ->
×
201
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
202
  | Binop (ty, op, e1, e2) ->
×
203
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp e2
204
  | Triop (ty, op, e1, e2, e3) ->
×
205
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1 pp
206
      e2 pp e3
207
  | Relop (ty, op, e1, e2) ->
×
208
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp e2
209
  | Cvtop (ty, op, e) ->
×
210
    Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
211
  | Naryop (ty, op, es) ->
×
212
    Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
213
      (Fmt.list ~sep:Fmt.comma pp)
×
214
      es
215
  | Extract (e, h, l) -> Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
×
216
  | Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
×
217
  | Binder (b, vars, e) ->
×
218
    Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b (Fmt.list ~sep:Fmt.sp pp)
×
219
      vars pp e
220

221
let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
×
222

223
let pp_smtml fmt (es : t list) : unit =
224
  let pp_symbols fmt syms =
×
225
    Fmt.list
×
226
      (fun fmt sym ->
227
        let t = Symbol.type_of sym in
×
228
        Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
×
229
      fmt syms
230
  in
231
  let pp_asserts fmt es =
232
    Fmt.list (fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e) fmt es
×
233
  in
234
  let syms = get_symbols es in
235
  if List.length syms > 0 then Fmt.pf fmt "%a@\n" pp_symbols syms;
×
236
  if List.length es > 0 then Fmt.pf fmt "%a@\n" pp_asserts es;
×
237
  Fmt.string fmt "(check-sat)"
×
238

239
let to_string e = Fmt.str "%a" pp e
×
240

241
module Set = struct
242
  include PatriciaTree.MakeHashconsedSet (Key) ()
243

244
  let hash = to_int
245

246
  let pp fmt v =
247
    Fmt.pf fmt "@[<hov 1>%a@]"
×
248
      (pretty ~pp_sep:(fun fmt () -> Fmt.pf fmt "@;") pp)
×
249
      v
250

251
  let get_symbols (set : t) =
252
    let tbl = Hashtbl.create 64 in
×
253
    let rec symbols hte =
×
254
      match view hte with
×
255
      | Val _ | Loc _ -> ()
×
256
      | Ptr { offset; _ } -> symbols offset
×
257
      | Symbol s -> Hashtbl.replace tbl s ()
×
258
      | List es -> List.iter symbols es
×
259
      | App (_, es) -> List.iter symbols es
×
260
      | Unop (_, _, e1) -> symbols e1
×
261
      | Binop (_, _, e1, e2) ->
×
262
        symbols e1;
263
        symbols e2
×
264
      | Triop (_, _, e1, e2, e3) ->
×
265
        symbols e1;
266
        symbols e2;
×
267
        symbols e3
×
268
      | Relop (_, _, e1, e2) ->
×
269
        symbols e1;
270
        symbols e2
×
271
      | Cvtop (_, _, e) -> symbols e
×
272
      | Naryop (_, _, es) -> List.iter symbols es
×
273
      | Extract (e, _, _) -> symbols e
×
274
      | Concat (e1, e2) ->
×
275
        symbols e1;
276
        symbols e2
×
277
      | Binder (_, vars, e) ->
×
278
        List.iter symbols vars;
279
        symbols e
×
280
    in
281
    iter symbols set;
282
    Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
283
end
284

285
let value (v : Value.t) : t = make (Val v) [@@inline]
657✔
286

287
let ptr base offset = make (Ptr { base = Bitvector.of_int32 base; offset })
7✔
288

289
let loc l = make (Loc l)
×
290

291
let list l = make (List l)
5✔
292

293
let app symbol args = make (App (symbol, args))
×
294

295
let[@inline] binder bt vars expr = make (Binder (bt, vars, expr))
×
296

297
let let_in vars body = binder Let_in vars body
×
298

299
let forall vars body = binder Forall vars body
×
300

301
let exists vars body = binder Exists vars body
×
302

303
let raw_unop ty op hte = make (Unop (ty, op, hte)) [@@inline]
4✔
304

305
let normalize_eq_or_ne op (ty', e1, e2) =
306
  let make_relop lhs rhs = Relop (ty', op, lhs, rhs) in
×
307
  let ty1, ty2 = (ty e1, ty e2) in
×
308
  if not (Ty.equal ty1 ty2) then make_relop e1 e2
×
309
  else begin
×
310
    match ty1 with
311
    | Ty_bitv m ->
×
312
      let binop = make (Binop (ty1, Sub, e1, e2)) in
313
      let zero = make (Val (Bitv (Bitvector.make Z.zero m))) in
×
314
      make_relop binop zero
×
315
    | Ty_int ->
×
316
      let binop = make (Binop (ty1, Sub, e1, e2)) in
317
      let zero = make (Val (Int Int.zero)) in
×
318
      make_relop binop zero
×
319
    | Ty_real ->
×
320
      let binop = make (Binop (ty1, Sub, e1, e2)) in
321
      let zero = make (Val (Real 0.)) in
×
322
      make_relop binop zero
×
323
    | _ -> make_relop e1 e2
×
324
  end
325

326
let negate_relop (hte : t) : t =
327
  let e =
×
328
    match view hte with
329
    | Relop (ty, Eq, e1, e2) -> normalize_eq_or_ne Ne (ty, e1, e2)
×
330
    | Relop (ty, Ne, e1, e2) -> normalize_eq_or_ne Eq (ty, e1, e2)
×
331
    | Relop (ty, Lt, e1, e2) -> Relop (ty, Le, e2, e1)
×
332
    | Relop (ty, LtU, e1, e2) -> Relop (ty, LeU, e2, e1)
×
333
    | Relop (ty, Le, e1, e2) -> Relop (ty, Lt, e2, e1)
×
334
    | Relop (ty, LeU, e1, e2) -> Relop (ty, LtU, e2, e1)
×
335
    | Relop (ty, Gt, e1, e2) -> Relop (ty, Le, e1, e2)
×
336
    | Relop (ty, GtU, e1, e2) -> Relop (ty, LeU, e1, e2)
×
337
    | Relop (ty, Ge, e1, e2) -> Relop (ty, Lt, e1, e2)
×
338
    | Relop (ty, GeU, e1, e2) -> Relop (ty, LtU, e1, e2)
×
339
    | _ -> Fmt.failwith "negate_relop: not a relop."
×
340
  in
341
  make e
342

343
let unop ty op hte =
344
  match (op, view hte) with
34✔
345
  | Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> raw_unop ty op hte
×
346
  | _, Val v -> value (Eval.unop ty op v)
23✔
347
  | Not, Unop (_, Not, hte') -> hte'
1✔
348
  | Not, Relop (Ty_fp _, _, _, _) -> raw_unop ty op hte
2✔
349
  | Not, Relop (_, _, _, _) -> negate_relop hte
×
350
  | Neg, Unop (_, Neg, hte') -> hte'
1✔
351
  | Trim, Cvtop (Ty_real, ToString, _) -> hte
×
352
  | Head, List (hd :: _) -> hd
1✔
353
  | Tail, List (_ :: tl) -> make (List tl)
1✔
354
  | Reverse, List es -> make (List (List.rev es))
2✔
355
  | Length, List es -> value (Int (List.length es))
1✔
356
  | _ -> raw_unop ty op hte
2✔
357

358
let raw_binop ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
23✔
359

360
let rec binop ty op hte1 hte2 =
361
  match (op, view hte1, view hte2) with
98✔
362
  | Ty.Binop.(String_in_re | Regexp_range), _, _ -> raw_binop ty op hte1 hte2
×
363
  | op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
68✔
364
  | Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
365
    if Bitvector.equal b1 b2 then binop ty Sub os1 os2
1✔
366
    else raw_binop ty op hte1 hte2
×
367
  | Add, Ptr { base; offset }, _ ->
2✔
368
    let m = Bitvector.numbits base in
369
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte2 })
2✔
370
  | Sub, Ptr { base; offset }, _ ->
1✔
371
    let m = Bitvector.numbits base in
372
    make (Ptr { base; offset = binop (Ty_bitv m) Sub offset hte2 })
1✔
373
  | Rem, Ptr { base; offset }, _ ->
1✔
374
    let m = Bitvector.numbits base in
375
    let rhs = value (Bitv base) in
1✔
376
    let addr = binop (Ty_bitv m) Add rhs offset in
1✔
377
    binop ty Rem addr hte2
1✔
378
  | Add, _, Ptr { base; offset } ->
1✔
379
    let m = Bitvector.numbits base in
380
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte1 })
1✔
381
  | Sub, _, Ptr { base; offset } ->
×
382
    let m = Bitvector.numbits base in
383
    let base = value (Bitv base) in
×
384
    binop ty Sub hte1 (binop (Ty_bitv m) Add base offset)
×
385
  | (Add | Or), Val (Bitv bv), _ when Bitvector.eqz bv -> hte2
×
386
  | (And | Div | DivU | Mul | Rem | RemU), Val (Bitv bv), _
×
387
    when Bitvector.eqz bv ->
3✔
388
    hte1
1✔
389
  | (Add | Or), _, Val (Bitv bv) when Bitvector.eqz bv -> hte1
×
390
  | (And | Mul), _, Val (Bitv bv) when Bitvector.eqz bv -> hte2
1✔
391
  | Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
1✔
392
    let v = value (Eval.binop ty Add v1 v2) in
1✔
393
    raw_binop ty Add x v
1✔
394
  | Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
1✔
395
    let v = value (Eval.binop ty Add v1 v2) in
1✔
396
    raw_binop ty Sub x v
1✔
397
  | Mul, Val (Bitv bv), _ when Bitvector.eq_one bv -> hte2
×
398
  | Mul, _, Val (Bitv bv) when Bitvector.eq_one bv -> hte1
×
399
  | Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
1✔
400
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
401
    raw_binop ty Mul x v
1✔
402
  | Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
1✔
403
    let v = value (Eval.binop ty Add v1 v2) in
1✔
404
    raw_binop ty Add v x
1✔
405
  | Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
1✔
406
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
407
    raw_binop ty Mul v x
1✔
408
  | At, List es, Val (Int n) ->
1✔
409
    (* TODO: use another datastructure? *)
410
    begin
411
      match List.nth_opt es n with None -> assert false | Some v -> v
1✔
412
    end
413
  | List_cons, _, List es -> make (List (hte1 :: es))
1✔
414
  | List_append, List _, (List [] | Val (List [])) -> hte1
×
415
  | List_append, (List [] | Val (List [])), List _ -> hte2
×
416
  | List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
1✔
417
  | List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
×
418
  | List_append, List l0, List l1 -> make (List (l0 @ l1))
×
419
  | _ -> raw_binop ty op hte1 hte2
12✔
420

421
let raw_triop ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
×
422

423
let triop ty op e1 e2 e3 =
424
  match (op, view e1, view e2, view e3) with
6✔
425
  | Ty.Triop.Ite, Val True, _, _ -> e2
1✔
426
  | Ite, Val False, _, _ -> e3
1✔
427
  | op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
4✔
428
  | Ite, _, Triop (_, Ite, c2, r1, r2), Triop (_, Ite, _, _, _) ->
×
429
    let else_ = raw_triop ty Ite e1 r2 e3 in
430
    let cond = binop Ty_bool And e1 c2 in
×
431
    raw_triop ty Ite cond r1 else_
×
432
  | _ -> raw_triop ty op e1 e2 e3
×
433

434
let raw_relop ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
4✔
435

436
let rec relop ty op hte1 hte2 =
437
  match (op, view hte1, view hte2) with
81✔
438
  | op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
29✔
439
  | Ty.Relop.Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
×
440
    if Float.is_nan v || Float.is_infinite v then value True
×
441
    else raw_relop ty op hte1 hte2
×
442
  | _, Val (Real v), _ | _, _, Val (Real v) ->
×
443
    if Float.is_nan v || Float.is_infinite v then value False
×
444
    else raw_relop ty op hte1 hte2
×
445
  | Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
×
446
  | Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
×
447
  | Eq, _, Val (App (`Op "symbol", [ Str _ ]))
×
448
  | Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
449
    value False
450
  | Ne, _, Val (App (`Op "symbol", [ Str _ ]))
×
451
  | Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
452
    value True
453
  | ( Eq
×
454
    , Symbol ({ ty = Ty_fp prec1; _ } as s1)
455
    , Symbol ({ ty = Ty_fp prec2; _ } as s2) )
456
    when prec1 = prec2 && Symbol.equal s1 s2 ->
×
457
    raw_unop Ty_bool Not (raw_unop (Ty_fp prec1) Is_nan hte1)
×
458
  | Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
459
    if Bitvector.equal b1 b2 then relop Ty_bool Eq os1 os2 else value False
1✔
460
  | Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
461
    if Bitvector.equal b1 b2 then relop Ty_bool Ne os1 os2 else value True
1✔
462
  | ( (LtU | LeU)
2✔
463
    , Ptr { base = b1; offset = os1 }
464
    , Ptr { base = b2; offset = os2 } ) ->
465
    if Bitvector.equal b1 b2 then relop ty op os1 os2
2✔
466
    else
467
      let b1 = Value.Bitv b1 in
2✔
468
      let b2 = Value.Bitv b2 in
469
      value (if Eval.relop ty op b1 b2 then True else False)
1✔
470
  | ( op
2✔
471
    , Val (Bitv _ as n)
472
    , Ptr { base; offset = { node = Val (Bitv _ as o); _ } } ) ->
473
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
474
    value (if Eval.relop ty op n base then True else False)
1✔
475
  | op, Ptr { base; offset = { node = Val (Bitv _ as o); _ } }, Val (Bitv _ as n)
2✔
476
    ->
477
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
478
    value (if Eval.relop ty op base n then True else False)
1✔
479
  | op, List l1, List l2 -> relop_list op l1 l2
×
480
  | Gt, _, _ -> relop ty Lt hte2 hte1
×
481
  | GtU, _, _ -> relop ty LtU hte2 hte1
1✔
482
  | Ge, _, _ -> relop ty Le hte2 hte1
1✔
483
  | GeU, _, _ -> relop ty LeU hte2 hte1
1✔
484
  | _, _, _ -> raw_relop ty op hte1 hte2
4✔
485

486
and relop_list op l1 l2 =
487
  match (op, l1, l2) with
×
488
  | Eq, [], [] -> value True
×
489
  | Eq, _, [] | Eq, [], _ -> value False
×
490
  | Eq, l1, l2 ->
×
491
    if not (List.compare_lengths l1 l2 = 0) then value False
×
492
    else
493
      List.fold_left2
×
494
        (fun acc a b ->
495
          binop Ty_bool And acc
×
496
          @@
497
          match (ty a, ty b) with
×
498
          | Ty_real, Ty_real -> relop Ty_real Eq a b
×
499
          | _ -> relop Ty_bool Eq a b )
×
500
        (value True) l1 l2
×
501
  | Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
×
502
  | (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
503

504
let raw_cvtop ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
3✔
505

506
let rec cvtop theory op hte =
507
  match (op, view hte) with
28✔
508
  | Ty.Cvtop.String_to_re, _ -> raw_cvtop theory op hte
×
509
  | _, Val v -> value (Eval.cvtop theory op v)
23✔
510
  | String_to_float, Cvtop (Ty_real, ToString, hte) -> hte
×
511
  | ( Reinterpret_float
×
512
    , Cvtop (Ty_real, Reinterpret_int, { node = Symbol { ty = Ty_int; _ }; _ })
513
    ) ->
514
    hte
515
  | Zero_extend n, Ptr { base; offset } ->
1✔
516
    let offset = cvtop theory op offset in
517
    make (Ptr { base = Bitvector.zero_extend n base; offset })
1✔
518
  | WrapI64, Ptr { base; offset } ->
1✔
519
    let offset = cvtop theory op offset in
520
    make (Ptr { base = Bitvector.extract base ~high:31 ~low:0; offset })
1✔
521
  | WrapI64, Cvtop (Ty_bitv 64, Zero_extend 32, hte) ->
×
522
    assert (Ty.equal theory (ty hte) && Ty.equal theory (Ty_bitv 32));
×
523
    hte
524
  | _ -> raw_cvtop theory op hte
3✔
525

526
let raw_naryop ty op es = make (Naryop (ty, op, es)) [@@inline]
×
527

528
let naryop ty op es =
529
  if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
×
530
  then
531
    let vs =
7✔
532
      List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
18✔
533
    in
534
    value (Eval.naryop ty op vs)
7✔
535
  else
536
    match (ty, op, List.map view es) with
×
537
    | ( Ty_str
×
538
      , Concat
539
      , [ Naryop (Ty_str, Concat, l1); Naryop (Ty_str, Concat, l2) ] ) ->
540
      raw_naryop Ty_str Concat (l1 @ l2)
541
    | Ty_str, Concat, [ Naryop (Ty_str, Concat, htes); hte ] ->
×
542
      raw_naryop Ty_str Concat (htes @ [ make hte ])
×
543
    | Ty_str, Concat, [ hte; Naryop (Ty_str, Concat, htes) ] ->
×
544
      raw_naryop Ty_str Concat (make hte :: htes)
×
545
    | _ -> raw_naryop ty op es
×
546

547
let[@inline] raw_extract (hte : t) ~(high : int) ~(low : int) : t =
548
  make (Extract (hte, high, low))
7✔
549

550
let extract (hte : t) ~(high : int) ~(low : int) : t =
551
  match (view hte, high, low) with
12✔
552
  | Val (Bitv bv), high, low ->
3✔
553
    let high = (high * 8) - 1 in
554
    let low = low * 8 in
555
    value (Bitv (Bitvector.extract bv ~high ~low))
3✔
556
  | ( Cvtop
2✔
557
        ( _
558
        , (Zero_extend 24 | Sign_extend 24)
1✔
559
        , ({ node = Symbol { ty = Ty_bitv 8; _ }; _ } as sym) )
560
    , 1
561
    , 0 ) ->
562
    sym
563
  | Concat (_, e), h, l when Ty.size (ty e) = h - l -> e
2✔
564
  | Concat (e, _), 8, 4 when Ty.size (ty e) = 4 -> e
×
565
  | _ ->
5✔
566
    if high - low = Ty.size (ty hte) then hte else raw_extract hte ~high ~low
×
567

568
let raw_concat (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
2✔
569

570
(* TODO: don't rebuild so many values it generates unecessary hc lookups *)
571
let rec concat (msb : t) (lsb : t) : t =
572
  match (view msb, view lsb) with
6✔
573
  | Val (Bitv a), Val (Bitv b) -> value (Bitv (Bitvector.concat a b))
1✔
574
  | Val (Bitv _), Concat (({ node = Val (Bitv _); _ } as b), se) ->
×
575
    raw_concat (concat msb b) se
×
576
  | Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
3✔
577
    if h - l = Ty.size (ty s1) then s1 else raw_extract s1 ~high:h ~low:l
1✔
578
  | Extract (_, _, _), Concat (({ node = Extract (_, _, _); _ } as e2), e3) ->
×
579
    raw_concat (concat msb e2) e3
×
580
  | _ -> raw_concat msb lsb
2✔
581

582
let rec simplify_expr ?(in_relop = false) (hte : t) : t =
4✔
583
  match view hte with
16✔
584
  | Val _ | Symbol _ | Loc _ -> hte
×
585
  | Ptr { base; offset } ->
×
586
    let offset = simplify_expr ~in_relop offset in
587
    if not in_relop then make (Ptr { base; offset })
×
588
    else binop (Ty_bitv 32) Add (value (Bitv base)) offset
×
589
  | List es -> make @@ List (List.map (simplify_expr ~in_relop) es)
×
590
  | App (x, es) -> make @@ App (x, List.map (simplify_expr ~in_relop) es)
×
591
  | Unop (ty, op, e) ->
×
592
    let e = simplify_expr ~in_relop e in
593
    unop ty op e
×
594
  | Binop (ty, op, e1, e2) ->
6✔
595
    let e1 = simplify_expr ~in_relop e1 in
596
    let e2 = simplify_expr ~in_relop e2 in
6✔
597
    binop ty op e1 e2
6✔
598
  | Relop (ty, op, e1, e2) ->
×
599
    let e1 = simplify_expr ~in_relop:true e1 in
600
    let e2 = simplify_expr ~in_relop:true e2 in
×
601
    relop ty op e1 e2
×
602
  | Triop (ty, op, c, e1, e2) ->
×
603
    let c = simplify_expr ~in_relop c in
604
    let e1 = simplify_expr ~in_relop e1 in
×
605
    let e2 = simplify_expr ~in_relop e2 in
×
606
    triop ty op c e1 e2
×
607
  | Cvtop (ty, op, e) ->
×
608
    let e = simplify_expr ~in_relop e in
609
    cvtop ty op e
×
610
  | Naryop (ty, op, es) ->
×
611
    let es = List.map (simplify_expr ~in_relop) es in
612
    naryop ty op es
×
613
  | Extract (s, high, low) ->
×
614
    let s = simplify_expr ~in_relop s in
615
    extract s ~high ~low
×
616
  | Concat (e1, e2) ->
×
617
    let msb = simplify_expr ~in_relop e1 in
618
    let lsb = simplify_expr ~in_relop e2 in
×
619
    concat msb lsb
×
620
  | Binder _ ->
×
621
    (* Not simplifying anything atm *)
622
    hte
623

624
module Cache = Hashtbl.Make (struct
625
  type nonrec t = t
626

627
  let hash = hash
628

629
  let equal = equal
630
end)
631

632
let simplify =
633
  (* TODO: it may make sense to share the cache with simplify_expr ? *)
634
  let cache = Cache.create 512 in
635
  fun e ->
3✔
636
    match Cache.find_opt cache e with
2✔
637
    | Some simplified -> simplified
×
638
    | None ->
2✔
639
      let rec loop x =
640
        let x' = simplify_expr x in
4✔
641
        if equal x x' then begin
2✔
642
          Cache.add cache e x';
643
          x'
2✔
644
        end
645
        else loop x'
2✔
646
      in
647
      loop e
648

649
module Bool = struct
650
  open Ty
651

652
  let of_val = function
653
    | Val True -> Some true
×
654
    | Val False -> Some false
×
655
    | _ -> None
×
656

657
  let true_ = value True
3✔
658

659
  let false_ = value False
3✔
660

661
  let to_val b = if b then true_ else false_
×
662

663
  let v b = to_val b [@@inline]
×
664

665
  let not b =
666
    let bexpr = view b in
×
667
    match of_val bexpr with
×
668
    | Some b -> to_val (not b)
×
669
    | None -> (
×
670
      match bexpr with
671
      | Unop (Ty_bool, Not, cond) -> cond
×
672
      | _ -> unop Ty_bool Not b )
×
673

674
  let equal b1 b2 =
675
    match (view b1, view b2) with
×
676
    | Val True, Val True | Val False, Val False -> true_
×
677
    | _ -> relop Ty_bool Eq b1 b2
×
678

679
  let distinct b1 b2 =
680
    match (view b1, view b2) with
×
681
    | Val True, Val False | Val False, Val True -> true_
×
682
    | _ -> relop Ty_bool Ne b1 b2
×
683

684
  let and_ b1 b2 =
685
    match (of_val (view b1), of_val (view b2)) with
×
686
    | Some true, _ -> b2
×
687
    | _, Some true -> b1
×
688
    | Some false, _ | _, Some false -> false_
×
689
    | _ -> binop Ty_bool And b1 b2
×
690

691
  let or_ b1 b2 =
692
    match (of_val (view b1), of_val (view b2)) with
×
693
    | Some false, _ -> b2
×
694
    | _, Some false -> b1
×
695
    | Some true, _ | _, Some true -> true_
×
696
    | _ -> binop Ty_bool Or b1 b2
×
697

698
  let ite c r1 r2 = triop Ty_bool Ite c r1 r2
×
699
end
700

701
module Make (T : sig
702
  type elt
703

704
  val ty : Ty.t
705

706
  val value : elt -> Value.t
707
end) =
708
struct
709
  open Ty
710

711
  let v i = value (T.value i)
×
712

713
  let sym x = symbol Symbol.(x @: T.ty)
×
714

715
  let ( ~- ) e = unop T.ty Neg e
×
716

717
  let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
×
718

719
  let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
×
720

721
  let ( > ) e1 e2 = relop T.ty Gt e1 e2
×
722

723
  let ( >= ) e1 e2 = relop T.ty Ge e1 e2
×
724

725
  let ( < ) e1 e2 = relop T.ty Lt e1 e2
×
726

727
  let ( <= ) e1 e2 = relop T.ty Le e1 e2
×
728
end
729

730
module Bitv = struct
731
  open Ty
732

733
  module I8 = Make (struct
734
    type elt = int
735

736
    let ty = Ty_bitv 8
737

738
    let value i = Value.Bitv (Bitvector.of_int8 i)
×
739
  end)
740

741
  module I32 = Make (struct
742
    type elt = int32
743

744
    let ty = Ty_bitv 32
745

746
    let value i = Value.Bitv (Bitvector.of_int32 i)
×
747
  end)
748

749
  module I64 = Make (struct
750
    type elt = int64
751

752
    let ty = Ty_bitv 64
753

754
    let value i = Value.Bitv (Bitvector.of_int64 i)
×
755
  end)
756
end
757

758
module Fpa = struct
759
  open Ty
760

761
  module F32 = struct
762
    include Make (struct
763
      type elt = float
764

765
      let ty = Ty_fp 32
766

767
      let value f = Value.Num (F32 (Int32.bits_of_float f))
×
768
    end)
769

770
    (* Redeclare equality due to incorrect theory annotation *)
771
    let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
×
772

773
    let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
×
774
  end
775

776
  module F64 = struct
777
    include Make (struct
778
      type elt = float
779

780
      let ty = Ty_fp 64
781

782
      let value f = Value.Num (F64 (Int64.bits_of_float f))
×
783
    end)
784

785
    (* Redeclare equality due to incorrect theory annotation *)
786
    let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
×
787

788
    let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
×
789
  end
790
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc