• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

PowerDNS / pdns / 18554073066

16 Oct 2025 07:43AM UTC coverage: 55.336% (-0.01%) from 55.346%
18554073066

Pull #16270

github

web-flow
Merge 6b7c2bd00 into 8f33ac184
Pull Request #16270: dnsdist-2.0.x: Backport 15267: Fix the build-packages workflow

18455 of 57264 branches covered (32.23%)

Branch coverage included in aggregate %.

51954 of 69975 relevant lines covered (74.25%)

2390307.18 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

72.15
/pdns/iputils.hh
1
/*
2
 * This file is part of PowerDNS or dnsdist.
3
 * Copyright -- PowerDNS.COM B.V. and its contributors
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of version 2 of the GNU General Public License as
7
 * published by the Free Software Foundation.
8
 *
9
 * In addition, for the avoidance of any doubt, permission is granted to
10
 * link this program with OpenSSL and to (re)distribute the binaries
11
 * produced as the result of such linking.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License
19
 * along with this program; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21
 */
22
#pragma once
23
#include <string>
24
#include <sys/socket.h>
25
#include <netinet/in.h>
26
#include <arpa/inet.h>
27
#include <iostream>
28
#include <cstdio>
29
#include <functional>
30
#include "pdnsexception.hh"
31
#include "misc.hh"
32
#include <netdb.h>
33
#include <sstream>
34
#include <sys/un.h>
35

36
#include "namespaces.hh"
37

38
#ifdef __APPLE__
39
#include <libkern/OSByteOrder.h>
40

41
#define htobe16(x) OSSwapHostToBigInt16(x)
42
#define htole16(x) OSSwapHostToLittleInt16(x)
43
#define be16toh(x) OSSwapBigToHostInt16(x)
44
#define le16toh(x) OSSwapLittleToHostInt16(x)
45

46
#define htobe32(x) OSSwapHostToBigInt32(x)
47
#define htole32(x) OSSwapHostToLittleInt32(x)
48
#define be32toh(x) OSSwapBigToHostInt32(x)
49
#define le32toh(x) OSSwapLittleToHostInt32(x)
50

51
#define htobe64(x) OSSwapHostToBigInt64(x)
52
#define htole64(x) OSSwapHostToLittleInt64(x)
53
#define be64toh(x) OSSwapBigToHostInt64(x)
54
#define le64toh(x) OSSwapLittleToHostInt64(x)
55
#endif
56

57
#ifdef __sun
58

59
#define htobe16(x) BE_16(x)
60
#define htole16(x) LE_16(x)
61
#define be16toh(x) BE_IN16(&(x))
62
#define le16toh(x) LE_IN16(&(x))
63

64
#define htobe32(x) BE_32(x)
65
#define htole32(x) LE_32(x)
66
#define be32toh(x) BE_IN32(&(x))
67
#define le32toh(x) LE_IN32(&(x))
68

69
#define htobe64(x) BE_64(x)
70
#define htole64(x) LE_64(x)
71
#define be64toh(x) BE_IN64(&(x))
72
#define le64toh(x) LE_IN64(&(x))
73

74
#endif
75

76
#ifdef __FreeBSD__
77
#include <sys/endian.h>
78
#endif
79

80
#if defined(__NetBSD__) && defined(IP_PKTINFO) && !defined(IP_SENDSRCADDR)
81
// The IP_PKTINFO option in NetBSD was incompatible with Linux until a
82
// change that also introduced IP_SENDSRCADDR for FreeBSD compatibility.
83
#undef IP_PKTINFO
84
#endif
85

86
union ComboAddress
87
{
88
  sockaddr_in sin4{};
89
  sockaddr_in6 sin6;
90

91
  bool operator==(const ComboAddress& rhs) const
92
  {
19,055,086✔
93
    if (std::tie(sin4.sin_family, sin4.sin_port) != std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
19,055,086✔
94
      return false;
6,215,976✔
95
    }
6,215,976✔
96
    if (sin4.sin_family == AF_INET) {
12,839,110✔
97
      return sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr;
8,385,994✔
98
    }
8,385,994✔
99
    return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) == 0;
4,453,116✔
100
  }
12,839,110✔
101

102
  bool operator!=(const ComboAddress& rhs) const
103
  {
6,013,394✔
104
    return (!operator==(rhs));
6,013,394✔
105
  }
6,013,394✔
106

107
  bool operator<(const ComboAddress& rhs) const
108
  {
424,131✔
109
    if (sin4.sin_family == 0) {
424,131✔
110
      return false;
4✔
111
    }
4✔
112
    if (std::tie(sin4.sin_family, sin4.sin_port) < std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
424,127✔
113
      return true;
5,702✔
114
    }
5,702✔
115
    if (std::tie(sin4.sin_family, sin4.sin_port) > std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
418,425✔
116
      return false;
3,182✔
117
    }
3,182✔
118
    if (sin4.sin_family == AF_INET) {
415,243✔
119
      return sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr;
183,829✔
120
    }
183,829✔
121
    return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) < 0;
231,414✔
122
  }
415,243✔
123

124
  bool operator>(const ComboAddress& rhs) const
125
  {
2✔
126
    return rhs.operator<(*this);
2✔
127
  }
2✔
128

129
  struct addressPortOnlyHash
130
  {
131
    uint32_t operator()(const ComboAddress& address) const
132
    {
×
133
      // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
134
      if (address.sin4.sin_family == AF_INET) {
×
135
        const auto* start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr);
×
136
        auto tmp = burtle(start, 4, 0);
×
137
        return burtle(reinterpret_cast<const uint8_t*>(&address.sin4.sin_port), 2, tmp);
×
138
      }
×
139
      const auto* start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr);
×
140
      auto tmp = burtle(start, 16, 0);
×
141
      return burtle(reinterpret_cast<const unsigned char*>(&address.sin6.sin6_port), 2, tmp);
×
142
      // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
143
    }
×
144
  };
145

146
  struct addressOnlyHash
147
  {
148
    uint32_t operator()(const ComboAddress& address) const
149
    {
619,372✔
150
      const unsigned char* start = nullptr;
619,372✔
151
      uint32_t len = 0;
619,372✔
152
      // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
153
      if (address.sin4.sin_family == AF_INET) {
619,372✔
154
        start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr);
618,421✔
155
        len = 4;
618,421✔
156
      }
618,421✔
157
      else {
951✔
158
        start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr);
951✔
159
        len = 16;
951✔
160
      }
951✔
161
      // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
162
      return burtle(start, len, 0);
619,372✔
163
    }
619,372✔
164
  };
165

166
  struct addressOnlyLessThan
167
  {
168
    bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const
169
    {
18✔
170
      if (lhs.sin4.sin_family < rhs.sin4.sin_family) {
18✔
171
        return true;
1✔
172
      }
1✔
173
      if (lhs.sin4.sin_family > rhs.sin4.sin_family) {
17✔
174
        return false;
2✔
175
      }
2✔
176
      if (lhs.sin4.sin_family == AF_INET) {
15!
177
        return lhs.sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr;
15✔
178
      }
15✔
179
      return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) < 0;
×
180
    }
15✔
181
  };
182

183
  struct addressOnlyEqual
184
  {
185
    bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const
186
    {
635✔
187
      if (lhs.sin4.sin_family != rhs.sin4.sin_family) {
635!
188
        return false;
×
189
      }
×
190
      if (lhs.sin4.sin_family == AF_INET) {
635!
191
        return lhs.sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr;
635✔
192
      }
635✔
193
      return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) == 0;
×
194
    }
635✔
195
  };
196

197
  [[nodiscard]] socklen_t getSocklen() const
198
  {
47,134✔
199
    if (sin4.sin_family == AF_INET) {
47,134✔
200
      return sizeof(sin4);
47,023✔
201
    }
47,023✔
202
    return sizeof(sin6);
111✔
203
  }
47,134✔
204

205
  ComboAddress()
206
  {
100,552,613✔
207
    sin4.sin_family = AF_INET;
100,552,613✔
208
    sin4.sin_addr.s_addr = 0;
100,552,613✔
209
    sin4.sin_port = 0;
100,552,613✔
210
    sin6.sin6_scope_id = 0;
100,552,613✔
211
    sin6.sin6_flowinfo = 0;
100,552,613✔
212
  }
100,552,613✔
213

214
  ComboAddress(const struct sockaddr* socketAddress, socklen_t salen)
215
  {
2✔
216
    setSockaddr(socketAddress, salen);
2✔
217
  };
2✔
218

219
  ComboAddress(const struct sockaddr_in6* socketAddress)
220
  {
4✔
221
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
222
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6));
4✔
223
  };
4✔
224

225
  ComboAddress(const struct sockaddr_in* socketAddress)
226
  {
2✔
227
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
228
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in));
2✔
229
  };
2✔
230

231
  void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen)
232
  {
8✔
233
    if (salen > sizeof(struct sockaddr_in6)) {
8!
234
      throw PDNSException("ComboAddress can't handle other than sockaddr_in or sockaddr_in6");
×
235
    }
×
236
    memcpy(this, socketAddress, salen);
8✔
237
  }
8✔
238

239
  // 'port' sets a default value in case 'str' does not set a port
240
  explicit ComboAddress(const string& str, uint16_t port = 0)
241
  {
1,143,112✔
242
    memset(&sin6, 0, sizeof(sin6));
1,143,112✔
243
    sin4.sin_family = AF_INET;
1,143,112✔
244
    sin4.sin_port = 0;
1,143,112✔
245
    if (makeIPv4sockaddr(str, &sin4) != 0) {
1,143,112✔
246
      sin6.sin6_family = AF_INET6;
532,202✔
247
      if (makeIPv6sockaddr(str, &sin6) < 0) {
532,202✔
248
        throw PDNSException("Unable to convert presentation address '" + str + "'");
47✔
249
      }
47✔
250
    }
532,202✔
251
    if (sin4.sin_port == 0) { // 'str' overrides port!
1,143,065✔
252
      sin4.sin_port = htons(port);
872,079✔
253
    }
872,079✔
254
  }
1,143,065✔
255

256
  [[nodiscard]] bool isIPv6() const
257
  {
105,056,456✔
258
    return sin4.sin_family == AF_INET6;
105,056,456✔
259
  }
105,056,456✔
260
  [[nodiscard]] bool isIPv4() const
261
  {
190,798,606✔
262
    return sin4.sin_family == AF_INET;
190,798,606✔
263
  }
190,798,606✔
264

265
  [[nodiscard]] bool isMappedIPv4() const
266
  {
×
267
    if (sin4.sin_family != AF_INET6) {
×
268
      return false;
×
269
    }
×
270

271
    int iter = 0;
×
272
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
273
    const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr);
×
274
    for (iter = 0; iter < 10; ++iter) {
×
275
      if (ptr[iter] != 0) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
×
276
        return false;
×
277
      }
×
278
    }
×
279
    for (; iter < 12; ++iter) {
×
280
      if (ptr[iter] != 0xff) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
×
281
        return false;
×
282
      }
×
283
    }
×
284
    return true;
×
285
  }
×
286

287
  [[nodiscard]] bool isUnspecified() const
288
  {
1,648✔
289
    const ComboAddress unspecifiedV4("0.0.0.0:0");
1,648✔
290
    const ComboAddress unspecifiedV6("[::]:0");
1,648✔
291
    return *this == unspecifiedV4 || *this == unspecifiedV6;
1,648!
292
  }
1,648✔
293

294
  [[nodiscard]] ComboAddress mapToIPv4() const
295
  {
×
296
    if (!isMappedIPv4()) {
×
297
      throw PDNSException("ComboAddress can't map non-mapped IPv6 address back to IPv4");
×
298
    }
×
299
    ComboAddress ret;
×
300
    ret.sin4.sin_family = AF_INET;
×
301
    ret.sin4.sin_port = sin4.sin_port;
×
302

303
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
304
    const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr);
×
305
    ptr += (sizeof(sin6.sin6_addr.s6_addr) - sizeof(ret.sin4.sin_addr.s_addr)); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
×
306
    memcpy(&ret.sin4.sin_addr.s_addr, ptr, sizeof(ret.sin4.sin_addr.s_addr));
×
307
    return ret;
×
308
  }
×
309

310
  [[nodiscard]] string toString() const
311
  {
25,871✔
312
    std::array<char, 1024> host{};
25,871✔
313
    if (sin4.sin_family != 0) {
25,871✔
314
      // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
315
      int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST);
25,870✔
316
      if (retval == 0) {
25,870!
317
        return host.data();
25,870✔
318
      }
25,870✔
319
      return "invalid " + string(gai_strerror(retval));
×
320
    }
25,870✔
321
    return "invalid";
1✔
322
  }
25,871✔
323

324
  //! Ignores any interface specifiers possibly available in the sockaddr data.
325
  [[nodiscard]] string toStringNoInterface() const
326
  {
1,814✔
327
    std::array<char, 1024> host{};
1,814✔
328
    if (sin4.sin_family == AF_INET) {
1,814✔
329
      const auto* ret = inet_ntop(sin4.sin_family, &sin4.sin_addr, host.data(), host.size());
1,293✔
330
      if (ret != nullptr) {
1,293!
331
        return host.data();
1,293✔
332
      }
1,293✔
333
    }
1,293✔
334
    else if (sin4.sin_family == AF_INET6) {
521!
335
      const auto* ret = inet_ntop(sin4.sin_family, &sin6.sin6_addr, host.data(), host.size());
521✔
336
      if (ret != nullptr) {
521!
337
        return host.data();
521✔
338
      }
521✔
339
    }
521✔
340
    else {
×
341
      return "invalid";
×
342
    }
×
343
    return "invalid " + stringerror();
×
344
  }
1,814✔
345

346
  [[nodiscard]] string toStringReversed() const
347
  {
12✔
348
    if (isIPv4()) {
12✔
349
      const auto address = ntohl(sin4.sin_addr.s_addr);
4✔
350
      auto aaa = (address >> 0) & 0xFF;
4✔
351
      auto bbb = (address >> 8) & 0xFF;
4✔
352
      auto ccc = (address >> 16) & 0xFF;
4✔
353
      auto ddd = (address >> 24) & 0xFF;
4✔
354
      return std::to_string(aaa) + "." + std::to_string(bbb) + "." + std::to_string(ccc) + "." + std::to_string(ddd);
4✔
355
    }
4✔
356
    const auto* addr = &sin6.sin6_addr;
8✔
357
    std::stringstream res{};
8✔
358
    res << std::hex;
8✔
359
    for (int i = 15; i >= 0; i--) {
136✔
360
      auto byte = addr->s6_addr[i]; // NOLINT(cppcoreguidelines-pro-bounds-constant-array-index)
128✔
361
      res << ((byte >> 0) & 0xF) << ".";
128✔
362
      res << ((byte >> 4) & 0xF);
128✔
363
      if (i != 0) {
128✔
364
        res << ".";
120✔
365
      }
120✔
366
    }
128✔
367
    return res.str();
8✔
368
  }
12✔
369

370
  [[nodiscard]] string toStringWithPort() const
371
  {
8,261✔
372
    if (sin4.sin_family == AF_INET) {
8,261✔
373
      return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
8,211✔
374
    }
8,211✔
375
    return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
50✔
376
  }
8,261✔
377

378
  [[nodiscard]] string toStringWithPortExcept(int port) const
379
  {
32✔
380
    if (ntohs(sin4.sin_port) == port) {
32✔
381
      return toString();
8✔
382
    }
8✔
383
    if (sin4.sin_family == AF_INET) {
24✔
384
      return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
12✔
385
    }
12✔
386
    return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
12✔
387
  }
24✔
388

389
  [[nodiscard]] string toLogString() const
390
  {
×
391
    return toStringWithPortExcept(53);
×
392
  }
×
393

394
  [[nodiscard]] string toStructuredLogString() const
395
  {
×
396
    return toStringWithPort();
×
397
  }
×
398

399
  [[nodiscard]] string toByteString() const
400
  {
234✔
401
    // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
402
    if (isIPv4()) {
234!
403
      return {reinterpret_cast<const char*>(&sin4.sin_addr.s_addr), sizeof(sin4.sin_addr.s_addr)};
234✔
404
    }
234✔
405
    return {reinterpret_cast<const char*>(&sin6.sin6_addr.s6_addr), sizeof(sin6.sin6_addr.s6_addr)};
×
406
    // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
407
  }
234✔
408

409
  void truncate(unsigned int bits) noexcept;
410

411
  [[nodiscard]] uint16_t getNetworkOrderPort() const noexcept
412
  {
1,009,217✔
413
    return sin4.sin_port;
1,009,217✔
414
  }
1,009,217✔
415
  [[nodiscard]] uint16_t getPort() const noexcept
416
  {
1,009,217✔
417
    return ntohs(getNetworkOrderPort());
1,009,217✔
418
  }
1,009,217✔
419
  void setPort(uint16_t port)
420
  {
291,608✔
421
    sin4.sin_port = htons(port);
291,608✔
422
  }
291,608✔
423

424
  void reset()
425
  {
6,503✔
426
    memset(&sin6, 0, sizeof(sin6));
6,503✔
427
  }
6,503✔
428

429
  //! Get the total number of address bits (either 32 or 128 depending on IP version)
430
  [[nodiscard]] uint8_t getBits() const
431
  {
93,058,406✔
432
    if (isIPv4()) {
93,058,406✔
433
      return 32;
41,836,559✔
434
    }
41,836,559✔
435
    if (isIPv6()) {
51,221,847!
436
      return 128;
51,221,847✔
437
    }
51,221,847✔
438
    return 0;
×
439
  }
51,221,847✔
440
  /** Get the value of the bit at the provided bit index. When the index >= 0,
441
      the index is relative to the LSB starting at index zero. When the index < 0,
442
      the index is relative to the MSB starting at index -1 and counting down.
443
   */
444
  [[nodiscard]] bool getBit(int index) const
445
  {
82,541,977✔
446
    if (isIPv4()) {
82,541,977✔
447
      if (index >= 32) {
28,773,052!
448
        return false;
×
449
      }
×
450
      if (index < 0) {
28,773,052✔
451
        if (index < -32) {
16,071,910!
452
          return false;
×
453
        }
×
454
        index = 32 + index;
16,071,910✔
455
      }
16,071,910✔
456

457
      uint32_t ls_addr = ntohl(sin4.sin_addr.s_addr);
28,773,052✔
458

459
      return ((ls_addr & (1U << index)) != 0x00000000);
28,773,052✔
460
    }
28,773,052✔
461
    if (isIPv6()) {
53,768,925!
462
      if (index >= 128) {
53,768,925!
463
        return false;
×
464
      }
×
465
      if (index < 0) {
53,768,925✔
466
        if (index < -128) {
36,990,558!
467
          return false;
×
468
        }
×
469
        index = 128 + index;
36,990,558✔
470
      }
36,990,558✔
471

472
      const auto* ls_addr = reinterpret_cast<const uint8_t*>(sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
53,768,925✔
473
      uint8_t byte_idx = index / 8;
53,768,925✔
474
      uint8_t bit_idx = index % 8;
53,768,925✔
475

476
      return ((ls_addr[15 - byte_idx] & (1U << bit_idx)) != 0x00); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
53,768,925✔
477
    }
53,768,925✔
478
    return false;
×
479
  }
53,768,925✔
480

481
  /*! Returns a comma-separated string of IP addresses
482
   *
483
   * \param c  An stl container with ComboAddresses
484
   * \param withPort  Also print the port (default true)
485
   * \param portExcept  Print the port, except when this is the port (default 53)
486
   */
487
  template <template <class...> class Container, class... Args>
488
  static string caContainerToString(const Container<ComboAddress, Args...>& container, const bool withPort = true, const uint16_t portExcept = 53)
489
  {
12✔
490
    vector<string> strs;
12✔
491
    for (const auto& address : container) {
48✔
492
      if (withPort) {
48✔
493
        strs.push_back(address.toStringWithPortExcept(portExcept));
32✔
494
        continue;
32✔
495
      }
32✔
496
      strs.push_back(address.toString());
16✔
497
    }
16✔
498
    return boost::join(strs, ",");
12✔
499
  };
12✔
500
};
501

502
union SockaddrWrapper
503
{
504
  sockaddr_in sin4{};
505
  sockaddr_in6 sin6;
506
  sockaddr_un sinun;
507

508
  [[nodiscard]] socklen_t getSocklen() const
509
  {
×
510
    if (sin4.sin_family == AF_INET) {
×
511
      return sizeof(sin4);
×
512
    }
×
513
    if (sin6.sin6_family == AF_INET6) {
×
514
      return sizeof(sin6);
×
515
    }
×
516
    if (sinun.sun_family == AF_UNIX) {
×
517
      return sizeof(sinun);
×
518
    }
×
519
    return 0;
×
520
  }
×
521

522
  SockaddrWrapper()
523
  {
×
524
    sin4.sin_family = AF_INET;
×
525
    sin4.sin_addr.s_addr = 0;
×
526
    sin4.sin_port = 0;
×
527
  }
×
528

529
  SockaddrWrapper(const struct sockaddr* socketAddress, socklen_t salen)
530
  {
×
531
    setSockaddr(socketAddress, salen);
×
532
  };
×
533

534
  SockaddrWrapper(const struct sockaddr_in6* socketAddress)
535
  {
×
536
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
×
537
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6));
×
538
  };
×
539

540
  SockaddrWrapper(const struct sockaddr_in* socketAddress)
541
  {
×
542
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
×
543
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in));
×
544
  };
×
545

546
  SockaddrWrapper(const struct sockaddr_un* socketAddress)
547
  {
×
548
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
×
549
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_un));
×
550
  };
×
551

552
  void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen)
553
  {
×
554
    if (salen > sizeof(struct sockaddr_un)) {
×
555
      throw PDNSException("ComboAddress can't handle other than sockaddr_in, sockaddr_in6 or sockaddr_un");
×
556
    }
×
557
    memcpy(this, socketAddress, salen);
×
558
  }
×
559

560
  explicit SockaddrWrapper(const string& str, uint16_t port = 0)
561
  {
30✔
562
    memset(&sinun, 0, sizeof(sinun));
30✔
563
    sin4.sin_family = AF_INET;
30✔
564
    sin4.sin_port = 0;
30✔
565
    if (str == "\"\"" || str == "''") {
30✔
566
      throw PDNSException("Stray quotation marks in address.");
4✔
567
    }
4✔
568
    if (makeIPv4sockaddr(str, &sin4) != 0) {
26✔
569
      sin6.sin6_family = AF_INET6;
18✔
570
      if (makeIPv6sockaddr(str, &sin6) < 0) {
18✔
571
        sinun.sun_family = AF_UNIX;
10✔
572
        // only attempt Unix socket address if address candidate does not contain a port
573
        if (str.find(':') != string::npos || makeUNsockaddr(str, &sinun) < 0) {
10!
574
          throw PDNSException("Unable to convert presentation address '" + str + "'");
8✔
575
        }
8✔
576
      }
10✔
577
    }
18✔
578
    if (sinun.sun_family != AF_UNIX && sin4.sin_port == 0) { // 'str' overrides port!
18✔
579
      sin4.sin_port = htons(port);
8✔
580
    }
8✔
581
  }
18✔
582

583
  [[nodiscard]] bool isIPv6() const
584
  {
×
585
    return sin4.sin_family == AF_INET6;
×
586
  }
×
587
  [[nodiscard]] bool isIPv4() const
588
  {
×
589
    return sin4.sin_family == AF_INET;
×
590
  }
×
591
  [[nodiscard]] bool isUnixSocket() const
592
  {
×
593
    return sin4.sin_family == AF_UNIX;
×
594
  }
×
595

596
  [[nodiscard]] string toString() const
597
  {
×
598
    if (sinun.sun_family == AF_UNIX) {
×
599
      return sinun.sun_path;
×
600
    }
×
601
    std::array<char, 1024> host{};
×
602
    if (sin4.sin_family != 0) {
×
603
      // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
×
604
      int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST);
×
605
      if (retval == 0) {
×
606
        return host.data();
×
607
      }
×
608
      return "invalid " + string(gai_strerror(retval));
×
609
    }
×
610
    return "invalid";
×
611
  }
×
612

613
  [[nodiscard]] string toStringWithPort() const
614
  {
×
615
    if (sinun.sun_family == AF_UNIX) {
×
616
      return toString();
×
617
    }
×
618
    if (sin4.sin_family == AF_INET) {
×
619
      return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
×
620
    }
×
621
    return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
×
622
  }
×
623

624
  void reset()
625
  {
×
626
    memset(&sinun, 0, sizeof(sinun));
×
627
  }
×
628
};
629

630
/** This exception is thrown by the Netmask class and by extension by the NetmaskGroup class */
631
class NetmaskException : public PDNSException
632
{
633
public:
634
  NetmaskException(const string& arg) :
635
    PDNSException(arg) {}
328✔
636
};
637

638
inline ComboAddress makeComboAddress(const string& str)
639
{
280,899✔
640
  ComboAddress address;
280,899✔
641
  address.sin4.sin_family = AF_INET;
280,899✔
642
  if (inet_pton(AF_INET, str.c_str(), &address.sin4.sin_addr) <= 0) {
280,899✔
643
    address.sin4.sin_family = AF_INET6;
136,203✔
644
    if (makeIPv6sockaddr(str, &address.sin6) < 0) {
136,203✔
645
      throw NetmaskException("Unable to convert '" + str + "' to a netmask");
328✔
646
    }
328✔
647
  }
136,203✔
648
  return address;
280,571✔
649
}
280,899✔
650

651
inline ComboAddress makeComboAddressFromRaw(uint8_t version, const char* raw, size_t len)
652
{
80✔
653
  ComboAddress address;
80✔
654

655
  if (version == 4) {
80✔
656
    address.sin4.sin_family = AF_INET;
37✔
657
    if (len != sizeof(address.sin4.sin_addr)) {
37!
658
      throw NetmaskException("invalid raw address length");
×
659
    }
×
660
    memcpy(&address.sin4.sin_addr, raw, sizeof(address.sin4.sin_addr));
37✔
661
  }
37✔
662
  else if (version == 6) {
43!
663
    address.sin6.sin6_family = AF_INET6;
43✔
664
    if (len != sizeof(address.sin6.sin6_addr)) {
43!
665
      throw NetmaskException("invalid raw address length");
×
666
    }
×
667
    memcpy(&address.sin6.sin6_addr, raw, sizeof(address.sin6.sin6_addr));
43✔
668
  }
43✔
669
  else {
×
670
    throw NetmaskException("invalid address family");
×
671
  }
×
672

673
  return address;
80✔
674
}
80✔
675

676
inline ComboAddress makeComboAddressFromRaw(uint8_t version, const string& str)
677
{
18✔
678
  return makeComboAddressFromRaw(version, str.c_str(), str.size());
18✔
679
}
18✔
680

681
/** This class represents a netmask and can be queried to see if a certain
682
    IP address is matched by this mask */
683
class Netmask
684
{
685
public:
686
  Netmask()
687
  {
36,781✔
688
    d_network.sin4.sin_family = 0; // disable this doing anything useful
36,781✔
689
    d_network.sin4.sin_port = 0; // this guarantees d_network compares identical
36,781✔
690
  }
36,781✔
691

692
  Netmask(const ComboAddress& network, uint8_t bits = 0xff) :
693
    d_network(network)
14,322,073✔
694
  {
14,322,073✔
695
    d_network.sin4.sin_port = 0;
14,322,073✔
696
    setBits(bits);
14,322,073✔
697
  }
14,322,073✔
698

699
  Netmask(const sockaddr_in* network, uint8_t bits = 0xff) :
700
    d_network(network)
701
  {
×
702
    d_network.sin4.sin_port = 0;
×
703
    setBits(bits);
×
704
  }
×
705
  Netmask(const sockaddr_in6* network, uint8_t bits = 0xff) :
706
    d_network(network)
707
  {
×
708
    d_network.sin4.sin_port = 0;
×
709
    setBits(bits);
×
710
  }
×
711
  void setBits(uint8_t value)
712
  {
14,602,630✔
713
    d_bits = d_network.isIPv4() ? std::min(value, static_cast<uint8_t>(32U)) : std::min(value, static_cast<uint8_t>(128U));
14,602,630✔
714

715
    if (d_bits < 32) {
14,602,630✔
716
      d_mask = ~(0xFFFFFFFF >> d_bits);
2,716,949✔
717
    }
2,716,949✔
718
    else {
11,885,681✔
719
      // note that d_mask is unused for IPv6
720
      d_mask = 0xFFFFFFFF;
11,885,681✔
721
    }
11,885,681✔
722

723
    if (isIPv4()) {
14,602,630✔
724
      d_network.sin4.sin_addr.s_addr = htonl(ntohl(d_network.sin4.sin_addr.s_addr) & d_mask);
6,184,244✔
725
    }
6,184,244✔
726
    else if (isIPv6()) {
8,418,386!
727
      uint8_t bytes = d_bits / 8;
8,418,386✔
728
      auto* address = reinterpret_cast<uint8_t*>(&d_network.sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
8,418,386✔
729
      uint8_t bits = d_bits % 8;
8,418,386✔
730
      auto mask = static_cast<uint8_t>(~(0xFF >> bits));
8,418,386✔
731

732
      if (bytes < sizeof(d_network.sin6.sin6_addr.s6_addr)) {
8,418,386✔
733
        address[bytes] &= mask; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
6,829,400✔
734
      }
6,829,400✔
735

736
      for (size_t idx = bytes + 1; idx < sizeof(d_network.sin6.sin6_addr.s6_addr); ++idx) {
62,745,987✔
737
        address[idx] = 0; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
54,327,601✔
738
      }
54,327,601✔
739
    }
8,418,386✔
740
  }
14,602,630✔
741

742
  enum stringType
743
  {
744
    humanString,
745
    byteString,
746
  };
747
  //! Constructor supplies the mask, which cannot be changed
748
  Netmask(const string& mask, stringType type = humanString)
749
  {
280,885✔
750
    if (type == byteString) {
280,885!
751
      uint8_t afi = mask.at(0);
×
752
      size_t len = afi == 4 ? 4 : 16;
×
753
      uint8_t bits = mask.at(len + 1);
×
754

755
      d_network = makeComboAddressFromRaw(afi, mask.substr(1, len));
×
756

757
      setBits(bits);
×
758
    }
×
759
    else {
280,885✔
760
      pair<string, string> split = splitField(mask, '/');
280,885✔
761
      d_network = makeComboAddress(split.first);
280,885✔
762

763
      if (!split.second.empty()) {
280,885✔
764
        setBits(pdns::checked_stoi<uint8_t>(split.second));
145,896✔
765
      }
145,896✔
766
      else if (d_network.sin4.sin_family == AF_INET) {
134,989✔
767
        setBits(32);
133,390✔
768
      }
133,390✔
769
      else {
1,599✔
770
        setBits(128);
1,599✔
771
      }
1,599✔
772
    }
280,885✔
773
  }
280,885✔
774

775
  [[nodiscard]] bool match(const ComboAddress& address) const
776
  {
24✔
777
    return match(&address);
24✔
778
  }
24✔
779

780
  //! If this IP address in socket address matches
781
  bool match(const ComboAddress* address) const
782
  {
38✔
783
    if (d_network.sin4.sin_family != address->sin4.sin_family) {
38!
784
      return false;
×
785
    }
×
786
    if (d_network.sin4.sin_family == AF_INET) {
38✔
787
      return match4(htonl((unsigned int)address->sin4.sin_addr.s_addr));
26✔
788
    }
26✔
789
    if (d_network.sin6.sin6_family == AF_INET6) {
12!
790
      uint8_t bytes = d_bits / 8;
12✔
791
      uint8_t index = 0;
12✔
792
      // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
793
      const auto* lhs = reinterpret_cast<const uint8_t*>(&d_network.sin6.sin6_addr.s6_addr);
12✔
794
      const auto* rhs = reinterpret_cast<const uint8_t*>(&address->sin6.sin6_addr.s6_addr);
12✔
795
      // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
796

797
      // NOLINTBEGIN(cppcoreguidelines-pro-bounds-pointer-arithmetic)
798
      for (index = 0; index < bytes; ++index) {
64✔
799
        if (lhs[index] != rhs[index]) {
56✔
800
          return false;
4✔
801
        }
4✔
802
      }
56✔
803
      // still here, now match remaining bits
804
      uint8_t bits = d_bits % 8;
8✔
805
      auto mask = static_cast<uint8_t>(~(0xFF >> bits));
8✔
806

807
      return ((lhs[index]) == (rhs[index] & mask));
8✔
808
      // NOLINTEND(cppcoreguidelines-pro-bounds-pointer-arithmetic)
809
    }
12✔
810
    return false;
×
811
  }
12✔
812

813
  //! If this ASCII IP address matches
814
  [[nodiscard]] bool match(const string& arg) const
815
  {
14✔
816
    ComboAddress address = makeComboAddress(arg);
14✔
817
    return match(&address);
14✔
818
  }
14✔
819

820
  //! If this IP address in native format matches
821
  [[nodiscard]] bool match4(uint32_t arg) const
822
  {
26✔
823
    return (arg & d_mask) == (ntohl(d_network.sin4.sin_addr.s_addr));
26✔
824
  }
26✔
825

826
  [[nodiscard]] string toString() const
827
  {
1,759✔
828
    return d_network.toStringNoInterface() + "/" + std::to_string((unsigned int)d_bits);
1,759✔
829
  }
1,759✔
830

831
  [[nodiscard]] string toStringNoMask() const
832
  {
×
833
    return d_network.toStringNoInterface();
×
834
  }
×
835

836
  [[nodiscard]] string toByteString() const
837
  {
×
838
    ostringstream tmp;
×
839

×
840
    tmp << (d_network.isIPv4() ? "\x04" : "\x06")
×
841
        << d_network.toByteString()
×
842
        << getBits();
×
843

×
844
    return tmp.str();
×
845
  }
×
846

847
  [[nodiscard]] const ComboAddress& getNetwork() const
848
  {
13,495,915✔
849
    return d_network;
13,495,915✔
850
  }
13,495,915✔
851

852
  [[nodiscard]] const ComboAddress& getMaskedNetwork() const
853
  {
13,495,359✔
854
    return getNetwork();
13,495,359✔
855
  }
13,495,359✔
856

857
  [[nodiscard]] uint8_t getBits() const
858
  {
37,501,335✔
859
    return d_bits;
37,501,335✔
860
  }
37,501,335✔
861

862
  [[nodiscard]] bool isIPv6() const
863
  {
8,850,711✔
864
    return d_network.sin6.sin6_family == AF_INET6;
8,850,711✔
865
  }
8,850,711✔
866

867
  [[nodiscard]] bool isIPv4() const
868
  {
15,506,159✔
869
    return d_network.sin4.sin_family == AF_INET;
15,506,159✔
870
  }
15,506,159✔
871

872
  bool operator<(const Netmask& rhs) const
873
  {
605,004✔
874
    if (empty() && !rhs.empty()) {
605,004!
875
      return false;
×
876
    }
×
877
    if (!empty() && rhs.empty()) {
605,004!
878
      return true;
8✔
879
    }
8✔
880
    if (d_bits > rhs.d_bits) {
604,996✔
881
      return true;
119,048✔
882
    }
119,048✔
883
    if (d_bits < rhs.d_bits) {
485,948✔
884
      return false;
61,940✔
885
    }
61,940✔
886

887
    return d_network < rhs.d_network;
424,008✔
888
  }
485,948✔
889

890
  bool operator>(const Netmask& rhs) const
891
  {
12✔
892
    return rhs.operator<(*this);
12✔
893
  }
12✔
894

895
  bool operator==(const Netmask& rhs) const
896
  {
12,832,194✔
897
    return std::tie(d_network, d_bits) == std::tie(rhs.d_network, rhs.d_bits);
12,832,194✔
898
  }
12,832,194✔
899
  bool operator!=(const Netmask& rhs) const
900
  {
×
901
    return !operator==(rhs);
×
902
  }
×
903

904
  [[nodiscard]] bool empty() const
905
  {
1,815,012✔
906
    return d_network.sin4.sin_family == 0;
1,815,012✔
907
  }
1,815,012✔
908

909
  //! Get normalized version of the netmask. This means that all address bits below the network bits are zero.
910
  [[nodiscard]] Netmask getNormalized() const
911
  {
13,476,285✔
912
    return {getMaskedNetwork(), d_bits};
13,476,285✔
913
  }
13,476,285✔
914
  //! Get Netmask for super network of this one (i.e. with fewer network bits)
915
  [[nodiscard]] Netmask getSuper(uint8_t bits) const
916
  {
280,308✔
917
    return {d_network, std::min(d_bits, bits)};
280,308✔
918
  }
280,308✔
919

920
  //! Get the total number of address bits for this netmask (either 32 or 128 depending on IP version)
921
  [[nodiscard]] uint8_t getFullBits() const
922
  {
603,389✔
923
    return d_network.getBits();
603,389✔
924
  }
603,389✔
925

926
  /** Get the value of the bit at the provided bit index. When the index >= 0,
927
      the index is relative to the LSB starting at index zero. When the index < 0,
928
      the index is relative to the MSB starting at index -1 and counting down.
929
      When the index points outside the network bits, it always yields zero.
930
   */
931
  [[nodiscard]] bool getBit(int bit) const
932
  {
53,062,468✔
933
    if (bit < -d_bits) {
53,062,468!
934
      return false;
×
935
    }
×
936
    if (bit >= 0) {
53,062,468!
937
      if (isIPv4()) {
×
938
        if (bit >= 32 || bit < (32 - d_bits)) {
×
939
          return false;
×
940
        }
×
941
      }
×
942
      if (isIPv6()) {
×
943
        if (bit >= 128 || bit < (128 - d_bits)) {
×
944
          return false;
×
945
        }
×
946
      }
×
947
    }
×
948
    return d_network.getBit(bit);
53,062,468✔
949
  }
53,062,468✔
950

951
  struct Hash
952
  {
953
    size_t operator()(const Netmask& netmask) const
954
    {
×
955
      return burtle(&netmask.d_bits, 1, ComboAddress::addressOnlyHash()(netmask.d_network));
×
956
    }
×
957
  };
958

959
private:
960
  ComboAddress d_network;
961
  uint32_t d_mask{0};
962
  uint8_t d_bits{0};
963
};
964

965
namespace std
966
{
967
template <>
968
struct hash<Netmask>
969
{
970
  auto operator()(const Netmask& netmask) const
971
  {
×
972
    return Netmask::Hash{}(netmask);
×
973
  }
×
974
};
975
}
976

977
/** Binary tree map implementation with <Netmask,T> pair.
978
 *
979
 * This is an binary tree implementation for storing attributes for IPv4 and IPv6 prefixes.
980
 * The most simple use case is simple NetmaskTree<bool> used by NetmaskGroup, which only
981
 * wants to know if given IP address is matched in the prefixes stored.
982
 *
983
 * This element is useful for anything that needs to *STORE* prefixes, and *MATCH* IP addresses
984
 * to a *LIST* of *PREFIXES*. Not the other way round.
985
 *
986
 * You can store IPv4 and IPv6 addresses to same tree, separate payload storage is kept per AFI.
987
 * Network prefixes (Netmasks) are always recorded in normalized fashion, meaning that only
988
 * the network bits are set. This is what is returned in the insert() and lookup() return
989
 * values.
990
 *
991
 * Use swap if you need to move the tree to another NetmaskTree instance, it is WAY faster
992
 * than using copy ctor or assignment operator, since it moves the nodes and tree root to
993
 * new home instead of actually recreating the tree.
994
 *
995
 * Please see NetmaskGroup for example of simple use case. Other usecases can be found
996
 * from GeoIPBackend and Sortlist, and from dnsdist.
997
 */
998
template <typename T, class K = Netmask>
999
class NetmaskTree
1000
{
1001
public:
1002
  class Iterator;
1003

1004
  using key_type = K;
1005
  using value_type = T;
1006
  using node_type = std::pair<const key_type, value_type>;
1007
  using size_type = size_t;
1008
  using iterator = class Iterator;
1009

1010
private:
1011
  /** Single node in tree, internal use only.
1012
   */
1013
  class TreeNode : boost::noncopyable
1014
  {
1015
  public:
1016
    explicit TreeNode() noexcept :
1017
      parent(nullptr), node(), assigned(false), d_bits(0)
36,557✔
1018
    {
36,557✔
1019
    }
36,557✔
1020
    explicit TreeNode(const key_type& key) :
1021
      parent(nullptr), node({key.getNormalized(), value_type()}), assigned(false), d_bits(key.getFullBits())
604,532✔
1022
    {
604,532✔
1023
    }
604,532✔
1024

1025
    //<! Makes a left leaf node with specified key.
1026
    TreeNode* make_left(const key_type& key)
1027
    {
898✔
1028
      d_bits = node.first.getBits();
898✔
1029
      left = make_unique<TreeNode>(key);
898✔
1030
      left->parent = this;
898✔
1031
      return left.get();
898✔
1032
    }
898✔
1033

1034
    //<! Makes a right leaf node with specified key.
1035
    TreeNode* make_right(const key_type& key)
1036
    {
9,870✔
1037
      d_bits = node.first.getBits();
9,870✔
1038
      right = make_unique<TreeNode>(key);
9,870✔
1039
      right->parent = this;
9,870✔
1040
      return right.get();
9,870✔
1041
    }
9,870✔
1042

1043
    //<! Splits branch at indicated bit position by inserting key
1044
    TreeNode* split(const key_type& key, int bits)
1045
    {
2,116✔
1046
      if (parent == nullptr) {
2,116!
1047
        // not to be called on the root node
1048
        throw std::logic_error(
×
1049
          "NetmaskTree::TreeNode::split(): must not be called on root node");
×
1050
      }
×
1051

1052
      // determine reference from parent
1053
      unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right);
2,116!
1054
      if (parent_ref.get() != this) {
2,116!
1055
        throw std::logic_error(
×
1056
          "NetmaskTree::TreeNode::split(): parent node reference is invalid");
×
1057
      }
×
1058

1059
      // create new tree node for the new key and
1060
      // attach the new node under our former parent
1061
      auto new_intermediate_node = make_unique<TreeNode>(key);
2,116✔
1062
      new_intermediate_node->d_bits = bits;
2,116✔
1063
      new_intermediate_node->parent = parent;
2,116✔
1064
      auto* new_intermediate_node_raw = new_intermediate_node.get();
2,116✔
1065

1066
      // hereafter new_intermediate points to "this"
1067
      // ie the child of the new intermediate node
1068
      std::swap(parent_ref, new_intermediate_node);
2,116✔
1069
      // and we now assign this to current_node so
1070
      // it's clear it no longer refers to the new
1071
      // intermediate node
1072
      std::unique_ptr<TreeNode> current_node = std::move(new_intermediate_node);
2,116✔
1073

1074
      // attach "this" node below the new node
1075
      // (left or right depending on bit)
1076
      // technically the raw pointer escapes the duration of the
1077
      // unique pointer, but just below we store the unique pointer
1078
      // in the parent, so it lives as long as necessary
1079
      // coverity[escape]
1080
      current_node->parent = new_intermediate_node_raw;
2,116✔
1081
      if (current_node->node.first.getBit(-1 - bits)) {
2,116!
1082
        new_intermediate_node_raw->right = std::move(current_node);
77✔
1083
      }
77✔
1084
      else {
2,039✔
1085
        new_intermediate_node_raw->left = std::move(current_node);
2,039✔
1086
      }
2,039✔
1087

1088
      return new_intermediate_node_raw;
2,116✔
1089
    }
2,116✔
1090

1091
    //<! Forks branch for new key at indicated bit position
1092
    TreeNode* fork(const key_type& key, int bits)
1093
    {
280,818✔
1094
      if (parent == nullptr) {
280,818!
1095
        // not to be called on the root node
1096
        throw std::logic_error(
×
1097
          "NetmaskTree::TreeNode::fork(): must not be called on root node");
×
1098
      }
×
1099

1100
      // determine reference from parent
1101
      unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right);
280,818!
1102
      if (parent_ref.get() != this) {
280,818!
1103
        throw std::logic_error(
×
1104
          "NetmaskTree::TreeNode::fork(): parent node reference is invalid");
×
1105
      }
×
1106

1107
      // create new tree node for the branch point
1108

1109
      // the current node will now be a child of the new branch node
1110
      // (hereafter new_child1 points to "this")
1111
      unique_ptr<TreeNode> new_child1 = std::move(parent_ref);
280,818✔
1112
      // attach the branch node under our former parent
1113
      parent_ref = make_unique<TreeNode>(node.first.getSuper(bits));
280,818✔
1114
      auto* branch_node = parent_ref.get();
280,818✔
1115
      branch_node->d_bits = bits;
280,818✔
1116
      branch_node->parent = parent;
280,818✔
1117

1118
      // create second new leaf node for the new key
1119
      unique_ptr<TreeNode> new_child2 = make_unique<TreeNode>(key);
280,818✔
1120
      TreeNode* new_node = new_child2.get();
280,818✔
1121

1122
      // attach the new child nodes below the branch node
1123
      // (left or right depending on bit)
1124
      new_child1->parent = branch_node;
280,818✔
1125
      new_child2->parent = branch_node;
280,818✔
1126
      if (new_child1->node.first.getBit(-1 - bits)) {
280,818!
1127
        branch_node->right = std::move(new_child1);
1,596✔
1128
        branch_node->left = std::move(new_child2);
1,596✔
1129
      }
1,596✔
1130
      else {
279,222✔
1131
        branch_node->right = std::move(new_child2);
279,222✔
1132
        branch_node->left = std::move(new_child1);
279,222✔
1133
      }
279,222✔
1134
      // now we have attached the new unique pointers to the tree:
1135
      // - branch_node is below its parent
1136
      // - new_child1 (ourselves) is below branch_node
1137
      // - new_child2, the new leaf node, is below branch_node as well
1138

1139
      return new_node;
280,818✔
1140
    }
280,818✔
1141

1142
    //<! Traverse left branch depth-first
1143
    TreeNode* traverse_l()
1144
    {
105,128✔
1145
      TreeNode* tnode = this;
105,128✔
1146

1147
      while (tnode->left) {
187,519✔
1148
        tnode = tnode->left.get();
82,391✔
1149
      }
82,391✔
1150
      return tnode;
105,128✔
1151
    }
105,128✔
1152

1153
    //<! Traverse tree depth-first and in-order (L-N-R)
1154
    TreeNode* traverse_lnr()
1155
    {
190,065✔
1156
      TreeNode* tnode = this;
190,065✔
1157

1158
      // precondition: descended left as deep as possible
1159
      if (tnode->right) {
190,065✔
1160
        // descend right
1161
        tnode = tnode->right.get();
76,028✔
1162
        // descend left as deep as possible and return next node
1163
        return tnode->traverse_l();
76,028✔
1164
      }
76,028✔
1165

1166
      // ascend to parent
1167
      while (tnode->parent != nullptr) {
190,065✔
1168
        TreeNode* prev_child = tnode;
159,895✔
1169
        tnode = tnode->parent;
159,895✔
1170

1171
        // return this node, but only when we come from the left child branch
1172
        if (tnode->left && tnode->left.get() == prev_child) {
159,895✔
1173
          return tnode;
83,867✔
1174
        }
83,867✔
1175
      }
159,895✔
1176
      return nullptr;
30,170✔
1177
    }
114,037✔
1178

1179
    //<! Traverse only assigned nodes
1180
    TreeNode* traverse_lnr_assigned()
1181
    {
59,244✔
1182
      TreeNode* tnode = traverse_lnr();
59,244✔
1183

1184
      while (tnode != nullptr && !tnode->assigned) {
104,129✔
1185
        tnode = tnode->traverse_lnr();
44,885✔
1186
      }
44,885✔
1187
      return tnode;
59,244✔
1188
    }
59,244✔
1189

1190
    unique_ptr<TreeNode> left;
1191
    unique_ptr<TreeNode> right;
1192
    TreeNode* parent;
1193

1194
    node_type node;
1195
    bool assigned; //<! Whether this node is assigned-to by the application
1196

1197
    int d_bits; //<! How many bits have been used so far
1198
  };
1199

1200
  void cleanup_tree(TreeNode* node)
1201
  {
18,745✔
1202
    // only cleanup this node if it has no children and node not assigned
1203
    if (!(node->left || node->right || node->assigned)) {
18,745!
1204
      // get parent node ptr
1205
      TreeNode* pparent = node->parent;
9,758✔
1206
      // delete this node
1207
      if (pparent) {
9,758✔
1208
        if (pparent->left.get() == node) {
9,753!
1209
          pparent->left.reset();
1,298✔
1210
        }
1,298✔
1211
        else {
8,455✔
1212
          pparent->right.reset();
8,455✔
1213
        }
8,455✔
1214
        // now recurse up to the parent
1215
        cleanup_tree(pparent);
9,753✔
1216
      }
9,753✔
1217
    }
9,758✔
1218
  }
18,745✔
1219

1220
  void copyTree(const NetmaskTree& rhs)
1221
  {
29,100✔
1222
    try {
29,100✔
1223
      TreeNode* node = rhs.d_root.get();
29,100✔
1224
      if (node != nullptr) {
29,100!
1225
        node = node->traverse_l();
29,100✔
1226
      }
29,100✔
1227
      while (node != nullptr) {
115,036✔
1228
        if (node->assigned) {
85,936✔
1229
          insert(node->node.first).second = node->node.second;
43,240✔
1230
        }
43,240✔
1231
        node = node->traverse_lnr();
85,936✔
1232
      }
85,936✔
1233
    }
29,100✔
1234
    catch (const NetmaskException&) {
29,100✔
1235
      abort();
×
1236
    }
×
1237
    catch (const std::logic_error&) {
29,100✔
1238
      abort();
×
1239
    }
×
1240
  }
29,100✔
1241

1242
public:
1243
  class Iterator
1244
  {
1245
  public:
1246
    using value_type = node_type;
1247
    using reference = node_type&;
1248
    using pointer = node_type*;
1249
    using iterator_category = std::forward_iterator_tag;
1250
    using difference_type = size_type;
1251

1252
  private:
1253
    friend class NetmaskTree;
1254

1255
    const NetmaskTree* d_tree;
1256
    TreeNode* d_node;
1257

1258
    Iterator(const NetmaskTree* tree, TreeNode* node) :
1259
      d_tree(tree), d_node(node)
2,330✔
1260
    {
2,330✔
1261
    }
2,330✔
1262

1263
  public:
1264
    Iterator() :
1265
      d_tree(nullptr), d_node(nullptr) {}
×
1266

1267
    Iterator& operator++() // prefix
1268
    {
57,962✔
1269
      if (d_node == nullptr) {
57,962!
1270
        throw std::logic_error(
×
1271
          "NetmaskTree::Iterator::operator++: iterator is invalid");
×
1272
      }
×
1273
      d_node = d_node->traverse_lnr_assigned();
57,962✔
1274
      return *this;
57,962✔
1275
    }
57,962✔
1276
    Iterator operator++(int) // postfix
1277
    {
×
1278
      Iterator tmp(*this);
×
1279
      operator++();
×
1280
      return tmp;
×
1281
    }
×
1282

1283
    reference operator*()
1284
    {
32,585✔
1285
      if (d_node == nullptr) {
32,585!
1286
        throw std::logic_error(
×
1287
          "NetmaskTree::Iterator::operator*: iterator is invalid");
×
1288
      }
×
1289
      return d_node->node;
32,585✔
1290
    }
32,585✔
1291

1292
    pointer operator->()
1293
    {
146✔
1294
      if (d_node == nullptr) {
146!
1295
        throw std::logic_error(
×
1296
          "NetmaskTree::Iterator::operator->: iterator is invalid");
×
1297
      }
×
1298
      return &d_node->node;
146✔
1299
    }
146✔
1300

1301
    bool operator==(const Iterator& rhs)
1302
    {
59,127✔
1303
      return (d_tree == rhs.d_tree && d_node == rhs.d_node);
59,127!
1304
    }
59,127✔
1305
    bool operator!=(const Iterator& rhs)
1306
    {
59,127✔
1307
      return !(*this == rhs);
59,127✔
1308
    }
59,127✔
1309
  };
1310

1311
  NetmaskTree() noexcept :
1312
    d_root(new TreeNode()), d_left(nullptr)
7,269✔
1313
  {
7,269✔
1314
  }
7,269✔
1315

1316
  NetmaskTree(const NetmaskTree& rhs) :
1317
    d_root(new TreeNode()), d_left(nullptr)
29,099✔
1318
  {
29,099✔
1319
    copyTree(rhs);
29,099✔
1320
  }
29,099✔
1321

1322
  ~NetmaskTree() = default;
60,216✔
1323

1324
  NetmaskTree& operator=(const NetmaskTree& rhs)
1325
  {
1✔
1326
    if (this != &rhs) {
1!
1327
      clear();
1✔
1328
      copyTree(rhs);
1✔
1329
    }
1✔
1330
    return *this;
1✔
1331
  }
1✔
1332

1333
  NetmaskTree(NetmaskTree&&) noexcept = default;
29,192✔
1334
  NetmaskTree& operator=(NetmaskTree&&) noexcept = default;
3,053✔
1335

1336
  [[nodiscard]] iterator begin() const
1337
  {
1,143✔
1338
    return Iterator(this, d_left);
1,143✔
1339
  }
1,143✔
1340
  [[nodiscard]] iterator end() const
1341
  {
1,143✔
1342
    return Iterator(this, nullptr);
1,143✔
1343
  }
1,143✔
1344
  iterator begin()
1345
  {
22✔
1346
    return Iterator(this, d_left);
22✔
1347
  }
22✔
1348
  iterator end()
1349
  {
22✔
1350
    return Iterator(this, nullptr);
22✔
1351
  }
22✔
1352

1353
  node_type& insert(const string& mask)
1354
  {
6✔
1355
    return insert(key_type(mask));
6✔
1356
  }
6✔
1357

1358
  //<! Creates new value-pair in tree and returns it.
1359
  node_type& insert(const key_type& key)
1360
  {
324,089✔
1361
    TreeNode* node{};
324,089✔
1362
    bool is_left = true;
324,089✔
1363

1364
    // we turn left on IPv4 and right on IPv6
1365
    if (key.isIPv4()) {
324,089✔
1366
      node = d_root->left.get();
168,877✔
1367
      if (node == nullptr) {
168,877✔
1368

1369
        d_root->left = make_unique<TreeNode>(key);
18,520✔
1370
        node = d_root->left.get();
18,520✔
1371
        node->assigned = true;
18,520✔
1372
        node->parent = d_root.get();
18,520✔
1373
        d_size++;
18,520✔
1374
        d_left = node;
18,520✔
1375
        return node->node;
18,520✔
1376
      }
18,520✔
1377
    }
168,877✔
1378
    else if (key.isIPv6()) {
155,212!
1379
      node = d_root->right.get();
155,212✔
1380
      if (node == nullptr) {
155,212!
1381

1382
        d_root->right = make_unique<TreeNode>(key);
11,492✔
1383
        node = d_root->right.get();
11,492✔
1384
        node->assigned = true;
11,492✔
1385
        node->parent = d_root.get();
11,492✔
1386
        d_size++;
11,492✔
1387
        if (!d_root->left) {
11,492!
1388
          d_left = node;
7✔
1389
        }
7✔
1390
        return node->node;
11,492✔
1391
      }
11,492✔
1392
      if (d_root->left) {
143,720!
1393
        is_left = false;
143,714✔
1394
      }
143,714✔
1395
    }
143,720✔
1396
    else {
×
1397
      throw NetmaskException("invalid address family");
×
1398
    }
×
1399

1400
    // we turn left on 0 and right on 1
1401
    int bits = 0;
294,077✔
1402
    for (; bits < key.getBits(); bits++) {
13,061,803✔
1403
      bool vall = key.getBit(-1 - bits);
13,059,312✔
1404

1405
      if (bits >= node->d_bits) {
13,059,312✔
1406
        // the end of the current node is reached; continue with the next
1407
        if (vall) {
2,000,517✔
1408
          if (node->left || node->assigned) {
1,938,517!
1409
            is_left = false;
1,938,517✔
1410
          }
1,938,517✔
1411
          if (!node->right) {
1,938,517!
1412
            // the right branch doesn't exist yet; attach our key here
1413
            node = node->make_right(key);
629✔
1414
            break;
629✔
1415
          }
629✔
1416
          node = node->right.get();
1,937,888✔
1417
        }
1,937,888✔
1418
        else {
62,000✔
1419
          if (!node->left) {
62,000!
1420
            // the left branch doesn't exist yet; attach our key here
1421
            node = node->make_left(key);
23✔
1422
            break;
23✔
1423
          }
23✔
1424
          node = node->left.get();
61,977✔
1425
        }
61,977✔
1426
        continue;
1,999,865✔
1427
      }
2,000,517✔
1428
      if (bits >= node->node.first.getBits()) {
11,058,795!
1429
        // the matching branch ends here, yet the key netmask has more bits; add a
1430
        // child node below the existing branch leaf.
1431
        if (vall) {
10,116!
1432
          if (node->assigned) {
9,241!
1433
            is_left = false;
9,241✔
1434
          }
9,241✔
1435
          node = node->make_right(key);
9,241✔
1436
        }
9,241✔
1437
        else {
875✔
1438
          node = node->make_left(key);
875✔
1439
        }
875✔
1440
        break;
10,116✔
1441
      }
10,116✔
1442
      bool valr = node->node.first.getBit(-1 - bits);
11,048,679✔
1443
      if (vall != valr) {
11,048,679!
1444
        if (vall) {
280,818!
1445
          is_left = false;
279,222✔
1446
        }
279,222✔
1447
        // the branch matches just upto this point, yet continues in a different
1448
        // direction; fork the branch.
1449
        node = node->fork(key, bits);
280,818✔
1450
        break;
280,818✔
1451
      }
280,818✔
1452
    }
11,048,679✔
1453

1454
    if (node->node.first.getBits() > key.getBits()) {
294,077!
1455
      // key is a super-network of the matching node; split the branch and
1456
      // insert a node for the key above the matching node.
1457
      node = node->split(key, key.getBits());
2,116✔
1458
    }
2,116✔
1459

1460
    if (node->left) {
294,077!
1461
      is_left = false;
2,339✔
1462
    }
2,339✔
1463

1464
    node_type& value = node->node;
294,077✔
1465

1466
    if (!node->assigned) {
294,077!
1467
      // only increment size if not assigned before
1468
      d_size++;
293,816✔
1469
      // update the pointer to the left-most tree node
1470
      if (is_left) {
293,816✔
1471
        d_left = node;
238✔
1472
      }
238✔
1473
      node->assigned = true;
293,816✔
1474
    }
293,816✔
1475
    else {
261✔
1476
      // tree node exists for this value
1477
      if (is_left && d_left != node) {
261!
1478
        throw std::logic_error(
×
1479
          "NetmaskTree::insert(): lost track of left-most node in tree");
×
1480
      }
×
1481
    }
261✔
1482

1483
    return value;
294,077✔
1484
  }
294,077✔
1485

1486
  //<! Creates or updates value
1487
  void insert_or_assign(const key_type& mask, const value_type& value)
1488
  {
×
1489
    insert(mask).second = value;
×
1490
  }
×
1491

1492
  void insert_or_assign(const string& mask, const value_type& value)
1493
  {
×
1494
    insert(key_type(mask)).second = value;
×
1495
  }
×
1496

1497
  //<! check if given key is present in TreeMap
1498
  [[nodiscard]] bool has_key(const key_type& key) const
1499
  {
×
1500
    const node_type* ptr = lookup(key);
×
1501
    return ptr && ptr->first == key;
×
1502
  }
×
1503

1504
  //<! Returns "best match" for key_type, which might not be value
1505
  [[nodiscard]] node_type* lookup(const key_type& value) const
1506
  {
293,888✔
1507
    uint8_t max_bits = value.getBits();
293,888✔
1508
    return lookupImpl(value, max_bits);
293,888✔
1509
  }
293,888✔
1510

1511
  //<! Perform best match lookup for value, using at most max_bits
1512
  [[nodiscard]] node_type* lookup(const ComboAddress& value, int max_bits = 128) const
1513
  {
546,410✔
1514
    uint8_t addr_bits = value.getBits();
546,410✔
1515
    if (max_bits < 0 || max_bits > addr_bits) {
546,410!
1516
      max_bits = addr_bits;
284,212✔
1517
    }
284,212✔
1518

1519
    return lookupImpl(key_type(value, max_bits), max_bits);
546,410✔
1520
  }
546,410✔
1521

1522
  //<! Removes key from TreeMap.
1523
  void erase(const key_type& key)
1524
  {
8,994✔
1525
    TreeNode* node = nullptr;
8,994✔
1526

1527
    if (key.isIPv4()) {
8,994!
1528
      node = d_root->left.get();
8,980✔
1529
    }
8,980✔
1530
    else if (key.isIPv6()) {
14!
1531
      node = d_root->right.get();
14✔
1532
    }
14✔
1533
    else {
×
1534
      throw NetmaskException("invalid address family");
×
1535
    }
×
1536
    // no tree, no value
1537
    if (node == nullptr) {
8,994!
1538
      return;
×
1539
    }
×
1540
    int bits = 0;
8,994✔
1541
    for (; node && bits < key.getBits(); bits++) {
227,820!
1542
      bool vall = key.getBit(-1 - bits);
218,828✔
1543
      if (bits >= node->d_bits) {
218,828!
1544
        // the end of the current node is reached; continue with the next
1545
        if (vall) {
142,276!
1546
          node = node->right.get();
97,688✔
1547
        }
97,688✔
1548
        else {
44,588✔
1549
          node = node->left.get();
44,588✔
1550
        }
44,588✔
1551
        continue;
142,276✔
1552
      }
142,276✔
1553
      if (bits >= node->node.first.getBits()) {
76,552!
1554
        // the matching branch ends here
1555
        if (key.getBits() != node->node.first.getBits()) {
×
1556
          node = nullptr;
×
1557
        }
×
1558
        break;
×
1559
      }
×
1560
      bool valr = node->node.first.getBit(-1 - bits);
76,552✔
1561
      if (vall != valr) {
76,552!
1562
        // the branch matches just upto this point, yet continues in a different
1563
        // direction
1564
        node = nullptr;
2✔
1565
        break;
2✔
1566
      }
2✔
1567
    }
76,552✔
1568
    if (node) {
8,994!
1569
      if (d_size == 0) {
8,992!
1570
        throw std::logic_error(
×
1571
          "NetmaskTree::erase(): size of tree is zero before erase");
×
1572
      }
×
1573
      d_size--;
8,992✔
1574
      node->assigned = false;
8,992✔
1575
      node->node.second = value_type();
8,992✔
1576

1577
      if (node == d_left) {
8,992!
1578
        d_left = d_left->traverse_lnr_assigned();
1,282✔
1579
      }
1,282✔
1580
      cleanup_tree(node);
8,992✔
1581
    }
8,992✔
1582
  }
8,994✔
1583

1584
  void erase(const string& key)
1585
  {
6✔
1586
    erase(key_type(key));
6✔
1587
  }
6✔
1588

1589
  //<! checks whether the container is empty.
1590
  [[nodiscard]] bool empty() const
1591
  {
1,846✔
1592
    return (d_size == 0);
1,846✔
1593
  }
1,846✔
1594

1595
  //<! returns the number of elements
1596
  [[nodiscard]] size_type size() const
1597
  {
280,922✔
1598
    return d_size;
280,922✔
1599
  }
280,922✔
1600

1601
  //<! See if given ComboAddress matches any prefix
1602
  [[nodiscard]] bool match(const ComboAddress& value) const
1603
  {
×
1604
    return (lookup(value) != nullptr);
×
1605
  }
×
1606

1607
  [[nodiscard]] bool match(const std::string& value) const
1608
  {
×
1609
    return match(ComboAddress(value));
×
1610
  }
×
1611

1612
  //<! Clean out the tree
1613
  void clear()
1614
  {
189✔
1615
    d_root = make_unique<TreeNode>();
189✔
1616
    d_left = nullptr;
189✔
1617
    d_size = 0;
189✔
1618
  }
189✔
1619

1620
  //<! swaps the contents with another NetmaskTree
1621
  void swap(NetmaskTree& rhs) noexcept
1622
  {
2✔
1623
    std::swap(d_root, rhs.d_root);
2✔
1624
    std::swap(d_left, rhs.d_left);
2✔
1625
    std::swap(d_size, rhs.d_size);
2✔
1626
  }
2✔
1627

1628
private:
1629
  [[nodiscard]] node_type* lookupImpl(const key_type& value, uint8_t max_bits) const
1630
  {
840,298✔
1631
    TreeNode* node = nullptr;
840,298✔
1632

1633
    if (value.isIPv4()) {
840,298✔
1634
      node = d_root->left.get();
497,634✔
1635
    }
497,634✔
1636
    else if (value.isIPv6()) {
342,664!
1637
      node = d_root->right.get();
342,664✔
1638
    }
342,664✔
1639
    else {
×
1640
      throw NetmaskException("invalid address family");
×
1641
    }
×
1642
    if (node == nullptr) {
840,298✔
1643
      return nullptr;
11,474✔
1644
    }
11,474✔
1645

1646
    node_type* ret = nullptr;
828,824✔
1647

1648
    int bits = 0;
828,824✔
1649
    for (; bits < max_bits; bits++) {
32,120,985✔
1650
      bool vall = value.getBit(-1 - bits);
31,892,474✔
1651
      if (bits >= node->d_bits) {
31,892,474✔
1652
        // the end of the current node is reached; continue with the next
1653
        // (we keep track of last assigned node)
1654
        if (node->assigned && bits == node->node.first.getBits()) {
5,075,200!
1655
          ret = &node->node;
445,866✔
1656
        }
445,866✔
1657
        if (vall) {
5,075,200✔
1658
          if (!node->right) {
2,275,692!
1659
            break;
7,680✔
1660
          }
7,680✔
1661
          node = node->right.get();
2,268,012✔
1662
        }
2,268,012✔
1663
        else {
2,799,508✔
1664
          if (!node->left) {
2,799,508!
1665
            break;
1,023✔
1666
          }
1,023✔
1667
          node = node->left.get();
2,798,485✔
1668
        }
2,798,485✔
1669
        continue;
5,066,497✔
1670
      }
5,075,200✔
1671
      if (bits >= node->node.first.getBits()) {
26,817,274✔
1672
        // the matching branch ends here
1673
        break;
165,267✔
1674
      }
165,267✔
1675
      bool valr = node->node.first.getBit(-1 - bits);
26,652,007✔
1676
      if (vall != valr) {
26,652,007✔
1677
        // the branch matches just upto this point, yet continues in a different
1678
        // direction
1679
        break;
426,343✔
1680
      }
426,343✔
1681
    }
26,652,007✔
1682
    // needed if we did not find one in loop
1683
    if (node->assigned && bits == node->node.first.getBits()) {
828,824✔
1684
      ret = &node->node;
401,971✔
1685
    }
401,971✔
1686
    // this can be nullptr.
1687
    return ret;
828,824✔
1688
  }
840,298✔
1689

1690
  unique_ptr<TreeNode> d_root; //<! Root of our tree
1691
  TreeNode* d_left;
1692
  size_type d_size{0};
1693
};
1694

1695
/** This class represents a group of supplemental Netmask classes. An IP address matches
1696
    if it is matched by one or more of the Netmask objects within.
1697
*/
1698
class NetmaskGroup
1699
{
1700
public:
1701
  NetmaskGroup() noexcept = default;
6,454✔
1702

1703
  //! If this IP address is matched by any of the classes within
1704

1705
  bool match(const ComboAddress* address) const
1706
  {
12,562✔
1707
    const auto& ret = tree.lookup(*address);
12,562✔
1708
    if (ret != nullptr) {
12,562✔
1709
      return ret->second;
6,630✔
1710
    }
6,630✔
1711
    return false;
5,932✔
1712
  }
12,562✔
1713

1714
  [[nodiscard]] bool match(const ComboAddress& address) const
1715
  {
12,562✔
1716
    return match(&address);
12,562✔
1717
  }
12,562✔
1718

1719
  bool lookup(const ComboAddress* address, Netmask* nmp) const
1720
  {
×
1721
    const auto& ret = tree.lookup(*address);
×
1722
    if (ret != nullptr) {
×
1723
      if (nmp != nullptr) {
×
1724
        *nmp = ret->first;
×
1725
      }
×
1726
      return ret->second;
×
1727
    }
×
1728
    return false;
×
1729
  }
×
1730

1731
  bool lookup(const ComboAddress& address, Netmask* nmp) const
1732
  {
×
1733
    return lookup(&address, nmp);
×
1734
  }
×
1735

1736
  //! Add this string to the list of possible matches
1737
  void addMask(const string& address, bool positive = true)
1738
  {
4,632✔
1739
    if (!address.empty() && address[0] == '!') {
4,632!
1740
      addMask(Netmask(address.substr(1)), false);
4✔
1741
    }
4✔
1742
    else {
4,628✔
1743
      addMask(Netmask(address), positive);
4,628✔
1744
    }
4,628✔
1745
  }
4,632✔
1746

1747
  //! Add this Netmask to the list of possible matches
1748
  void addMask(const Netmask& netmask, bool positive = true)
1749
  {
4,341✔
1750
    tree.insert(netmask).second = positive;
4,341✔
1751
  }
4,341✔
1752

1753
  void addMasks(const NetmaskGroup& group, boost::optional<bool> positive)
1754
  {
2✔
1755
    for (const auto& entry : group.tree) {
2✔
1756
      addMask(entry.first, positive ? *positive : entry.second);
2!
1757
    }
2✔
1758
  }
2✔
1759

1760
  //! Delete this Netmask from the list of possible matches
1761
  void deleteMask(const Netmask& netmask)
1762
  {
×
1763
    tree.erase(netmask);
×
1764
  }
×
1765

1766
  void deleteMasks(const NetmaskGroup& group)
1767
  {
×
1768
    for (const auto& entry : group.tree) {
×
1769
      deleteMask(entry.first);
×
1770
    }
×
1771
  }
×
1772

1773
  void deleteMask(const std::string& address)
1774
  {
×
1775
    if (!address.empty()) {
×
1776
      deleteMask(Netmask(address));
×
1777
    }
×
1778
  }
×
1779

1780
  void clear()
1781
  {
184✔
1782
    tree.clear();
184✔
1783
  }
184✔
1784

1785
  [[nodiscard]] bool empty() const
1786
  {
1,816✔
1787
    return tree.empty();
1,816✔
1788
  }
1,816✔
1789

1790
  [[nodiscard]] size_t size() const
1791
  {
40✔
1792
    return tree.size();
40✔
1793
  }
40✔
1794

1795
  [[nodiscard]] string toString() const
1796
  {
15✔
1797
    ostringstream str;
15✔
1798
    for (auto iter = tree.begin(); iter != tree.end(); ++iter) {
88✔
1799
      if (iter != tree.begin()) {
73✔
1800
        str << ", ";
58✔
1801
      }
58✔
1802
      if (!(iter->second)) {
73✔
1803
        str << "!";
12✔
1804
      }
12✔
1805
      str << iter->first.toString();
73✔
1806
    }
73✔
1807
    return str.str();
15✔
1808
  }
15✔
1809

1810
  [[nodiscard]] std::vector<std::string> toStringVector() const
1811
  {
977✔
1812
    std::vector<std::string> out;
977✔
1813
    out.reserve(tree.size());
977✔
1814
    for (const auto& entry : tree) {
1,654✔
1815
      out.push_back((entry.second ? "" : "!") + entry.first.toString());
1,654!
1816
    }
1,654✔
1817
    return out;
977✔
1818
  }
977✔
1819

1820
  void toMasks(const string& ips)
1821
  {
760✔
1822
    vector<string> parts;
760✔
1823
    stringtok(parts, ips, ", \t");
760✔
1824

1825
    for (const auto& part : parts) {
1,509✔
1826
      addMask(part);
1,509✔
1827
    }
1,509✔
1828
  }
760✔
1829

1830
private:
1831
  NetmaskTree<bool> tree;
1832
};
1833

1834
struct SComboAddress
1835
{
1836
  SComboAddress(const ComboAddress& orig) :
1837
    ca(orig) {}
×
1838
  ComboAddress ca;
1839
  bool operator<(const SComboAddress& rhs) const
1840
  {
×
1841
    return ComboAddress::addressOnlyLessThan()(ca, rhs.ca);
×
1842
  }
×
1843
  operator const ComboAddress&() const
1844
  {
×
1845
    return ca;
×
1846
  }
×
1847
};
1848

1849
class NetworkError : public runtime_error
1850
{
1851
public:
1852
  NetworkError(const string& why = "Network Error") :
1853
    runtime_error(why.c_str())
8✔
1854
  {}
8✔
1855
  NetworkError(const char* why = "Network Error") :
1856
    runtime_error(why)
28✔
1857
  {}
28✔
1858
};
1859

1860
class AddressAndPortRange
1861
{
1862
public:
1863
  AddressAndPortRange() :
1864
    d_addrMask(0), d_portMask(0)
1,276✔
1865
  {
1,276✔
1866
    d_addr.sin4.sin_family = 0; // disable this doing anything useful
1,276✔
1867
    d_addr.sin4.sin_port = 0; // this guarantees d_network compares identical
1,276✔
1868
  }
1,276✔
1869

1870
  AddressAndPortRange(ComboAddress address, uint8_t addrMask, uint8_t portMask = 0) :
1871
    d_addr(address), d_addrMask(addrMask), d_portMask(portMask)
291,547✔
1872
  {
291,547✔
1873
    if (!d_addr.isIPv4()) {
291,547✔
1874
      d_portMask = 0;
66,523✔
1875
    }
66,523✔
1876

1877
    uint16_t port = d_addr.getPort();
291,547✔
1878
    if (d_portMask < 16) {
291,547✔
1879
      auto mask = static_cast<uint16_t>(~(0xFFFF >> d_portMask));
88,811✔
1880
      port = port & mask;
88,811✔
1881
    }
88,811✔
1882

1883
    if (d_addrMask < d_addr.getBits()) {
291,547✔
1884
      if (d_portMask > 0) {
2,170!
1885
        throw std::runtime_error("Trying to create a AddressAndPortRange with a reduced address mask (" + std::to_string(d_addrMask) + ") and a port range (" + std::to_string(d_portMask) + ")");
×
1886
      }
×
1887
      d_addr = Netmask(d_addr, d_addrMask).getMaskedNetwork();
2,170✔
1888
    }
2,170✔
1889
    d_addr.setPort(port);
291,547✔
1890
  }
291,547✔
1891

1892
  [[nodiscard]] uint8_t getFullBits() const
1893
  {
60,337,779✔
1894
    return d_addr.getBits() + 16;
60,337,779✔
1895
  }
60,337,779✔
1896

1897
  [[nodiscard]] uint8_t getBits() const
1898
  {
15,656,763✔
1899
    if (d_addrMask < d_addr.getBits()) {
15,656,763✔
1900
      return d_addrMask;
34,300✔
1901
    }
34,300✔
1902

1903
    return d_addr.getBits() + d_portMask;
15,622,463✔
1904
  }
15,656,763✔
1905

1906
  /** Get the value of the bit at the provided bit index. When the index >= 0,
1907
      the index is relative to the LSB starting at index zero. When the index < 0,
1908
      the index is relative to the MSB starting at index -1 and counting down.
1909
  */
1910
  [[nodiscard]] bool getBit(int index) const
1911
  {
30,168,318✔
1912
    if (index >= getFullBits()) {
30,168,318!
1913
      return false;
×
1914
    }
×
1915
    if (index < 0) {
30,168,318!
1916
      index = getFullBits() + index;
30,168,318✔
1917
    }
30,168,318✔
1918

1919
    if (index < 16) {
30,168,318✔
1920
      /* we are into the port bits */
1921
      uint16_t port = d_addr.getPort();
688,809✔
1922
      return ((port & (1U << index)) != 0x0000);
688,809✔
1923
    }
688,809✔
1924

1925
    index -= 16;
29,479,509✔
1926

1927
    return d_addr.getBit(index);
29,479,509✔
1928
  }
30,168,318✔
1929

1930
  [[nodiscard]] bool isIPv4() const
1931
  {
269,858✔
1932
    return d_addr.isIPv4();
269,858✔
1933
  }
269,858✔
1934

1935
  [[nodiscard]] bool isIPv6() const
1936
  {
65,569✔
1937
    return d_addr.isIPv6();
65,569✔
1938
  }
65,569✔
1939

1940
  [[nodiscard]] AddressAndPortRange getNormalized() const
1941
  {
1,143✔
1942
    return {d_addr, d_addrMask, d_portMask};
1,143✔
1943
  }
1,143✔
1944

1945
  [[nodiscard]] AddressAndPortRange getSuper(uint8_t bits) const
1946
  {
510✔
1947
    if (bits <= d_addrMask) {
510!
1948
      return {d_addr, bits, 0};
510✔
1949
    }
510✔
1950
    if (bits <= d_addrMask + d_portMask) {
×
1951
      return {d_addr, d_addrMask, static_cast<uint8_t>(d_portMask - (bits - d_addrMask))};
×
1952
    }
×
1953

1954
    return {d_addr, d_addrMask, d_portMask};
×
1955
  }
×
1956

1957
  [[nodiscard]] const ComboAddress& getNetwork() const
1958
  {
348✔
1959
    return d_addr;
348✔
1960
  }
348✔
1961

1962
  [[nodiscard]] string toString() const
1963
  {
55✔
1964
    if (d_addrMask < d_addr.getBits() || d_portMask == 0) {
55✔
1965
      return d_addr.toStringNoInterface() + "/" + std::to_string(d_addrMask);
54✔
1966
    }
54✔
1967
    return d_addr.toStringNoInterface() + ":" + std::to_string(d_addr.getPort()) + "/" + std::to_string(d_portMask);
1✔
1968
  }
55✔
1969

1970
  [[nodiscard]] bool empty() const
1971
  {
×
1972
    return d_addr.sin4.sin_family == 0;
×
1973
  }
×
1974

1975
  bool operator==(const AddressAndPortRange& rhs) const
1976
  {
20,559✔
1977
    return std::tie(d_addr, d_addrMask, d_portMask) == std::tie(rhs.d_addr, rhs.d_addrMask, rhs.d_portMask);
20,559✔
1978
  }
20,559✔
1979

1980
  bool operator<(const AddressAndPortRange& rhs) const
1981
  {
×
1982
    if (empty() && !rhs.empty()) {
×
1983
      return false;
×
1984
    }
×
1985

1986
    if (!empty() && rhs.empty()) {
×
1987
      return true;
×
1988
    }
×
1989

1990
    if (d_addrMask > rhs.d_addrMask) {
×
1991
      return true;
×
1992
    }
×
1993

1994
    if (d_addrMask < rhs.d_addrMask) {
×
1995
      return false;
×
1996
    }
×
1997

1998
    if (d_addr < rhs.d_addr) {
×
1999
      return true;
×
2000
    }
×
2001

2002
    if (d_addr > rhs.d_addr) {
×
2003
      return false;
×
2004
    }
×
2005

2006
    if (d_portMask > rhs.d_portMask) {
×
2007
      return true;
×
2008
    }
×
2009

2010
    if (d_portMask < rhs.d_portMask) {
×
2011
      return false;
×
2012
    }
×
2013

2014
    return d_addr.getPort() < rhs.d_addr.getPort();
×
2015
  }
×
2016

2017
  bool operator>(const AddressAndPortRange& rhs) const
2018
  {
×
2019
    return rhs.operator<(*this);
×
2020
  }
×
2021

2022
  struct hash
2023
  {
2024
    uint32_t operator()(const AddressAndPortRange& apr) const
2025
    {
28,738✔
2026
      ComboAddress::addressOnlyHash hashOp;
28,738✔
2027
      uint16_t port = apr.d_addr.getPort();
28,738✔
2028
      /* it's fine to hash the whole address and port because the non-relevant parts have
2029
         been masked to 0 */
2030
      return burtle(reinterpret_cast<const unsigned char*>(&port), sizeof(port), hashOp(apr.d_addr)); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
28,738✔
2031
    }
28,738✔
2032
  };
2033

2034
private:
2035
  ComboAddress d_addr;
2036
  uint8_t d_addrMask;
2037
  /* only used for v4 addresses */
2038
  uint8_t d_portMask;
2039
};
2040

2041
int SSocket(int family, int type, int flags);
2042
int SConnect(int sockfd, const ComboAddress& remote);
2043
/* tries to connect to remote for a maximum of timeout seconds.
2044
   sockfd should be set to non-blocking beforehand.
2045
   returns 0 on success (the socket is writable), throw a
2046
   runtime_error otherwise */
2047
int SConnectWithTimeout(int sockfd, const ComboAddress& remote, const struct timeval& timeout);
2048
int SBind(int sockfd, const ComboAddress& local);
2049
int SAccept(int sockfd, ComboAddress& remote);
2050
int SListen(int sockfd, int limit);
2051
int SSetsockopt(int sockfd, int level, int opname, int value);
2052
void setSocketIgnorePMTU(int sockfd, int family);
2053
void setSocketForcePMTU(int sockfd, int family);
2054
bool setReusePort(int sockfd);
2055

2056
#if defined(IP_PKTINFO)
2057
#define GEN_IP_PKTINFO IP_PKTINFO
7✔
2058
#elif defined(IP_RECVDSTADDR)
2059
#define GEN_IP_PKTINFO IP_RECVDSTADDR
2060
#endif
2061

2062
bool IsAnyAddress(const ComboAddress& addr);
2063
bool HarvestDestinationAddress(const struct msghdr* msgh, ComboAddress* destination);
2064
bool HarvestTimestamp(struct msghdr* msgh, struct timeval* timeval);
2065
void fillMSGHdr(struct msghdr* msgh, struct iovec* iov, cmsgbuf_aligned* cbuf, size_t cbufsize, char* data, size_t datalen, ComboAddress* addr);
2066
int sendOnNBSocket(int fileDesc, const struct msghdr* msgh);
2067
size_t sendMsgWithOptions(int socketDesc, const void* buffer, size_t len, const ComboAddress* dest, const ComboAddress* local, unsigned int localItf, int flags);
2068

2069
/* requires a non-blocking, connected TCP socket */
2070
bool isTCPSocketUsable(int sock);
2071

2072
extern template class NetmaskTree<bool>;
2073
ComboAddress parseIPAndPort(const std::string& input, uint16_t port);
2074

2075
std::set<std::string> getListOfNetworkInterfaces();
2076
std::vector<ComboAddress> getListOfAddressesOfNetworkInterface(const std::string& itf);
2077
std::vector<Netmask> getListOfRangesOfNetworkInterface(const std::string& itf);
2078

2079
/* These functions throw if the value was already set to a higher value,
2080
   or on error */
2081
void setSocketBuffer(int fileDesc, int optname, uint32_t size);
2082
void setSocketReceiveBuffer(int fileDesc, uint32_t size);
2083
void setSocketSendBuffer(int fileDesc, uint32_t size);
2084
uint32_t raiseSocketReceiveBufferToMax(int socket);
2085
uint32_t raiseSocketSendBufferToMax(int socket);
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc