• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

openmc-dev / openmc / 18424510990

11 Oct 2025 04:37AM UTC coverage: 81.975% (-3.2%) from 85.197%
18424510990

Pull #3508

github

web-flow
Merge 46ecb2e71 into 3dfa34d2c
Pull Request #3508: Automate workflow for mesh- or cell-based R2S calculations

16590 of 23089 branches covered (71.85%)

Branch coverage included in aggregate %.

233 of 257 new or added lines in 6 files covered. (90.66%)

1327 existing lines in 64 files now uncovered.

53948 of 62959 relevant lines covered (85.69%)

43166566.37 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

91.93
/src/random_ray/random_ray.cpp
1
#include "openmc/random_ray/random_ray.h"
2

3
#include "openmc/constants.h"
4
#include "openmc/geometry.h"
5
#include "openmc/message_passing.h"
6
#include "openmc/mgxs_interface.h"
7
#include "openmc/random_ray/flat_source_domain.h"
8
#include "openmc/random_ray/linear_source_domain.h"
9
#include "openmc/search.h"
10
#include "openmc/settings.h"
11
#include "openmc/simulation.h"
12

13
#include "openmc/distribution_spatial.h"
14
#include "openmc/random_dist.h"
15
#include "openmc/source.h"
16

17
namespace openmc {
18

19
//==============================================================================
20
// Non-method functions
21
//==============================================================================
22

23
// returns 1 - exp(-tau)
24
// Equivalent to -(_expm1f(-tau)), but faster
25
// Written by Colin Josey.
26
float cjosey_exponential(float tau)
1,142,723,701✔
27
{
28
  constexpr float c1n = -1.0000013559236386308f;
1,142,723,701✔
29
  constexpr float c2n = 0.23151368626911062025f;
1,142,723,701✔
30
  constexpr float c3n = -0.061481916409314966140f;
1,142,723,701✔
31
  constexpr float c4n = 0.0098619906458127653020f;
1,142,723,701✔
32
  constexpr float c5n = -0.0012629460503540849940f;
1,142,723,701✔
33
  constexpr float c6n = 0.00010360973791574984608f;
1,142,723,701✔
34
  constexpr float c7n = -0.000013276571933735820960f;
1,142,723,701✔
35

36
  constexpr float c0d = 1.0f;
1,142,723,701✔
37
  constexpr float c1d = -0.73151337729389001396f;
1,142,723,701✔
38
  constexpr float c2d = 0.26058381273536471371f;
1,142,723,701✔
39
  constexpr float c3d = -0.059892419041316836940f;
1,142,723,701✔
40
  constexpr float c4d = 0.0099070188241094279067f;
1,142,723,701✔
41
  constexpr float c5d = -0.0012623388962473160860f;
1,142,723,701✔
42
  constexpr float c6d = 0.00010361277635498731388f;
1,142,723,701✔
43
  constexpr float c7d = -0.000013276569500666698498f;
1,142,723,701✔
44

45
  float x = -tau;
1,142,723,701✔
46

47
  float den = c7d;
1,142,723,701✔
48
  den = den * x + c6d;
1,142,723,701✔
49
  den = den * x + c5d;
1,142,723,701✔
50
  den = den * x + c4d;
1,142,723,701✔
51
  den = den * x + c3d;
1,142,723,701✔
52
  den = den * x + c2d;
1,142,723,701✔
53
  den = den * x + c1d;
1,142,723,701✔
54
  den = den * x + c0d;
1,142,723,701✔
55

56
  float num = c7n;
1,142,723,701✔
57
  num = num * x + c6n;
1,142,723,701✔
58
  num = num * x + c5n;
1,142,723,701✔
59
  num = num * x + c4n;
1,142,723,701✔
60
  num = num * x + c3n;
1,142,723,701✔
61
  num = num * x + c2n;
1,142,723,701✔
62
  num = num * x + c1n;
1,142,723,701✔
63
  num = num * x;
1,142,723,701✔
64

65
  return num / den;
1,142,723,701✔
66
}
67

68
// The below two functions (exponentialG and exponentialG2) were developed
69
// by Colin Josey. The implementation of these functions is closely based
70
// on the OpenMOC versions of these functions. The OpenMOC license is given
71
// below:
72

73
// Copyright (C) 2012-2023 Massachusetts Institute of Technology and OpenMOC
74
// contributors
75
//
76
// Permission is hereby granted, free of charge, to any person obtaining a copy
77
// of this software and associated documentation files (the "Software"), to deal
78
// in the Software without restriction, including without limitation the rights
79
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
80
// copies of the Software, and to permit persons to whom the Software is
81
// furnished to do so, subject to the following conditions:
82
//
83
// The above copyright notice and this permission notice shall be included in
84
// all copies or substantial portions of the Software.
85
//
86
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
87
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
88
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
89
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
90
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
91
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
92
// SOFTWARE.
93

94
// Computes y = 1/x-(1-exp(-x))/x**2 using a 5/6th order rational
95
// approximation. It is accurate to 2e-7 over [0, 1e5]. Developed by Colin
96
// Josey using Remez's algorithm, with original implementation in OpenMOC at:
97
// https://github.com/mit-crpg/OpenMOC/blob/develop/src/exponentials.h
98
float exponentialG(float tau)
2,129,833,530✔
99
{
100
  // Numerator coefficients in rational approximation for 1/x - (1 - exp(-x)) /
101
  // x^2
102
  constexpr float d0n = 0.5f;
2,129,833,530✔
103
  constexpr float d1n = 0.176558112351595f;
2,129,833,530✔
104
  constexpr float d2n = 0.04041584305811143f;
2,129,833,530✔
105
  constexpr float d3n = 0.006178333902037397f;
2,129,833,530✔
106
  constexpr float d4n = 0.0006429894635552992f;
2,129,833,530✔
107
  constexpr float d5n = 0.00006064409107557148f;
2,129,833,530✔
108

109
  // Denominator coefficients in rational approximation for 1/x - (1 - exp(-x))
110
  // / x^2
111
  constexpr float d0d = 1.0f;
2,129,833,530✔
112
  constexpr float d1d = 0.6864462055546078f;
2,129,833,530✔
113
  constexpr float d2d = 0.2263358514260129f;
2,129,833,530✔
114
  constexpr float d3d = 0.04721469893686252f;
2,129,833,530✔
115
  constexpr float d4d = 0.006883236664917246f;
2,129,833,530✔
116
  constexpr float d5d = 0.0007036272419147752f;
2,129,833,530✔
117
  constexpr float d6d = 0.00006064409107557148f;
2,129,833,530✔
118

119
  float x = tau;
2,129,833,530✔
120

121
  float num = d5n;
2,129,833,530✔
122
  num = num * x + d4n;
2,129,833,530✔
123
  num = num * x + d3n;
2,129,833,530✔
124
  num = num * x + d2n;
2,129,833,530✔
125
  num = num * x + d1n;
2,129,833,530✔
126
  num = num * x + d0n;
2,129,833,530✔
127

128
  float den = d6d;
2,129,833,530✔
129
  den = den * x + d5d;
2,129,833,530✔
130
  den = den * x + d4d;
2,129,833,530✔
131
  den = den * x + d3d;
2,129,833,530✔
132
  den = den * x + d2d;
2,129,833,530✔
133
  den = den * x + d1d;
2,129,833,530✔
134
  den = den * x + d0d;
2,129,833,530✔
135

136
  return num / den;
2,129,833,530✔
137
}
138

139
// Computes G2 : y = 2/3 - (1 + 2/x) * (1/x + 0.5 - (1 + 1/x) * (1-exp(-x)) /
140
// x) using a 5/5th order rational approximation. It is accurate to 1e-6 over
141
// [0, 1e6]. Developed by Colin Josey using Remez's algorithm, with original
142
// implementation in OpenMOC at:
143
// https://github.com/mit-crpg/OpenMOC/blob/develop/src/exponentials.h
144
float exponentialG2(float tau)
2,129,833,530✔
145
{
146

147
  // Coefficients for numerator in rational approximation
148
  constexpr float g1n = -0.08335775885589858f;
2,129,833,530✔
149
  constexpr float g2n = -0.003603942303847604f;
2,129,833,530✔
150
  constexpr float g3n = 0.0037673183263550827f;
2,129,833,530✔
151
  constexpr float g4n = 0.00001124183494990467f;
2,129,833,530✔
152
  constexpr float g5n = 0.00016837426505799449f;
2,129,833,530✔
153

154
  // Coefficients for denominator in rational approximation
155
  constexpr float g1d = 0.7454048371823628f;
2,129,833,530✔
156
  constexpr float g2d = 0.23794300531408347f;
2,129,833,530✔
157
  constexpr float g3d = 0.05367250964303789f;
2,129,833,530✔
158
  constexpr float g4d = 0.006125197988351906f;
2,129,833,530✔
159
  constexpr float g5d = 0.0010102514456857377f;
2,129,833,530✔
160

161
  float x = tau;
2,129,833,530✔
162

163
  float num = g5n;
2,129,833,530✔
164
  num = num * x + g4n;
2,129,833,530✔
165
  num = num * x + g3n;
2,129,833,530✔
166
  num = num * x + g2n;
2,129,833,530✔
167
  num = num * x + g1n;
2,129,833,530✔
168
  num = num * x;
2,129,833,530✔
169

170
  float den = g5d;
2,129,833,530✔
171
  den = den * x + g4d;
2,129,833,530✔
172
  den = den * x + g3d;
2,129,833,530✔
173
  den = den * x + g2d;
2,129,833,530✔
174
  den = den * x + g1d;
2,129,833,530✔
175
  den = den * x + 1.0f;
2,129,833,530✔
176

177
  return num / den;
2,129,833,530✔
178
}
179

180
// Implementation of the Fisher-Yates shuffle algorithm.
181
// Algorithm adapted from:
182
//    https://en.cppreference.com/w/cpp/algorithm/random_shuffle#Version_3
183
void fisher_yates_shuffle(vector<int64_t>& arr, uint64_t* seed)
1,584,000✔
184
{
185
  // Loop over the array from the last element down to the second
186
  for (int i = arr.size() - 1; i > 0; --i) {
6,831,000✔
187
    // Generate a random index in the range [0, i]
188
    int j = uniform_int_distribution(0, i, seed);
5,247,000✔
189
    std::swap(arr[i], arr[j]);
5,247,000✔
190
  }
191
}
1,584,000✔
192

193
// Function to generate randomized Halton sequence samples
194
//
195
// Algorithm adapted from:
196
//      A. B. Owen. A randomized halton algorithm in r. Arxiv, 6 2017.
197
//      URL https://arxiv.org/abs/1706.02808
198
vector<double> rhalton(int dim, uint64_t* seed, int64_t skip = 0)
11,000✔
199
{
200
  if (dim > 10) {
11,000!
201
    fatal_error("Halton sampling dimension too large");
×
202
  }
203
  int64_t b, res, dig;
204
  double b2r, ans;
205
  const std::array<int64_t, 10> primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
11,000✔
206
  vector<double> halton(dim, 0.0);
11,000✔
207

208
  vector<int64_t> perm;
11,000✔
209
  for (int D = 0; D < dim; ++D) {
66,000✔
210
    b = primes[D];
55,000✔
211
    perm.resize(b);
55,000✔
212
    b2r = 1.0 / b;
55,000✔
213
    res = skip;
55,000✔
214
    ans = 0.0;
55,000✔
215

216
    while ((1.0 - b2r) < 1.0) {
1,639,000✔
217
      std::iota(perm.begin(), perm.end(), 0);
1,584,000✔
218
      fisher_yates_shuffle(perm, seed);
1,584,000✔
219
      dig = res % b;
1,584,000✔
220
      ans += perm[dig] * b2r;
1,584,000✔
221
      res = (res - dig) / b;
1,584,000✔
222
      b2r /= b;
1,584,000✔
223
    }
224

225
    halton[D] = ans;
55,000✔
226
  }
227

228
  return halton;
22,000✔
229
}
11,000✔
230

231
//==============================================================================
232
// RandomRay implementation
233
//==============================================================================
234

235
// Static Variable Declarations
236
double RandomRay::distance_inactive_;
237
double RandomRay::distance_active_;
238
unique_ptr<Source> RandomRay::ray_source_;
239
RandomRaySourceShape RandomRay::source_shape_ {RandomRaySourceShape::FLAT};
240
RandomRaySampleMethod RandomRay::sample_method_ {RandomRaySampleMethod::PRNG};
241

242
RandomRay::RandomRay()
1,867,420✔
243
  : angular_flux_(data::mg.num_energy_groups_),
1,867,420✔
244
    delta_psi_(data::mg.num_energy_groups_),
1,867,420✔
245
    negroups_(data::mg.num_energy_groups_)
5,602,260✔
246
{
247
  if (source_shape_ == RandomRaySourceShape::LINEAR ||
1,867,420✔
248
      source_shape_ == RandomRaySourceShape::LINEAR_XY) {
1,045,720✔
249
    delta_moments_.resize(negroups_);
946,550✔
250
  }
251
}
1,867,420✔
252

253
RandomRay::RandomRay(uint64_t ray_id, FlatSourceDomain* domain) : RandomRay()
1,867,420✔
254
{
255
  initialize_ray(ray_id, domain);
1,867,420✔
256
}
1,867,420✔
257

258
// Transports ray until termination criteria are met
259
uint64_t RandomRay::transport_history_based_single_ray()
1,867,420✔
260
{
261
  using namespace openmc;
262
  while (alive()) {
770,373,561!
263
    event_advance_ray();
770,373,561✔
264
    if (!alive())
770,373,561✔
265
      break;
1,867,420✔
266
    event_cross_surface();
768,506,141✔
267
    // If ray has too many events, display warning and kill it
268
    if (n_event() >= settings::max_particle_events) {
768,506,141!
UNCOV
269
      warning("Ray " + std::to_string(id()) +
×
270
              " underwent maximum number of events, terminating ray.");
UNCOV
271
      wgt() = 0.0;
×
272
    }
273
  }
274

275
  return n_event();
1,867,420✔
276
}
277

278
// Transports ray across a single source region
279
void RandomRay::event_advance_ray()
770,373,561✔
280
{
281
  // Find the distance to the nearest boundary
282
  boundary() = distance_to_boundary(*this);
770,373,561✔
283
  double distance = boundary().distance();
770,373,561✔
284

285
  if (distance < 0.0) {
770,373,561!
UNCOV
286
    mark_as_lost("Negative transport distance detected for particle " +
×
287
                 std::to_string(id()));
×
288
    return;
×
289
  }
290

291
  if (is_active_) {
770,373,561✔
292
    // If the ray is in the active length, need to check if it has
293
    // reached its maximum termination distance. If so, reduce
294
    // the ray traced length so that the ray does not overrun the
295
    // maximum numerical length (so as to avoid numerical bias).
296
    if (distance_travelled_ + distance >= distance_active_) {
623,605,647✔
297
      distance = distance_active_ - distance_travelled_;
1,867,420✔
298
      wgt() = 0.0;
1,867,420✔
299
    }
300

301
    distance_travelled_ += distance;
623,605,647✔
302
    attenuate_flux(distance, true);
623,605,647✔
303
  } else {
304
    // If the ray is still in the dead zone, need to check if it
305
    // has entered the active phase. If so, split into two segments (one
306
    // representing the final part of the dead zone, the other representing the
307
    // first part of the active length) and attenuate each. Otherwise, if the
308
    // full length of the segment is within the dead zone, attenuate as normal.
309
    if (distance_travelled_ + distance >= distance_inactive_) {
146,767,914✔
310
      is_active_ = true;
1,867,420✔
311
      double distance_dead = distance_inactive_ - distance_travelled_;
1,867,420✔
312
      attenuate_flux(distance_dead, false);
1,867,420✔
313

314
      double distance_alive = distance - distance_dead;
1,867,420✔
315

316
      // Ensure we haven't travelled past the active phase as well
317
      if (distance_alive > distance_active_) {
1,867,420!
UNCOV
318
        distance_alive = distance_active_;
×
319
        wgt() = 0.0;
×
320
      }
321

322
      attenuate_flux(distance_alive, true, distance_dead);
1,867,420✔
323
      distance_travelled_ = distance_alive;
1,867,420✔
324
    } else {
325
      distance_travelled_ += distance;
144,900,494✔
326
      attenuate_flux(distance, false);
144,900,494✔
327
    }
328
  }
329

330
  // Advance particle
331
  for (int j = 0; j < n_coord(); ++j) {
2,147,483,647✔
332
    coord(j).r() += distance * coord(j).u();
2,147,483,647✔
333
  }
334
}
335

336
void RandomRay::attenuate_flux(double distance, bool is_active, double offset)
772,240,981✔
337
{
338
  // Lookup base source region index
339
  int64_t sr = domain_->lookup_base_source_region_idx(*this);
772,240,981✔
340

341
  // Perform ray tracing across mesh
342
  // Determine the mesh index for the base source region, if any
343
  int mesh_idx = domain_->lookup_mesh_idx(sr);
772,240,981✔
344

345
  if (mesh_idx == C_NONE) {
772,240,981✔
346
    // If there's no mesh being applied to this cell, then
347
    // we just attenuate the flux as normal, and set
348
    // the mesh bin to 0
349
    attenuate_flux_inner(distance, is_active, sr, 0, r());
347,093,109✔
350
  } else {
351
    // If there is a mesh being applied to this cell, then
352
    // we loop over all the bin crossings and attenuate
353
    // separately.
354
    Mesh* mesh = model::meshes[mesh_idx].get();
425,147,872✔
355

356
    // We adjust the start and end positions of the ray slightly
357
    // to accomodate for floating point precision issues that tend
358
    // to occur at mesh boundaries that overlap with geometry lattice
359
    // boundaries.
360
    Position start = r() + (offset + TINY_BIT) * u();
425,147,872✔
361
    Position end = start + (distance - 2.0 * TINY_BIT) * u();
425,147,872✔
362
    double reduced_distance = (end - start).norm();
425,147,872✔
363

364
    // Ray trace through the mesh and record bins and lengths
365
    mesh_bins_.resize(0);
425,147,872✔
366
    mesh_fractional_lengths_.resize(0);
425,147,872✔
367
    mesh->bins_crossed(start, end, u(), mesh_bins_, mesh_fractional_lengths_);
425,147,872✔
368

369
    // Loop over all mesh bins and attenuate flux
370
    for (int b = 0; b < mesh_bins_.size(); b++) {
1,295,592,976✔
371
      double physical_length = reduced_distance * mesh_fractional_lengths_[b];
870,445,104✔
372
      attenuate_flux_inner(
870,445,104✔
373
        physical_length, is_active, sr, mesh_bins_[b], start);
870,445,104✔
374
      start += physical_length * u();
870,445,104✔
375
    }
376
  }
377
}
772,240,981✔
378

379
void RandomRay::attenuate_flux_inner(
1,217,538,213✔
380
  double distance, bool is_active, int64_t sr, int mesh_bin, Position r)
381
{
382
  SourceRegionKey sr_key {sr, mesh_bin};
1,217,538,213✔
383
  SourceRegionHandle srh;
1,217,538,213✔
384
  srh = domain_->get_subdivided_source_region_handle(sr_key, r, u());
1,217,538,213✔
385
  if (srh.is_numerical_fp_artifact_) {
1,217,538,213✔
386
    return;
88✔
387
  }
388

389
  switch (source_shape_) {
1,217,538,125!
390
  case RandomRaySourceShape::FLAT:
606,793,452✔
391
    if (srh.material() == MATERIAL_VOID) {
606,793,452✔
392
      attenuate_flux_flat_source_void(srh, distance, is_active, r);
8,367,713✔
393
    } else {
394
      attenuate_flux_flat_source(srh, distance, is_active, r);
598,425,739✔
395
    }
396
    break;
606,793,452✔
397
  case RandomRaySourceShape::LINEAR:
610,744,673✔
398
  case RandomRaySourceShape::LINEAR_XY:
399
    if (srh.material() == MATERIAL_VOID) {
610,744,673✔
400
      attenuate_flux_linear_source_void(srh, distance, is_active, r);
8,287,235✔
401
    } else {
402
      attenuate_flux_linear_source(srh, distance, is_active, r);
602,457,438✔
403
    }
404
    break;
610,744,673✔
UNCOV
405
  default:
×
UNCOV
406
    fatal_error("Unknown source shape for random ray transport.");
×
407
  }
408
}
409

410
// This function forms the inner loop of the random ray transport process.
411
// It is responsible for several tasks. Based on the incoming angular flux
412
// of the ray and the source term in the region, the outgoing angular flux
413
// is computed. The delta psi between the incoming and outgoing fluxes is
414
// contributed to the estimate of the total scalar flux in the source region.
415
// Additionally, the contribution of the ray path to the stochastically
416
// estimated volume is also kept track of. All tasks involving writing
417
// to the data for the source region are done with a lock over the entire
418
// source region.  Locks are used instead of atomics as all energy groups
419
// must be written, such that locking once is typically much more efficient
420
// than use of many atomic operations corresponding to each energy group
421
// individually (at least on CPU). Several other bookkeeping tasks are also
422
// performed when inside the lock.
423
void RandomRay::attenuate_flux_flat_source(
598,425,739✔
424
  SourceRegionHandle& srh, double distance, bool is_active, Position r)
425
{
426
  // The number of geometric intersections is counted for reporting purposes
427
  n_event()++;
598,425,739✔
428

429
  // Get material
430
  int material = srh.material();
598,425,739✔
431

432
  // MOC incoming flux attenuation + source contribution/attenuation equation
433
  for (int g = 0; g < negroups_; g++) {
1,741,149,440✔
434
    float sigma_t = domain_->sigma_t_[material * negroups_ + g];
1,142,723,701✔
435
    float tau = sigma_t * distance;
1,142,723,701✔
436
    float exponential = cjosey_exponential(tau); // exponential = 1 - exp(-tau)
1,142,723,701✔
437
    float new_delta_psi = (angular_flux_[g] - srh.source(g)) * exponential;
1,142,723,701✔
438
    delta_psi_[g] = new_delta_psi;
1,142,723,701✔
439
    angular_flux_[g] -= new_delta_psi;
1,142,723,701✔
440
  }
441

442
  // If ray is in the active phase (not in dead zone), make contributions to
443
  // source region bookkeeping
444

445
  // Aquire lock for source region
446
  srh.lock();
598,425,739✔
447

448
  if (is_active) {
598,425,739✔
449
    // Accumulate delta psi into new estimate of source region flux for
450
    // this iteration
451
    for (int g = 0; g < negroups_; g++) {
1,382,011,748✔
452
      srh.scalar_flux_new(g) += delta_psi_[g];
892,308,979✔
453
    }
454

455
    // Accomulate volume (ray distance) into this iteration's estimate
456
    // of the source region's volume
457
    srh.volume() += distance;
489,702,769✔
458

459
    srh.n_hits() += 1;
489,702,769✔
460
  }
461

462
  // Tally valid position inside the source region (e.g., midpoint of
463
  // the ray) if not done already
464
  if (!srh.position_recorded()) {
598,425,739✔
465
    Position midpoint = r + u() * (distance / 2.0);
1,508,871✔
466
    srh.position() = midpoint;
1,508,871✔
467
    srh.position_recorded() = 1;
1,508,871✔
468
  }
469

470
  // Release lock
471
  srh.unlock();
598,425,739✔
472
}
598,425,739✔
473

474
// Alternative flux attenuation function for true void regions.
475
void RandomRay::attenuate_flux_flat_source_void(
8,367,713✔
476
  SourceRegionHandle& srh, double distance, bool is_active, Position r)
477
{
478
  // The number of geometric intersections is counted for reporting purposes
479
  n_event()++;
8,367,713✔
480

481
  int material = srh.material();
8,367,713✔
482

483
  // If ray is in the active phase (not in dead zone), make contributions to
484
  // source region bookkeeping
485
  if (is_active) {
8,367,713✔
486

487
    // Aquire lock for source region
488
    srh.lock();
6,959,311✔
489

490
    // Accumulate delta psi into new estimate of source region flux for
491
    // this iteration
492
    for (int g = 0; g < negroups_; g++) {
13,972,386✔
493
      srh.scalar_flux_new(g) += angular_flux_[g] * distance;
7,013,075✔
494
    }
495

496
    // Accomulate volume (ray distance) into this iteration's estimate
497
    // of the source region's volume
498
    srh.volume() += distance;
6,959,311✔
499
    srh.volume_sq() += distance * distance;
6,959,311✔
500
    srh.n_hits() += 1;
6,959,311✔
501

502
    // Tally valid position inside the source region (e.g., midpoint of
503
    // the ray) if not done already
504
    if (!srh.position_recorded()) {
6,959,311✔
505
      Position midpoint = r + u() * (distance / 2.0);
11,152✔
506
      srh.position() = midpoint;
11,152✔
507
      srh.position_recorded() = 1;
11,152✔
508
    }
509

510
    // Release lock
511
    srh.unlock();
6,959,311✔
512
  }
513

514
  // Add source to incoming angular flux, assuming void region
515
  if (settings::run_mode == RunMode::FIXED_SOURCE) {
8,367,713!
516
    for (int g = 0; g < negroups_; g++) {
16,800,482✔
517
      angular_flux_[g] += srh.external_source(g) * distance;
8,432,769✔
518
    }
519
  }
520
}
8,367,713✔
521

522
void RandomRay::attenuate_flux_linear_source(
602,457,438✔
523
  SourceRegionHandle& srh, double distance, bool is_active, Position r)
524
{
525
  // The number of geometric intersections is counted for reporting purposes
526
  n_event()++;
602,457,438✔
527

528
  int material = srh.material();
602,457,438✔
529

530
  Position& centroid = srh.centroid();
602,457,438✔
531
  Position midpoint = r + u() * (distance / 2.0);
602,457,438✔
532

533
  // Determine the local position of the midpoint and the ray origin
534
  // relative to the source region's centroid
535
  Position rm_local;
602,457,438✔
536
  Position r0_local;
602,457,438✔
537

538
  // In the first few iterations of the simulation, the source region
539
  // may not yet have had any ray crossings, in which case there will
540
  // be no estimate of its centroid. We detect this by checking if it has
541
  // any accumulated volume. If its volume is zero, just use the midpoint
542
  // of the ray as the region's centroid.
543
  if (srh.volume_t()) {
602,457,438✔
544
    rm_local = midpoint - centroid;
582,612,899✔
545
    r0_local = r - centroid;
582,612,899✔
546
  } else {
547
    rm_local = {0.0, 0.0, 0.0};
19,844,539✔
548
    r0_local = -u() * 0.5 * distance;
19,844,539✔
549
  }
550
  double distance_2 = distance * distance;
602,457,438✔
551

552
  // Linear Source MOC incoming flux attenuation + source
553
  // contribution/attenuation equation
554
  for (int g = 0; g < negroups_; g++) {
2,147,483,647✔
555

556
    // Compute tau, the optical thickness of the ray segment
557
    float sigma_t = domain_->sigma_t_[material * negroups_ + g];
2,129,833,530✔
558
    float tau = sigma_t * distance;
2,129,833,530✔
559

560
    // If tau is very small, set it to zero to avoid numerical issues.
561
    // The following computations will still work with tau = 0.
562
    if (tau < 1.0e-8f) {
2,129,833,530✔
563
      tau = 0.0f;
5,874✔
564
    }
565

566
    // Compute linear source terms, spatial and directional (dir),
567
    // calculated from the source gradients dot product with local centroid
568
    // and direction, respectively.
569
    float spatial_source =
570
      srh.source(g) + rm_local.dot(srh.source_gradients(g));
2,129,833,530✔
571
    float dir_source = u().dot(srh.source_gradients(g));
2,129,833,530✔
572

573
    float gn = exponentialG(tau);
2,129,833,530✔
574
    float f1 = 1.0f - tau * gn;
2,129,833,530✔
575
    float f2 = (2.0f * gn - f1) * distance_2;
2,129,833,530✔
576
    float new_delta_psi = (angular_flux_[g] - spatial_source) * f1 * distance -
2,129,833,530✔
577
                          0.5 * dir_source * f2;
2,129,833,530✔
578

579
    float h1 = f1 - gn;
2,129,833,530✔
580
    float g1 = 0.5f - h1;
2,129,833,530✔
581
    float g2 = exponentialG2(tau);
2,129,833,530✔
582
    g1 = g1 * spatial_source;
2,129,833,530✔
583
    g2 = g2 * dir_source * distance * 0.5f;
2,129,833,530✔
584
    h1 = h1 * angular_flux_[g];
2,129,833,530✔
585
    h1 = (g1 + g2 + h1) * distance_2;
2,129,833,530✔
586
    spatial_source = spatial_source * distance + new_delta_psi;
2,129,833,530✔
587

588
    // Store contributions for this group into arrays, so that they can
589
    // be accumulated into the source region's estimates inside of the locked
590
    // region.
591
    delta_psi_[g] = new_delta_psi;
2,129,833,530✔
592
    delta_moments_[g] = r0_local * spatial_source + u() * h1;
2,129,833,530✔
593

594
    // Update the angular flux for this group
595
    angular_flux_[g] -= new_delta_psi * sigma_t;
2,129,833,530✔
596

597
    // If 2D mode is enabled, the z-component of the flux moments is forced
598
    // to zero
599
    if (source_shape_ == RandomRaySourceShape::LINEAR_XY) {
2,129,833,530✔
600
      delta_moments_[g].z = 0.0;
462,208,043✔
601
    }
602
  }
603

604
  // Compute an estimate of the spatial moments matrix for the source
605
  // region based on parameters from this ray's crossing
606
  MomentMatrix moment_matrix_estimate;
607
  moment_matrix_estimate.compute_spatial_moments_matrix(
602,457,438✔
608
    rm_local, u(), distance);
602,457,438✔
609

610
  // Aquire lock for source region
611
  srh.lock();
602,457,438✔
612

613
  // If ray is in the active phase (not in dead zone), make contributions to
614
  // source region bookkeeping
615

616
  if (is_active) {
602,457,438✔
617
    // Accumulate deltas into the new estimate of source region flux for this
618
    // iteration
619
    for (int g = 0; g < negroups_; g++) {
2,147,483,647✔
620
      srh.scalar_flux_new(g) += delta_psi_[g];
1,713,818,480✔
621
      srh.flux_moments_new(g) += delta_moments_[g];
1,713,818,480✔
622
    }
623

624
    // Accumulate the volume (ray segment distance), centroid, and spatial
625
    // momement estimates into the running totals for the iteration for this
626
    // source region. The centroid and spatial momements estimates are scaled
627
    // by the ray segment length as part of length averaging of the estimates.
628
    srh.volume() += distance;
492,996,350✔
629
    srh.centroid_iteration() += midpoint * distance;
492,996,350✔
630
    moment_matrix_estimate *= distance;
492,996,350✔
631
    srh.mom_matrix() += moment_matrix_estimate;
492,996,350✔
632

633
    srh.n_hits() += 1;
492,996,350✔
634
  }
635

636
  // Tally valid position inside the source region (e.g., midpoint of
637
  // the ray) if not done already
638
  if (!srh.position_recorded()) {
602,457,438✔
639
    srh.position() = midpoint;
809,534✔
640
    srh.position_recorded() = 1;
809,534✔
641
  }
642

643
  // Release lock
644
  srh.unlock();
602,457,438✔
645
}
602,457,438✔
646

647
// If traveling through a void region, the source term is either zero
648
// or an external source. As all external sources are currently assumed
649
// to be flat, we don't really need this function and could instead just call
650
// the "attenuate_flux_flat_source_void" function and get the same numerical and
651
// tally results. However, computation of the flux moments in void regions is
652
// nonetheless useful as this information is still used by the plotter when
653
// estimating the flux at specific pixel coordinates. Thus, plots will look
654
// nicer/more accurate if we record flux moments, so this function is useful.
655
void RandomRay::attenuate_flux_linear_source_void(
8,287,235✔
656
  SourceRegionHandle& srh, double distance, bool is_active, Position r)
657
{
658
  // The number of geometric intersections is counted for reporting purposes
659
  n_event()++;
8,287,235✔
660

661
  Position& centroid = srh.centroid();
8,287,235✔
662
  Position midpoint = r + u() * (distance / 2.0);
8,287,235✔
663

664
  // Determine the local position of the midpoint and the ray origin
665
  // relative to the source region's centroid
666
  Position rm_local;
8,287,235✔
667
  Position r0_local;
8,287,235✔
668

669
  // In the first few iterations of the simulation, the source region
670
  // may not yet have had any ray crossings, in which case there will
671
  // be no estimate of its centroid. We detect this by checking if it has
672
  // any accumulated volume. If its volume is zero, just use the midpoint
673
  // of the ray as the region's centroid.
674
  if (srh.volume_t()) {
8,287,235✔
675
    rm_local = midpoint - centroid;
8,084,186✔
676
    r0_local = r - centroid;
8,084,186✔
677
  } else {
678
    rm_local = {0.0, 0.0, 0.0};
203,049✔
679
    r0_local = -u() * 0.5 * distance;
203,049✔
680
  }
681
  double distance_2 = distance * distance;
8,287,235✔
682

683
  // Compared to linear flux attenuation through solid regions,
684
  // transport through a void region is greatly simplified. Here we
685
  // compute the updated flux moments.
686
  for (int g = 0; g < negroups_; g++) {
16,574,470✔
687
    float spatial_source = 0.f;
8,287,235✔
688
    if (settings::run_mode == RunMode::FIXED_SOURCE) {
8,287,235!
689
      spatial_source = srh.external_source(g);
8,287,235✔
690
    }
691
    float new_delta_psi = (angular_flux_[g] - spatial_source) * distance;
8,287,235✔
692
    float h1 = 0.5f;
8,287,235✔
693
    h1 = h1 * angular_flux_[g];
8,287,235✔
694
    h1 = h1 * distance_2;
8,287,235✔
695
    spatial_source = spatial_source * distance + new_delta_psi;
8,287,235✔
696

697
    // Store contributions for this group into arrays, so that they can
698
    // be accumulated into the source region's estimates inside of the locked
699
    // region.
700
    delta_moments_[g] = r0_local * spatial_source + u() * h1;
8,287,235✔
701

702
    // If 2D mode is enabled, the z-component of the flux moments is forced
703
    // to zero
704
    if (source_shape_ == RandomRaySourceShape::LINEAR_XY) {
8,287,235!
UNCOV
705
      delta_moments_[g].z = 0.0;
×
706
    }
707
  }
708

709
  // If ray is in the active phase (not in dead zone), make contributions to
710
  // source region bookkeeping
711
  if (is_active) {
8,287,235✔
712
    // Compute an estimate of the spatial moments matrix for the source
713
    // region based on parameters from this ray's crossing
714
    MomentMatrix moment_matrix_estimate;
715
    moment_matrix_estimate.compute_spatial_moments_matrix(
6,892,402✔
716
      rm_local, u(), distance);
6,892,402✔
717

718
    // Aquire lock for source region
719
    srh.lock();
6,892,402✔
720

721
    // Accumulate delta psi into new estimate of source region flux for
722
    // this iteration, and update flux momements
723
    for (int g = 0; g < negroups_; g++) {
13,784,804✔
724
      srh.scalar_flux_new(g) += angular_flux_[g] * distance;
6,892,402✔
725
      srh.flux_moments_new(g) += delta_moments_[g];
6,892,402✔
726
    }
727

728
    // Accumulate the volume (ray segment distance), centroid, and spatial
729
    // momement estimates into the running totals for the iteration for this
730
    // source region. The centroid and spatial momements estimates are scaled by
731
    // the ray segment length as part of length averaging of the estimates.
732
    srh.volume() += distance;
6,892,402✔
733
    srh.volume_sq() += distance_2;
6,892,402✔
734
    srh.centroid_iteration() += midpoint * distance;
6,892,402✔
735
    moment_matrix_estimate *= distance;
6,892,402✔
736
    srh.mom_matrix() += moment_matrix_estimate;
6,892,402✔
737

738
    // Tally valid position inside the source region (e.g., midpoint of
739
    // the ray) if not done already
740
    if (!srh.position_recorded()) {
6,892,402✔
741
      srh.position() = midpoint;
11,000✔
742
      srh.position_recorded() = 1;
11,000✔
743
    }
744

745
    srh.n_hits() += 1;
6,892,402✔
746

747
    // Release lock
748
    srh.unlock();
6,892,402✔
749
  }
750

751
  // Add source to incoming angular flux, assuming void region
752
  if (settings::run_mode == RunMode::FIXED_SOURCE) {
8,287,235!
753
    for (int g = 0; g < negroups_; g++) {
16,574,470✔
754
      angular_flux_[g] += srh.external_source(g) * distance;
8,287,235✔
755
    }
756
  }
757
}
8,287,235✔
758

759
void RandomRay::initialize_ray(uint64_t ray_id, FlatSourceDomain* domain)
1,867,420✔
760
{
761
  domain_ = domain;
1,867,420✔
762

763
  // Reset particle event counter
764
  n_event() = 0;
1,867,420✔
765

766
  is_active_ = (distance_inactive_ <= 0.0);
1,867,420✔
767

768
  wgt() = 1.0;
1,867,420✔
769

770
  // set identifier for particle
771
  id() = ray_id;
1,867,420✔
772

773
  // generate source site using sample method
774
  SourceSite site;
1,867,420✔
775
  switch (sample_method_) {
1,867,420!
776
  case RandomRaySampleMethod::PRNG:
1,856,420✔
777
    site = sample_prng();
1,856,420✔
778
    break;
1,856,420✔
779
  case RandomRaySampleMethod::HALTON:
11,000✔
780
    site = sample_halton();
11,000✔
781
    break;
11,000✔
UNCOV
782
  default:
×
UNCOV
783
    fatal_error("Unknown sample method for random ray transport.");
×
784
  }
785

786
  site.E = 0.0;
1,867,420✔
787
  this->from_source(&site);
1,867,420✔
788

789
  // Locate ray
790
  if (lowest_coord().cell() == C_NONE) {
1,867,420!
791
    if (!exhaustive_find_cell(*this)) {
1,867,420!
UNCOV
792
      this->mark_as_lost(
×
UNCOV
793
        "Could not find the cell containing particle " + std::to_string(id()));
×
794
    }
795

796
    // Set birth cell attribute
797
    if (cell_born() == C_NONE)
1,867,420!
798
      cell_born() = lowest_coord().cell();
1,867,420✔
799
  }
800

801
  SourceRegionKey sr_key = domain_->lookup_source_region_key(*this);
1,867,420✔
802
  SourceRegionHandle srh =
803
    domain_->get_subdivided_source_region_handle(sr_key, r(), u());
1,867,420✔
804

805
  // Initialize ray's starting angular flux to starting location's isotropic
806
  // source
807
  if (!srh.is_numerical_fp_artifact_) {
1,867,420!
808
    for (int g = 0; g < negroups_; g++) {
6,639,560✔
809
      angular_flux_[g] = srh.source(g);
4,772,140✔
810
    }
811
  }
812
}
1,867,420✔
813

814
SourceSite RandomRay::sample_prng()
1,856,420✔
815
{
816
  // set random number seed
817
  int64_t particle_seed =
818
    (simulation::current_batch - 1) * settings::n_particles + id();
1,856,420✔
819
  init_particle_seeds(particle_seed, seeds());
1,856,420✔
820
  stream() = STREAM_TRACKING;
1,856,420✔
821

822
  // Sample from ray source distribution
823
  SourceSite site {ray_source_->sample(current_seed())};
1,856,420✔
824

825
  return site;
1,856,420✔
826
}
827

828
SourceSite RandomRay::sample_halton()
11,000✔
829
{
830
  SourceSite site;
11,000✔
831

832
  // Set random number seed
833
  int64_t batch_seed = (simulation::current_batch - 1) * settings::n_particles;
11,000✔
834
  int64_t skip = id();
11,000✔
835
  init_particle_seeds(batch_seed, seeds());
11,000✔
836
  stream() = STREAM_TRACKING;
11,000✔
837

838
  // Calculate next samples in LDS across 5 dimensions
839
  vector<double> samples = rhalton(5, current_seed(), skip = skip);
11,000✔
840

841
  // Get spatial box of ray_source_
842
  SpatialBox* sb = dynamic_cast<SpatialBox*>(
11,000!
843
    dynamic_cast<IndependentSource*>(RandomRay::ray_source_.get())->space());
11,000!
844

845
  // Sample spatial distribution
846
  Position xi {samples[0], samples[1], samples[2]};
11,000✔
847
  // make a small shift in position to avoid geometry floating point issues
848
  Position shift {FP_COINCIDENT, FP_COINCIDENT, FP_COINCIDENT};
11,000✔
849
  site.r = (sb->lower_left() + shift) +
850
           xi * ((sb->upper_right() - shift) - (sb->lower_left() + shift));
11,000✔
851

852
  // Sample Polar cosine and azimuthal angles
853
  double mu = 2.0 * samples[3] - 1.0;
11,000✔
854
  double azi = 2.0 * PI * samples[4];
11,000✔
855
  // Convert to Cartesian coordinates
856
  double c = std::sqrt(1.0 - mu * mu);
11,000✔
857
  site.u.x = mu;
11,000✔
858
  site.u.y = std::cos(azi) * c;
11,000✔
859
  site.u.z = std::sin(azi) * c;
11,000✔
860

861
  return site;
22,000✔
862
}
11,000✔
863

864
} // namespace openmc
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc