• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

deepset-ai / haystack / 17731891188

15 Sep 2025 11:44AM UTC coverage: 92.047% (-0.01%) from 92.058%
17731891188

push

github

web-flow
feat: Add reasoning content to streaming chunk (#9777)

* Add reasoning content to streaming chunk

* Add reno

* Update print_streaming_chunk

12974 of 14095 relevant lines covered (92.05%)

0.92 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

87.04
haystack/components/generators/utils.py
1
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
2
#
3
# SPDX-License-Identifier: Apache-2.0
4

5
import json
1✔
6

7
from haystack import logging
1✔
8
from haystack.dataclasses import ChatMessage, StreamingChunk, ToolCall
1✔
9

10
logger = logging.getLogger(__name__)
1✔
11

12

13
def print_streaming_chunk(chunk: StreamingChunk) -> None:
1✔
14
    """
15
    Callback function to handle and display streaming output chunks.
16

17
    This function processes a `StreamingChunk` object by:
18
    - Printing tool call metadata (if any), including function names and arguments, as they arrive.
19
    - Printing tool call results when available.
20
    - Printing the main content (e.g., text tokens) of the chunk as it is received.
21

22
    The function outputs data directly to stdout and flushes output buffers to ensure immediate display during
23
    streaming.
24

25
    :param chunk: A chunk of streaming data containing content and optional metadata, such as tool calls and
26
        tool results.
27
    """
28
    if chunk.start and chunk.index and chunk.index > 0:
1✔
29
        # If this is the start of a new content block but not the first content block, print two new lines
30
        print("\n\n", flush=True, end="")
×
31

32
    ## Tool Call streaming
33
    if chunk.tool_calls:
1✔
34
        # Typically, if there are multiple tool calls in the chunk this means that the tool calls are fully formed and
35
        # not just a delta.
36
        for tool_call in chunk.tool_calls:
1✔
37
            # If chunk.start is True indicates beginning of a tool call
38
            # Also presence of tool_call.tool_name indicates the start of a tool call too
39
            if chunk.start:
1✔
40
                # If there is more than one tool call in the chunk, we print two new lines to separate them
41
                # We know there is more than one tool call if the index of the tool call is greater than the index of
42
                # the chunk.
43
                if chunk.index and tool_call.index > chunk.index:
1✔
44
                    print("\n\n", flush=True, end="")
×
45

46
                print(f"[TOOL CALL]\nTool: {tool_call.tool_name} \nArguments: ", flush=True, end="")
1✔
47

48
            # print the tool arguments
49
            if tool_call.arguments:
1✔
50
                print(tool_call.arguments, flush=True, end="")
1✔
51

52
    ## Tool Call Result streaming
53
    # Print tool call results if available (from ToolInvoker)
54
    if chunk.tool_call_result:
1✔
55
        # Tool Call Result is fully formed so delta accumulation is not needed
56
        print(f"[TOOL RESULT]\n{chunk.tool_call_result.result}", flush=True, end="")
1✔
57

58
    ## Normal content streaming
59
    # Print the main content of the chunk (from ChatGenerator)
60
    if chunk.content:
1✔
61
        if chunk.start:
1✔
62
            print("[ASSISTANT]\n", flush=True, end="")
1✔
63
        print(chunk.content, flush=True, end="")
1✔
64

65
    ## Reasoning content streaming
66
    # Print the reasoning content of the chunk (from ChatGenerator)
67
    if chunk.reasoning:
1✔
68
        if chunk.start:
×
69
            print("[REASONING]\n", flush=True, end="")
×
70
        print(chunk.reasoning.reasoning_text, flush=True, end="")
×
71

72
    # End of LLM assistant message so we add two new lines
73
    # This ensures spacing between multiple LLM messages (e.g. Agent) or multiple Tool Call Results
74
    if chunk.finish_reason is not None:
1✔
75
        print("\n\n", flush=True, end="")
1✔
76

77

78
def _convert_streaming_chunks_to_chat_message(chunks: list[StreamingChunk]) -> ChatMessage:
1✔
79
    """
80
    Connects the streaming chunks into a single ChatMessage.
81

82
    :param chunks: The list of all `StreamingChunk` objects.
83

84
    :returns: The ChatMessage.
85
    """
86
    text = "".join([chunk.content for chunk in chunks])
1✔
87
    tool_calls = []
1✔
88

89
    # Process tool calls if present in any chunk
90
    tool_call_data: dict[int, dict[str, str]] = {}  # Track tool calls by index
1✔
91
    for chunk in chunks:
1✔
92
        if chunk.tool_calls:
1✔
93
            for tool_call in chunk.tool_calls:
1✔
94
                # We use the index of the tool_call to track the tool call across chunks since the ID is not always
95
                # provided
96
                if tool_call.index not in tool_call_data:
1✔
97
                    tool_call_data[tool_call.index] = {"id": "", "name": "", "arguments": ""}
1✔
98

99
                # Save the ID if present
100
                if tool_call.id is not None:
1✔
101
                    tool_call_data[tool_call.index]["id"] = tool_call.id
1✔
102

103
                if tool_call.tool_name is not None:
1✔
104
                    tool_call_data[tool_call.index]["name"] += tool_call.tool_name
1✔
105
                if tool_call.arguments is not None:
1✔
106
                    tool_call_data[tool_call.index]["arguments"] += tool_call.arguments
1✔
107

108
    # Convert accumulated tool call data into ToolCall objects
109
    sorted_keys = sorted(tool_call_data.keys())
1✔
110
    for key in sorted_keys:
1✔
111
        tool_call_dict = tool_call_data[key]
1✔
112
        try:
1✔
113
            arguments = json.loads(tool_call_dict.get("arguments", "{}")) if tool_call_dict.get("arguments") else {}
1✔
114
            tool_calls.append(ToolCall(id=tool_call_dict["id"], tool_name=tool_call_dict["name"], arguments=arguments))
1✔
115
        except json.JSONDecodeError:
×
116
            logger.warning(
×
117
                "The LLM provider returned a malformed JSON string for tool call arguments. This tool call "
118
                "will be skipped. To always generate a valid JSON, set `tools_strict` to `True`. "
119
                "Tool call ID: {_id}, Tool name: {_name}, Arguments: {_arguments}",
120
                _id=tool_call_dict["id"],
121
                _name=tool_call_dict["name"],
122
                _arguments=tool_call_dict["arguments"],
123
            )
124

125
    # finish_reason can appear in different places so we look for the last one
126
    finish_reasons = [chunk.finish_reason for chunk in chunks if chunk.finish_reason]
1✔
127
    finish_reason = finish_reasons[-1] if finish_reasons else None
1✔
128

129
    meta = {
1✔
130
        "model": chunks[-1].meta.get("model"),
131
        "index": 0,
132
        "finish_reason": finish_reason,
133
        "completion_start_time": chunks[0].meta.get("received_at"),  # first chunk received
134
        "usage": chunks[-1].meta.get("usage"),  # last chunk has the final usage data if available
135
    }
136

137
    return ChatMessage.from_assistant(text=text or None, tool_calls=tool_calls, meta=meta)
1✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc