• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

daisytuner / sdfglib / 17697974118

13 Sep 2025 02:36PM UTC coverage: 60.51% (+1.2%) from 59.335%
17697974118

Pull #219

github

web-flow
Merge a1c5ecbc6 into 6c1992b40
Pull Request #219: stdlib Library Nodes and ConstantNodes

565 of 1799 new or added lines in 102 files covered. (31.41%)

102 existing lines in 38 files now uncovered.

9442 of 15604 relevant lines covered (60.51%)

107.02 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

0.0
/src/data_flow/library_nodes/math/ml/batch_normalization.cpp
1
#include "sdfg/data_flow/library_nodes/math/ml/batch_normalization.h"
2

3
#include "sdfg/analysis/analysis.h"
4
#include "sdfg/analysis/scope_analysis.h"
5
#include "sdfg/builder/structured_sdfg_builder.h"
6

7
namespace sdfg {
8
namespace math {
9
namespace ml {
10

11
BatchNormalizationNode::BatchNormalizationNode(
×
12
    size_t element_id,
13
    const DebugInfo &debug_info,
14
    const graph::Vertex vertex,
15
    data_flow::DataFlowGraph &parent,
16
    const std::vector<symbolic::Expression> &shape,
17
    int axis,
18
    const std::string &epsilon
19
)
20
    : MathNode(
×
21
          element_id,
×
22
          debug_info,
×
23
          vertex,
×
24
          parent,
×
25
          LibraryNodeType_BatchNormalization,
26
          {"Y"},
×
27
          {"X", "Scale", "B", "input_mean", "input_var"},
×
28
          data_flow::ImplementationType_NONE
29
      ),
NEW
30
      shape_(shape), axis_(axis), epsilon_(epsilon) {}
×
31

NEW
32
symbolic::SymbolSet BatchNormalizationNode::symbols() const {
×
NEW
33
    symbolic::SymbolSet syms;
×
NEW
34
    for (const auto &dim : shape_) {
×
NEW
35
        for (auto &atom : symbolic::atoms(dim)) {
×
NEW
36
            syms.insert(atom);
×
37
        }
38
    }
NEW
39
    return syms;
×
NEW
40
}
×
41

NEW
42
void BatchNormalizationNode::replace(const symbolic::Expression old_expression, const symbolic::Expression new_expression) {
×
NEW
43
    for (auto &dim : shape_) {
×
NEW
44
        dim = symbolic::subs(dim, old_expression, new_expression);
×
45
    }
NEW
46
}
×
47

NEW
48
void BatchNormalizationNode::validate(const Function &) const {}
×
49

50
bool BatchNormalizationNode::expand(builder::StructuredSDFGBuilder &builder, analysis::AnalysisManager &analysis_manager) {
×
51
    auto &dataflow = this->get_parent();
×
52
    auto &block = static_cast<structured_control_flow::Block &>(*dataflow.get_parent());
×
53

54
    auto &scope_analysis = analysis_manager.get<analysis::ScopeAnalysis>();
×
55
    auto &parent = static_cast<structured_control_flow::Sequence &>(*scope_analysis.parent_scope(&block));
×
56
    int index = parent.index(block);
×
57
    auto &transition = parent.at(index).second;
×
58

59
    // Locate edges
60
    const data_flow::Memlet *iedge_input = nullptr;
×
61
    const data_flow::Memlet *iedge_scale = nullptr;
×
62
    const data_flow::Memlet *iedge_bias = nullptr;
×
63
    const data_flow::Memlet *iedge_mean = nullptr;
×
64
    const data_flow::Memlet *iedge_var = nullptr;
×
65
    const data_flow::Memlet *oedge_output = nullptr;
×
66
    for (const auto &edge : dataflow.in_edges(*this)) {
×
67
        if (edge.dst_conn() == "X") {
×
68
            iedge_input = &edge;
×
69
        } else if (edge.dst_conn() == "Scale") {
×
70
            iedge_scale = &edge;
×
71
        } else if (edge.dst_conn() == "B") {
×
72
            iedge_bias = &edge;
×
73
        } else if (edge.dst_conn() == "input_mean") {
×
74
            iedge_mean = &edge;
×
75
        } else if (edge.dst_conn() == "input_var") {
×
76
            iedge_var = &edge;
×
77
        }
×
78
    }
79
    for (const auto &edge : dataflow.out_edges(*this)) {
×
80
        if (edge.src_conn() == "Y") {
×
81
            oedge_output = &edge;
×
82
        }
×
83
    }
84
    if (!iedge_input || !iedge_scale || !iedge_bias || !iedge_mean || !iedge_var || !oedge_output) return false;
×
85

86
    std::string input_name = static_cast<const data_flow::AccessNode &>(iedge_input->src()).data();
×
87
    std::string scale_name = static_cast<const data_flow::AccessNode &>(iedge_scale->src()).data();
×
88
    std::string bias_name = static_cast<const data_flow::AccessNode &>(iedge_bias->src()).data();
×
89
    std::string mean_name = static_cast<const data_flow::AccessNode &>(iedge_mean->src()).data();
×
90
    std::string var_name = static_cast<const data_flow::AccessNode &>(iedge_var->src()).data();
×
91
    std::string output_name = static_cast<const data_flow::AccessNode &>(oedge_output->dst()).data();
×
92

93
    // Create new sequence before
94
    auto &new_sequence = builder.add_sequence_before(parent, block, transition.assignments(), block.debug_info());
×
95
    structured_control_flow::Sequence *last_scope = &new_sequence;
×
96

UNCOV
97
    std::vector<symbolic::Expression> loop_syms;
×
98
    structured_control_flow::Map *last_map = nullptr;
×
NEW
99
    for (size_t d = 0; d < this->shape_.size(); ++d) {
×
100
        std::string indvar_str = builder.find_new_name("_i");
×
101
        builder.add_container(indvar_str, types::Scalar(types::PrimitiveType::UInt64));
×
102
        auto indvar = symbolic::symbol(indvar_str);
×
NEW
103
        auto init = symbolic::zero();
×
104
        auto update = symbolic::add(indvar, symbolic::one());
×
NEW
105
        auto cond = symbolic::Lt(indvar, this->shape_[d]);
×
106
        last_map = &builder.add_map(
×
107
            *last_scope,
×
UNCOV
108
            indvar,
×
UNCOV
109
            cond,
×
UNCOV
110
            init,
×
UNCOV
111
            update,
×
112
            structured_control_flow::ScheduleType_Sequential::create(),
×
113
            {},
×
114
            block.debug_info()
×
115
        );
116
        last_scope = &last_map->root();
×
117
        loop_syms.push_back(indvar);
×
118
    }
×
119

120
    // Create normalization block
121
    auto &norm_block = builder.add_block(*last_scope);
×
122

123
    // Create access nodes for normalization
124
    auto &input_access_norm = builder.add_access(norm_block, input_name);
×
125
    auto &scale_access_norm = builder.add_access(norm_block, scale_name);
×
126
    auto &bias_access_norm = builder.add_access(norm_block, bias_name);
×
127
    auto &mean_access_norm = builder.add_access(norm_block, mean_name);
×
128
    auto &var_access_norm = builder.add_access(norm_block, var_name);
×
129
    auto &output_access_norm = builder.add_access(norm_block, output_name);
×
130

131
    // Add epsilon to variance and compute standard deviation
132
    auto &add_epsilon_tasklet =
×
133
        builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", epsilon_});
×
134
    auto &var_eps_access = builder.add_access(norm_block, builder.find_new_name("_var_eps"));
×
135
    builder.add_computational_memlet(
×
136
        norm_block, var_access_norm, add_epsilon_tasklet, "_in1", loop_syms, iedge_var->base_type()
×
137
    );
138
    builder
×
139
        .add_computational_memlet(norm_block, add_epsilon_tasklet, "_out", var_eps_access, {}, iedge_var->base_type());
×
140

141
    auto &sqrt_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sqrt, "_out", {"_in"});
×
142
    auto &std_dev_access = builder.add_access(norm_block, builder.find_new_name("_std_dev"));
×
143
    builder.add_computational_memlet(norm_block, var_eps_access, sqrt_tasklet, "_in", {}, iedge_var->base_type());
×
144
    builder.add_computational_memlet(norm_block, sqrt_tasklet, "_out", std_dev_access, {}, iedge_var->base_type());
×
145

146
    // Normalize: (x - mean) / std_dev
147
    auto &sub_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sub, "_out", {"_in1", "_in2"});
×
148
    auto &centered_access = builder.add_access(norm_block, builder.find_new_name("_centered"));
×
149
    builder.add_computational_memlet(
×
150
        norm_block, input_access_norm, sub_norm_tasklet, "_in1", loop_syms, iedge_input->base_type()
×
151
    );
152
    builder.add_computational_memlet(
×
153
        norm_block, mean_access_norm, sub_norm_tasklet, "_in2", loop_syms, iedge_mean->base_type()
×
154
    );
155
    builder
×
156
        .add_computational_memlet(norm_block, sub_norm_tasklet, "_out", centered_access, {}, iedge_input->base_type());
×
157

158
    auto &div_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
159
    auto &normalized_access = builder.add_access(norm_block, builder.find_new_name("_normalized"));
×
160
    builder
×
161
        .add_computational_memlet(norm_block, centered_access, div_norm_tasklet, "_in1", {}, iedge_input->base_type());
×
162
    builder
×
163
        .add_computational_memlet(norm_block, std_dev_access, div_norm_tasklet, "_in2", loop_syms, iedge_var->base_type());
×
164
    builder
×
165
        .add_computational_memlet(norm_block, div_norm_tasklet, "_out", normalized_access, {}, iedge_input->base_type());
×
166

167
    // Apply scale and bias: scale * normalized + bias
168
    auto &mul_scale_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::mul, "_out", {"_in1", "_in2"});
×
169
    auto &scaled_access = builder.add_access(norm_block, builder.find_new_name("_scaled"));
×
170
    builder
×
171
        .add_computational_memlet(norm_block, normalized_access, mul_scale_tasklet, "_in1", {}, iedge_input->base_type());
×
172
    builder.add_computational_memlet(
×
173
        norm_block, scale_access_norm, mul_scale_tasklet, "_in2", loop_syms, iedge_scale->base_type()
×
174
    );
175
    builder.add_computational_memlet(norm_block, mul_scale_tasklet, "_out", scaled_access, {}, iedge_input->base_type());
×
176

177
    auto &add_bias_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
178
    builder.add_computational_memlet(norm_block, scaled_access, add_bias_tasklet, "_in1", {}, iedge_input->base_type());
×
179
    builder.add_computational_memlet(
×
180
        norm_block, bias_access_norm, add_bias_tasklet, "_in2", loop_syms, iedge_bias->base_type()
×
181
    );
182
    builder.add_computational_memlet(
×
183
        norm_block, add_bias_tasklet, "_out", output_access_norm, loop_syms, oedge_output->base_type()
×
184
    );
185

186
    // Cleanup old block
187
    builder.remove_memlet(block, *iedge_input);
×
188
    builder.remove_memlet(block, *iedge_scale);
×
189
    if (iedge_bias) {
×
190
        builder.remove_memlet(block, *iedge_bias);
×
191
    }
×
192
    builder.remove_memlet(block, *iedge_mean);
×
193
    builder.remove_memlet(block, *iedge_var);
×
194
    builder.remove_memlet(block, *oedge_output);
×
195
    builder.remove_node(block, *this);
×
196
    builder.remove_child(parent, index + 1);
×
197

198
    return true;
×
199
}
×
200

201
std::unique_ptr<data_flow::DataFlowNode> BatchNormalizationNode::
202
    clone(size_t element_id, const graph::Vertex vertex, data_flow::DataFlowGraph &parent) const {
×
203
    return std::unique_ptr<data_flow::DataFlowNode>(
×
NEW
204
        new BatchNormalizationNode(element_id, this->debug_info(), vertex, parent, this->shape_, axis_, epsilon_)
×
205
    );
206
}
×
207

208
nlohmann::json BatchNormalizationNodeSerializer::serialize(const data_flow::LibraryNode &library_node) {
×
209
    const BatchNormalizationNode &node = static_cast<const BatchNormalizationNode &>(library_node);
×
210
    nlohmann::json j;
×
211

212
    j["code"] = node.code().value();
×
213
    j["axis"] = node.axis();
×
214
    j["epsilon"] = node.epsilon();
×
215

NEW
216
    serializer::JSONSerializer serializer;
×
NEW
217
    j["shape"] = nlohmann::json::array();
×
NEW
218
    for (auto &dim : node.shape()) {
×
NEW
219
        j["shape"].push_back(serializer.expression(dim));
×
220
    }
221

222
    return j;
×
223
}
×
224

225
data_flow::LibraryNode &BatchNormalizationNodeSerializer::deserialize(
×
226
    const nlohmann::json &j, builder::StructuredSDFGBuilder &builder, structured_control_flow::Block &parent
227
) {
228
    auto code = j["code"].get<std::string>();
×
229
    if (code != LibraryNodeType_BatchNormalization.value()) {
×
230
        throw std::runtime_error("Invalid library node code");
×
231
    }
232

233
    sdfg::serializer::JSONSerializer serializer;
×
234
    DebugInfo debug_info = serializer.json_to_debug_info(j["debug_info"]);
×
235

NEW
236
    std::vector<symbolic::Expression> shape;
×
NEW
237
    for (const auto &dim : j["shape"]) {
×
NEW
238
        shape.push_back(symbolic::parse(dim.get<std::string>()));
×
239
    }
240

241
    auto axis = j["axis"].get<int>();
×
242
    auto epsilon = j["epsilon"].get<std::string>();
×
243

NEW
244
    return builder.add_library_node<BatchNormalizationNode>(parent, debug_info, shape, axis, epsilon);
×
245
}
×
246

247
} // namespace ml
248
} // namespace math
249
} // namespace sdfg
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc