• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

daisytuner / sdfglib / 17656823807

11 Sep 2025 08:42PM UTC coverage: 60.447% (+1.1%) from 59.335%
17656823807

Pull #219

github

web-flow
Merge d5416236f into 6c1992b40
Pull Request #219: stdlib Library Nodes and ConstantNodes

460 of 1635 new or added lines in 81 files covered. (28.13%)

93 existing lines in 35 files now uncovered.

9385 of 15526 relevant lines covered (60.45%)

107.21 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

0.0
/src/data_flow/library_nodes/math/ml/batch_normalization.cpp
1
#include "sdfg/data_flow/library_nodes/math/ml/batch_normalization.h"
2

3
#include "sdfg/analysis/analysis.h"
4
#include "sdfg/analysis/scope_analysis.h"
5
#include "sdfg/builder/structured_sdfg_builder.h"
6

7
namespace sdfg {
8
namespace math {
9
namespace ml {
10

11
BatchNormalizationNode::BatchNormalizationNode(
×
12
    size_t element_id,
13
    const DebugInfo &debug_info,
14
    const graph::Vertex vertex,
15
    data_flow::DataFlowGraph &parent,
16
    const std::vector<symbolic::Expression> &shape,
17
    int axis,
18
    const std::string &epsilon
19
)
20
    : MathNode(
×
21
          element_id,
×
22
          debug_info,
×
23
          vertex,
×
24
          parent,
×
25
          LibraryNodeType_BatchNormalization,
26
          {"Y"},
×
27
          {"X", "Scale", "B", "input_mean", "input_var"},
×
28
          data_flow::ImplementationType_NONE
29
      ),
NEW
30
      shape_(shape), axis_(axis), epsilon_(epsilon) {}
×
31

NEW
32
symbolic::SymbolSet BatchNormalizationNode::symbols() const {
×
NEW
33
    symbolic::SymbolSet syms;
×
NEW
34
    for (const auto &dim : shape_) {
×
NEW
35
        for (auto &atom : symbolic::atoms(dim)) {
×
NEW
36
            syms.insert(atom);
×
37
        }
38
    }
NEW
39
    return syms;
×
NEW
40
}
×
41

42
void BatchNormalizationNode::
NEW
43
    replace(const symbolic::Expression &old_expression, const symbolic::Expression &new_expression) {
×
NEW
44
    for (auto &dim : shape_) {
×
NEW
45
        dim = symbolic::subs(dim, old_expression, new_expression);
×
46
    }
NEW
47
}
×
48

NEW
49
void BatchNormalizationNode::validate(const Function &) const {}
×
50

51
bool BatchNormalizationNode::expand(builder::StructuredSDFGBuilder &builder, analysis::AnalysisManager &analysis_manager) {
×
52
    auto &dataflow = this->get_parent();
×
53
    auto &block = static_cast<structured_control_flow::Block &>(*dataflow.get_parent());
×
54

55
    auto &scope_analysis = analysis_manager.get<analysis::ScopeAnalysis>();
×
56
    auto &parent = static_cast<structured_control_flow::Sequence &>(*scope_analysis.parent_scope(&block));
×
57
    int index = parent.index(block);
×
58
    auto &transition = parent.at(index).second;
×
59

60
    // Locate edges
61
    const data_flow::Memlet *iedge_input = nullptr;
×
62
    const data_flow::Memlet *iedge_scale = nullptr;
×
63
    const data_flow::Memlet *iedge_bias = nullptr;
×
64
    const data_flow::Memlet *iedge_mean = nullptr;
×
65
    const data_flow::Memlet *iedge_var = nullptr;
×
66
    const data_flow::Memlet *oedge_output = nullptr;
×
67
    for (const auto &edge : dataflow.in_edges(*this)) {
×
68
        if (edge.dst_conn() == "X") {
×
69
            iedge_input = &edge;
×
70
        } else if (edge.dst_conn() == "Scale") {
×
71
            iedge_scale = &edge;
×
72
        } else if (edge.dst_conn() == "B") {
×
73
            iedge_bias = &edge;
×
74
        } else if (edge.dst_conn() == "input_mean") {
×
75
            iedge_mean = &edge;
×
76
        } else if (edge.dst_conn() == "input_var") {
×
77
            iedge_var = &edge;
×
78
        }
×
79
    }
80
    for (const auto &edge : dataflow.out_edges(*this)) {
×
81
        if (edge.src_conn() == "Y") {
×
82
            oedge_output = &edge;
×
83
        }
×
84
    }
85
    if (!iedge_input || !iedge_scale || !iedge_bias || !iedge_mean || !iedge_var || !oedge_output) return false;
×
86

87
    std::string input_name = static_cast<const data_flow::AccessNode &>(iedge_input->src()).data();
×
88
    std::string scale_name = static_cast<const data_flow::AccessNode &>(iedge_scale->src()).data();
×
89
    std::string bias_name = static_cast<const data_flow::AccessNode &>(iedge_bias->src()).data();
×
90
    std::string mean_name = static_cast<const data_flow::AccessNode &>(iedge_mean->src()).data();
×
91
    std::string var_name = static_cast<const data_flow::AccessNode &>(iedge_var->src()).data();
×
92
    std::string output_name = static_cast<const data_flow::AccessNode &>(oedge_output->dst()).data();
×
93

94
    // Create new sequence before
95
    auto &new_sequence = builder.add_sequence_before(parent, block, transition.assignments(), block.debug_info());
×
96
    structured_control_flow::Sequence *last_scope = &new_sequence;
×
97

UNCOV
98
    std::vector<symbolic::Expression> loop_syms;
×
99
    structured_control_flow::Map *last_map = nullptr;
×
NEW
100
    for (size_t d = 0; d < this->shape_.size(); ++d) {
×
101
        std::string indvar_str = builder.find_new_name("_i");
×
102
        builder.add_container(indvar_str, types::Scalar(types::PrimitiveType::UInt64));
×
103
        auto indvar = symbolic::symbol(indvar_str);
×
NEW
104
        auto init = symbolic::zero();
×
105
        auto update = symbolic::add(indvar, symbolic::one());
×
NEW
106
        auto cond = symbolic::Lt(indvar, this->shape_[d]);
×
107
        last_map = &builder.add_map(
×
108
            *last_scope,
×
109
            indvar,
110
            cond,
UNCOV
111
            init,
×
112
            update,
113
            structured_control_flow::ScheduleType_Sequential::create(),
×
114
            {},
×
115
            block.debug_info()
×
116
        );
117
        last_scope = &last_map->root();
×
118
        loop_syms.push_back(indvar);
×
119
    }
×
120

121
    // Create normalization block
122
    auto &norm_block = builder.add_block(*last_scope);
×
123

124
    // Create access nodes for normalization
125
    auto &input_access_norm = builder.add_access(norm_block, input_name);
×
126
    auto &scale_access_norm = builder.add_access(norm_block, scale_name);
×
127
    auto &bias_access_norm = builder.add_access(norm_block, bias_name);
×
128
    auto &mean_access_norm = builder.add_access(norm_block, mean_name);
×
129
    auto &var_access_norm = builder.add_access(norm_block, var_name);
×
130
    auto &output_access_norm = builder.add_access(norm_block, output_name);
×
131

132
    // Add epsilon to variance and compute standard deviation
133
    auto &add_epsilon_tasklet =
×
134
        builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", epsilon_});
×
135
    auto &var_eps_access = builder.add_access(norm_block, builder.find_new_name("_var_eps"));
×
136
    builder.add_computational_memlet(
×
137
        norm_block, var_access_norm, add_epsilon_tasklet, "_in1", loop_syms, iedge_var->base_type()
×
138
    );
139
    builder
×
140
        .add_computational_memlet(norm_block, add_epsilon_tasklet, "_out", var_eps_access, {}, iedge_var->base_type());
×
141

142
    auto &sqrt_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sqrt, "_out", {"_in"});
×
143
    auto &std_dev_access = builder.add_access(norm_block, builder.find_new_name("_std_dev"));
×
144
    builder.add_computational_memlet(norm_block, var_eps_access, sqrt_tasklet, "_in", {}, iedge_var->base_type());
×
145
    builder.add_computational_memlet(norm_block, sqrt_tasklet, "_out", std_dev_access, {}, iedge_var->base_type());
×
146

147
    // Normalize: (x - mean) / std_dev
148
    auto &sub_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sub, "_out", {"_in1", "_in2"});
×
149
    auto &centered_access = builder.add_access(norm_block, builder.find_new_name("_centered"));
×
150
    builder.add_computational_memlet(
×
151
        norm_block, input_access_norm, sub_norm_tasklet, "_in1", loop_syms, iedge_input->base_type()
×
152
    );
153
    builder.add_computational_memlet(
×
154
        norm_block, mean_access_norm, sub_norm_tasklet, "_in2", loop_syms, iedge_mean->base_type()
×
155
    );
156
    builder
×
157
        .add_computational_memlet(norm_block, sub_norm_tasklet, "_out", centered_access, {}, iedge_input->base_type());
×
158

159
    auto &div_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
160
    auto &normalized_access = builder.add_access(norm_block, builder.find_new_name("_normalized"));
×
161
    builder
×
162
        .add_computational_memlet(norm_block, centered_access, div_norm_tasklet, "_in1", {}, iedge_input->base_type());
×
163
    builder
×
164
        .add_computational_memlet(norm_block, std_dev_access, div_norm_tasklet, "_in2", loop_syms, iedge_var->base_type());
×
165
    builder
×
166
        .add_computational_memlet(norm_block, div_norm_tasklet, "_out", normalized_access, {}, iedge_input->base_type());
×
167

168
    // Apply scale and bias: scale * normalized + bias
169
    auto &mul_scale_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::mul, "_out", {"_in1", "_in2"});
×
170
    auto &scaled_access = builder.add_access(norm_block, builder.find_new_name("_scaled"));
×
171
    builder
×
172
        .add_computational_memlet(norm_block, normalized_access, mul_scale_tasklet, "_in1", {}, iedge_input->base_type());
×
173
    builder.add_computational_memlet(
×
174
        norm_block, scale_access_norm, mul_scale_tasklet, "_in2", loop_syms, iedge_scale->base_type()
×
175
    );
176
    builder.add_computational_memlet(norm_block, mul_scale_tasklet, "_out", scaled_access, {}, iedge_input->base_type());
×
177

178
    auto &add_bias_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
179
    builder.add_computational_memlet(norm_block, scaled_access, add_bias_tasklet, "_in1", {}, iedge_input->base_type());
×
180
    builder.add_computational_memlet(
×
181
        norm_block, bias_access_norm, add_bias_tasklet, "_in2", loop_syms, iedge_bias->base_type()
×
182
    );
183
    builder.add_computational_memlet(
×
184
        norm_block, add_bias_tasklet, "_out", output_access_norm, loop_syms, oedge_output->base_type()
×
185
    );
186

187
    // Cleanup old block
188
    builder.remove_memlet(block, *iedge_input);
×
189
    builder.remove_memlet(block, *iedge_scale);
×
190
    if (iedge_bias) {
×
191
        builder.remove_memlet(block, *iedge_bias);
×
192
    }
×
193
    builder.remove_memlet(block, *iedge_mean);
×
194
    builder.remove_memlet(block, *iedge_var);
×
195
    builder.remove_memlet(block, *oedge_output);
×
196
    builder.remove_node(block, *this);
×
197
    builder.remove_child(parent, index + 1);
×
198

199
    return true;
×
200
}
×
201

202
std::unique_ptr<data_flow::DataFlowNode> BatchNormalizationNode::
203
    clone(size_t element_id, const graph::Vertex vertex, data_flow::DataFlowGraph &parent) const {
×
204
    return std::unique_ptr<data_flow::DataFlowNode>(
×
NEW
205
        new BatchNormalizationNode(element_id, this->debug_info(), vertex, parent, this->shape_, axis_, epsilon_)
×
206
    );
207
}
×
208

209
nlohmann::json BatchNormalizationNodeSerializer::serialize(const data_flow::LibraryNode &library_node) {
×
210
    const BatchNormalizationNode &node = static_cast<const BatchNormalizationNode &>(library_node);
×
211
    nlohmann::json j;
×
212

213
    j["code"] = node.code().value();
×
214
    j["axis"] = node.axis();
×
215
    j["epsilon"] = node.epsilon();
×
216

NEW
217
    serializer::JSONSerializer serializer;
×
NEW
218
    j["shape"] = nlohmann::json::array();
×
NEW
219
    for (auto &dim : node.shape()) {
×
NEW
220
        j["shape"].push_back(serializer.expression(dim));
×
221
    }
222

223
    return j;
×
224
}
×
225

226
data_flow::LibraryNode &BatchNormalizationNodeSerializer::deserialize(
×
227
    const nlohmann::json &j, builder::StructuredSDFGBuilder &builder, structured_control_flow::Block &parent
228
) {
229
    auto code = j["code"].get<std::string>();
×
230
    if (code != LibraryNodeType_BatchNormalization.value()) {
×
231
        throw std::runtime_error("Invalid library node code");
×
232
    }
233

234
    sdfg::serializer::JSONSerializer serializer;
×
235
    DebugInfo debug_info = serializer.json_to_debug_info(j["debug_info"]);
×
236

NEW
237
    std::vector<symbolic::Expression> shape;
×
NEW
238
    for (const auto &dim : j["shape"]) {
×
NEW
239
        shape.push_back(SymEngine::Expression(dim.get<std::string>()));
×
240
    }
241

242
    auto axis = j["axis"].get<int>();
×
243
    auto epsilon = j["epsilon"].get<std::string>();
×
244

NEW
245
    return builder.add_library_node<BatchNormalizationNode>(parent, debug_info, shape, axis, epsilon);
×
246
}
×
247

248
} // namespace ml
249
} // namespace math
250
} // namespace sdfg
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc