• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

daisytuner / sdfglib / 17602788814

05 Sep 2025 11:40AM UTC coverage: 59.145% (+0.09%) from 59.057%
17602788814

push

github

web-flow
Schedule type extension (#221)

* Initial Draft

* Simplify schedule type class for serialization

* string ref

* fix and = operator

60 of 72 new or added lines in 19 files covered. (83.33%)

4 existing lines in 2 files now uncovered.

9274 of 15680 relevant lines covered (59.15%)

115.92 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

0.0
/src/data_flow/library_nodes/math/ml/layer_normalization.cpp
1
#include "sdfg/data_flow/library_nodes/math/ml/layer_normalization.h"
2

3
#include "sdfg/analysis/analysis.h"
4
#include "sdfg/analysis/scope_analysis.h"
5
#include "sdfg/builder/structured_sdfg_builder.h"
6

7
namespace sdfg {
8
namespace math {
9
namespace ml {
10

11
LayerNormalizationNode::LayerNormalizationNode(
×
12
    size_t element_id,
13
    const DebugInfo &debug_info,
14
    const graph::Vertex vertex,
15
    data_flow::DataFlowGraph &parent,
16
    int axis,
17
    const std::string &epsilon
18
)
19
    : MathNode(
×
20
          element_id,
×
21
          debug_info,
×
22
          vertex,
×
23
          parent,
×
24
          LibraryNodeType_LayerNormalization,
25
          {"Y"},
×
26
          {"X", "Scale", "B"},
×
27
          data_flow::ImplementationType_NONE
28
      ),
29
      axis_(axis), epsilon_(epsilon) {}
×
30

31
void LayerNormalizationNode::validate(const Function &) const { /* TODO */ }
×
32

33
bool LayerNormalizationNode::expand(builder::StructuredSDFGBuilder &builder, analysis::AnalysisManager &analysis_manager) {
×
34
    auto &dataflow = this->get_parent();
×
35
    auto &block = static_cast<structured_control_flow::Block &>(*dataflow.get_parent());
×
36

37
    auto &scope_analysis = analysis_manager.get<analysis::ScopeAnalysis>();
×
38
    auto &parent = static_cast<structured_control_flow::Sequence &>(*scope_analysis.parent_scope(&block));
×
39
    int index = parent.index(block);
×
40
    auto &transition = parent.at(index).second;
×
41

42
    // Locate edges
43
    const data_flow::Memlet *iedge_input = nullptr;
×
44
    const data_flow::Memlet *iedge_scale = nullptr;
×
45
    const data_flow::Memlet *iedge_bias = nullptr;
×
46
    const data_flow::Memlet *oedge_output = nullptr;
×
47
    for (const auto &edge : dataflow.in_edges(*this)) {
×
48
        if (edge.dst_conn() == "X") {
×
49
            iedge_input = &edge;
×
50
        } else if (edge.dst_conn() == "Scale") {
×
51
            iedge_scale = &edge;
×
52
        } else if (edge.dst_conn() == "B") {
×
53
            iedge_bias = &edge;
×
54
        }
×
55
    }
56
    for (const auto &edge : dataflow.out_edges(*this)) {
×
57
        if (edge.src_conn() == "Y") {
×
58
            oedge_output = &edge;
×
59
        }
×
60
    }
61
    if (!iedge_input || !iedge_scale || !oedge_output) return false;
×
62

63
    std::string input_name = static_cast<const data_flow::AccessNode &>(iedge_input->src()).data();
×
64
    std::string scale_name = static_cast<const data_flow::AccessNode &>(iedge_scale->src()).data();
×
65
    std::string bias_name;
×
66
    if (iedge_bias) {
×
67
        bias_name = static_cast<const data_flow::AccessNode &>(iedge_bias->src()).data();
×
68
    }
×
69
    std::string output_name = static_cast<const data_flow::AccessNode &>(oedge_output->dst()).data();
×
70

71
    // Create new sequence before
72
    auto &new_sequence = builder.add_sequence_before(parent, block, transition.assignments(), block.debug_info());
×
73
    structured_control_flow::Sequence *last_scope = &new_sequence;
×
74

75
    // Create maps over output subset dims (parallel dims)
76
    data_flow::Subset domain_begin = oedge_output->begin_subset();
×
77
    data_flow::Subset domain_end = oedge_output->end_subset();
×
78

79
    std::vector<symbolic::Expression> loop_syms;
×
80
    structured_control_flow::Map *last_map = nullptr;
×
81
    for (size_t d = 0; d < domain_begin.size(); ++d) {
×
82
        std::string indvar_str = builder.find_new_name("_i");
×
83
        builder.add_container(indvar_str, types::Scalar(types::PrimitiveType::UInt64));
×
84
        auto indvar = symbolic::symbol(indvar_str);
×
85
        auto init = domain_begin[d];
×
86
        auto update = symbolic::add(indvar, symbolic::one());
×
87
        auto cond = symbolic::Lt(indvar, symbolic::add(domain_end[d], symbolic::one()));
×
88
        last_map = &builder.add_map(
×
89
            *last_scope,
×
90
            indvar,
91
            cond,
92
            init,
93
            update,
NEW
94
            structured_control_flow::ScheduleType_Sequential::create(),
×
95
            {},
×
96
            block.debug_info()
×
97
        );
98
        last_scope = &last_map->root();
×
99
        loop_syms.push_back(indvar);
×
100
    }
×
101

102
    // Initialize temp variables for mean and variance
103
    std::string mean_temp_name = builder.find_new_name("_mean_tmp");
×
104
    std::string var_temp_name = builder.find_new_name("_var_tmp");
×
105
    std::string count_temp_name = builder.find_new_name("_count_tmp");
×
106
    types::Scalar temp_type(types::PrimitiveType::Float);
×
107
    builder.add_container(mean_temp_name, temp_type);
×
108
    builder.add_container(var_temp_name, temp_type);
×
109
    builder.add_container(count_temp_name, temp_type);
×
110

111
    auto &init_block = builder.add_block(*last_scope);
×
112
    auto &init_mean_tasklet = builder.add_tasklet(init_block, data_flow::TaskletCode::assign, "_out", {"0.0f"});
×
113
    auto &init_var_tasklet = builder.add_tasklet(init_block, data_flow::TaskletCode::assign, "_out", {"0.0f"});
×
114
    auto &init_count_tasklet = builder.add_tasklet(init_block, data_flow::TaskletCode::assign, "_out", {"0.0f"});
×
115
    auto &mean_access_init = builder.add_access(init_block, mean_temp_name);
×
116
    auto &var_access_init = builder.add_access(init_block, var_temp_name);
×
117
    auto &count_access_init = builder.add_access(init_block, count_temp_name);
×
118
    builder.add_computational_memlet(init_block, init_mean_tasklet, "_out", mean_access_init, {}, temp_type);
×
119
    builder.add_computational_memlet(init_block, init_var_tasklet, "_out", var_access_init, {}, temp_type);
×
120
    builder.add_computational_memlet(init_block, init_count_tasklet, "_out", count_access_init, {}, temp_type);
×
121

122
    // Add reduction for loop to compute mean and variance
123
    symbolic::Expression red_begin;
×
124
    symbolic::Expression red_end;
×
125
    if (axis_ >= 0) {
×
126
        red_begin = iedge_input->begin_subset()[axis_];
×
127
        red_end = iedge_input->end_subset()[axis_];
×
128
    } else {
×
129
        red_begin = iedge_input->begin_subset().back();
×
130
        red_end = iedge_input->end_subset().back();
×
131
    }
132
    std::string red_name = builder.find_new_name("_i");
×
133
    builder.add_container(red_name, types::Scalar(types::PrimitiveType::UInt64));
×
134
    auto red_indvar = symbolic::symbol(red_name);
×
135
    auto red_init = red_begin;
×
136
    auto red_update = symbolic::add(red_indvar, symbolic::one());
×
137
    auto red_cond = symbolic::Lt(red_indvar, symbolic::add(red_end, symbolic::one()));
×
138
    auto red_map = &builder.add_for(*last_scope, red_indvar, red_cond, red_init, red_update, {}, block.debug_info());
×
139

140
    // Create innermost block for mean and variance computation
141
    auto &compute_block = builder.add_block(red_map->root());
×
142

143
    // Create access nodes
144
    auto &input_access = builder.add_access(compute_block, input_name);
×
145
    auto &mean_access_in = builder.add_access(compute_block, mean_temp_name);
×
146
    auto &mean_access_out = builder.add_access(compute_block, mean_temp_name);
×
147
    auto &var_access_in = builder.add_access(compute_block, var_temp_name);
×
148
    auto &var_access_out = builder.add_access(compute_block, var_temp_name);
×
149
    auto &count_access_in = builder.add_access(compute_block, count_temp_name);
×
150
    auto &count_access_out = builder.add_access(compute_block, count_temp_name);
×
151

152
    // Create index expressions for input
153
    std::vector<symbolic::Expression> input_subset = loop_syms;
×
154

155
    // Replace the reduction axis index with the reduction variable for input
156
    if (axis_ >= 0 && axis_ < static_cast<int>(input_subset.size())) {
×
157
        input_subset.insert(input_subset.begin() + axis_, red_indvar);
×
158
    } else if (axis_ < 0) {
×
159
        input_subset.push_back(red_indvar);
×
160
    }
×
161

162
    // Add to mean (reduction)
163
    auto &add_mean_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
164
    builder.add_computational_memlet(
×
165
        compute_block, input_access, add_mean_tasklet, "_in1", input_subset, iedge_input->base_type()
×
166
    );
167
    builder.add_computational_memlet(compute_block, mean_access_in, add_mean_tasklet, "_in2", {}, temp_type);
×
168
    builder.add_computational_memlet(compute_block, add_mean_tasklet, "_out", mean_access_out, {}, temp_type);
×
169

170
    // Add to variance (reduction of squared values)
171
    auto &square_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::mul, "_out", {"_in1", "_in2"});
×
172
    auto &square_temp_access = builder.add_access(compute_block, builder.find_new_name("_square_tmp"));
×
173
    builder.add_computational_memlet(
×
174
        compute_block, input_access, square_tasklet, "_in1", input_subset, iedge_input->base_type()
×
175
    );
176
    builder.add_computational_memlet(
×
177
        compute_block, input_access, square_tasklet, "_in2", input_subset, iedge_input->base_type()
×
178
    );
179
    builder.add_computational_memlet(compute_block, square_tasklet, "_out", square_temp_access, {}, temp_type);
×
180

181
    auto &add_var_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
182
    builder.add_computational_memlet(compute_block, square_temp_access, add_var_tasklet, "_in1", {}, temp_type);
×
183
    builder.add_computational_memlet(compute_block, var_access_in, add_var_tasklet, "_in2", {}, temp_type);
×
184
    builder.add_computational_memlet(compute_block, add_var_tasklet, "_out", var_access_out, {}, temp_type);
×
185

186
    // Increment count
187
    auto &add_count_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::add, "_out", {"_in1", "1.0f"});
×
188
    builder.add_computational_memlet(compute_block, count_access_in, add_count_tasklet, "_in1", {}, temp_type);
×
189
    builder.add_computational_memlet(compute_block, add_count_tasklet, "_out", count_access_out, {}, temp_type);
×
190

191
    // Create normalization block
192
    auto &norm_block = builder.add_block(*last_scope);
×
193

194
    // Create access nodes for normalization
195
    auto &mean_access_norm = builder.add_access(norm_block, mean_temp_name);
×
196
    auto &var_access_norm = builder.add_access(norm_block, var_temp_name);
×
197
    auto &count_access_norm = builder.add_access(norm_block, count_temp_name);
×
198
    auto &input_access_norm = builder.add_access(norm_block, input_name);
×
199
    auto &scale_access_norm = builder.add_access(norm_block, scale_name);
×
200
    auto &output_access_norm = builder.add_access(norm_block, output_name);
×
201

202
    // Compute mean by dividing sum by count
203
    auto &div_mean_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
204
    auto &mean_result_access = builder.add_access(norm_block, builder.find_new_name("_mean_result"));
×
205
    builder.add_computational_memlet(norm_block, mean_access_norm, div_mean_tasklet, "_in1", {}, temp_type);
×
206
    builder.add_computational_memlet(norm_block, count_access_norm, div_mean_tasklet, "_in2", {}, temp_type);
×
207
    builder.add_computational_memlet(norm_block, div_mean_tasklet, "_out", mean_result_access, {}, temp_type);
×
208

209
    // Compute variance by dividing sum of squares by count and subtracting mean squared
210
    auto &div_var_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
211
    auto &var_div_access = builder.add_access(norm_block, builder.find_new_name("_var_div"));
×
212
    builder.add_computational_memlet(norm_block, var_access_norm, div_var_tasklet, "_in1", {}, temp_type);
×
213
    builder.add_computational_memlet(norm_block, count_access_norm, div_var_tasklet, "_in2", {}, temp_type);
×
214
    builder.add_computational_memlet(norm_block, div_var_tasklet, "_out", var_div_access, {}, temp_type);
×
215

216
    auto &square_mean_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::mul, "_out", {"_in", "_in"});
×
217
    auto &mean_squared_access = builder.add_access(norm_block, builder.find_new_name("_mean_squared"));
×
218
    builder.add_computational_memlet(norm_block, mean_result_access, square_mean_tasklet, "_in", {}, temp_type);
×
219
    builder.add_computational_memlet(norm_block, square_mean_tasklet, "_out", mean_squared_access, {}, temp_type);
×
220

221
    auto &sub_var_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sub, "_out", {"_in1", "_in2"});
×
222
    auto &var_result_access = builder.add_access(norm_block, builder.find_new_name("_var_result"));
×
223
    builder.add_computational_memlet(norm_block, var_div_access, sub_var_tasklet, "_in1", {}, temp_type);
×
224
    builder.add_computational_memlet(norm_block, mean_squared_access, sub_var_tasklet, "_in2", {}, temp_type);
×
225
    builder.add_computational_memlet(norm_block, sub_var_tasklet, "_out", var_result_access, {}, temp_type);
×
226

227
    // Add epsilon to variance and compute standard deviation
228
    auto &add_epsilon_tasklet =
×
229
        builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", epsilon_});
×
230
    auto &var_eps_access = builder.add_access(norm_block, builder.find_new_name("_var_eps"));
×
231
    builder.add_computational_memlet(norm_block, var_result_access, add_epsilon_tasklet, "_in1", {}, temp_type);
×
232
    builder.add_computational_memlet(norm_block, add_epsilon_tasklet, "_out", var_eps_access, {}, temp_type);
×
233

234
    auto &sqrt_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sqrt, "_out", {"_in"});
×
235
    auto &std_dev_access = builder.add_access(norm_block, builder.find_new_name("_std_dev"));
×
236
    builder.add_computational_memlet(norm_block, var_eps_access, sqrt_tasklet, "_in", {}, temp_type);
×
237
    builder.add_computational_memlet(norm_block, sqrt_tasklet, "_out", std_dev_access, {}, temp_type);
×
238

239
    // Normalize: (x - mean) / std_dev
240
    auto &sub_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sub, "_out", {"_in1", "_in2"});
×
241
    auto &centered_access = builder.add_access(norm_block, builder.find_new_name("_centered"));
×
242
    builder.add_computational_memlet(
×
243
        norm_block, input_access_norm, sub_norm_tasklet, "_in1", loop_syms, iedge_input->base_type()
×
244
    );
245
    builder.add_computational_memlet(norm_block, mean_result_access, sub_norm_tasklet, "_in2", {}, temp_type);
×
246
    builder.add_computational_memlet(norm_block, sub_norm_tasklet, "_out", centered_access, {}, temp_type);
×
247

248
    auto &div_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
249
    auto &normalized_access = builder.add_access(norm_block, builder.find_new_name("_normalized"));
×
250
    builder.add_computational_memlet(norm_block, centered_access, div_norm_tasklet, "_in1", {}, temp_type);
×
251
    builder.add_computational_memlet(norm_block, std_dev_access, div_norm_tasklet, "_in2", {}, temp_type);
×
252
    builder.add_computational_memlet(norm_block, div_norm_tasklet, "_out", normalized_access, {}, temp_type);
×
253

254
    // Apply scale and bias: scale * normalized + bias (if bias is provided)
255
    auto &mul_scale_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::mul, "_out", {"_in1", "_in2"});
×
256
    auto &scaled_access = builder.add_access(norm_block, builder.find_new_name("_scaled"));
×
257
    builder.add_computational_memlet(norm_block, normalized_access, mul_scale_tasklet, "_in1", {}, temp_type);
×
258
    builder.add_computational_memlet(
×
259
        norm_block, scale_access_norm, mul_scale_tasklet, "_in2", loop_syms, iedge_scale->base_type()
×
260
    );
261
    builder.add_computational_memlet(norm_block, mul_scale_tasklet, "_out", scaled_access, {}, temp_type);
×
262

263
    if (iedge_bias) {
×
264
        // Add bias if provided
265
        auto &bias_access_norm = builder.add_access(norm_block, bias_name);
×
266
        auto &add_bias_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
267
        builder.add_computational_memlet(norm_block, scaled_access, add_bias_tasklet, "_in1", {}, temp_type);
×
268
        builder.add_computational_memlet(
×
269
            norm_block, bias_access_norm, add_bias_tasklet, "_in2", loop_syms, iedge_bias->base_type()
×
270
        );
271
        builder.add_computational_memlet(
×
272
            norm_block, add_bias_tasklet, "_out", output_access_norm, loop_syms, oedge_output->base_type()
×
273
        );
274
    } else {
×
275
        // No bias, just assign scaled result to output
276
        auto &assign_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::assign, "_out", {"_in"});
×
277
        builder.add_computational_memlet(norm_block, scaled_access, assign_tasklet, "_in", {}, temp_type);
×
278
        builder.add_computational_memlet(
×
279
            norm_block, assign_tasklet, "_out", output_access_norm, loop_syms, oedge_output->base_type()
×
280
        );
281
    }
282

283
    // Cleanup old block
284
    builder.remove_memlet(block, *iedge_input);
×
285
    builder.remove_memlet(block, *iedge_scale);
×
286
    if (iedge_bias) {
×
287
        builder.remove_memlet(block, *iedge_bias);
×
288
    }
×
289
    builder.remove_memlet(block, *oedge_output);
×
290
    builder.remove_node(block, *this);
×
291
    builder.remove_child(parent, index + 1);
×
292

293
    return true;
×
294
}
×
295

296
std::unique_ptr<data_flow::DataFlowNode> LayerNormalizationNode::
297
    clone(size_t element_id, const graph::Vertex vertex, data_flow::DataFlowGraph &parent) const {
×
298
    return std::unique_ptr<data_flow::DataFlowNode>(
×
299
        new LayerNormalizationNode(element_id, this->debug_info(), vertex, parent, axis_, epsilon_)
×
300
    );
301
}
×
302

303
nlohmann::json LayerNormalizationNodeSerializer::serialize(const data_flow::LibraryNode &library_node) {
×
304
    const LayerNormalizationNode &node = static_cast<const LayerNormalizationNode &>(library_node);
×
305
    nlohmann::json j;
×
306

307
    j["code"] = node.code().value();
×
308
    j["axis"] = node.axis();
×
309
    j["epsilon"] = node.epsilon();
×
310

311
    return j;
×
312
}
×
313

314
data_flow::LibraryNode &LayerNormalizationNodeSerializer::deserialize(
×
315
    const nlohmann::json &j, builder::StructuredSDFGBuilder &builder, structured_control_flow::Block &parent
316
) {
317
    auto code = j["code"].get<std::string>();
×
318
    if (code != LibraryNodeType_LayerNormalization.value()) {
×
319
        throw std::runtime_error("Invalid library node code");
×
320
    }
321

322
    sdfg::serializer::JSONSerializer serializer;
×
323
    DebugInfo debug_info = serializer.json_to_debug_info(j["debug_info"]);
×
324

325
    auto axis = j["axis"].get<int>();
×
326
    auto epsilon = j["epsilon"].get<std::string>();
×
327

328
    return builder.add_library_node<LayerNormalizationNode>(parent, debug_info, axis, epsilon);
×
329
}
×
330

331
} // namespace ml
332
} // namespace math
333
} // namespace sdfg
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc