• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

daisytuner / sdfglib / 17316805645

29 Aug 2025 06:46AM UTC coverage: 60.01% (+0.2%) from 59.781%
17316805645

Pull #210

github

web-flow
Merge cd9cb386d into 18d34db1e
Pull Request #210: New debug info

351 of 562 new or added lines in 37 files covered. (62.46%)

15 existing lines in 8 files now uncovered.

9574 of 15954 relevant lines covered (60.01%)

115.01 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

0.0
/src/data_flow/library_nodes/math/ml/layer_normalization.cpp
1
#include "sdfg/data_flow/library_nodes/math/ml/layer_normalization.h"
2

3
#include "sdfg/analysis/analysis.h"
4
#include "sdfg/analysis/scope_analysis.h"
5
#include "sdfg/builder/structured_sdfg_builder.h"
6

7
namespace sdfg {
8
namespace math {
9
namespace ml {
10

11
LayerNormalizationNode::LayerNormalizationNode(
×
12
    size_t element_id,
13
    const DebugInfoRegion &debug_info,
14
    const graph::Vertex vertex,
15
    data_flow::DataFlowGraph &parent,
16
    int axis,
17
    const std::string &epsilon
18
)
19
    : MathNode(
×
NEW
20
          element_id,
×
NEW
21
          debug_info,
×
NEW
22
          vertex,
×
NEW
23
          parent,
×
24
          LibraryNodeType_LayerNormalization,
NEW
25
          {"Y"},
×
NEW
26
          {"X", "Scale", "B"},
×
27
          data_flow::ImplementationType_NONE
28
      ),
29
      axis_(axis), epsilon_(epsilon) {}
×
30

31
void LayerNormalizationNode::validate(const Function &) const { /* TODO */ }
×
32

33
bool LayerNormalizationNode::expand(builder::StructuredSDFGBuilder &builder, analysis::AnalysisManager &analysis_manager) {
×
34
    auto &dataflow = this->get_parent();
×
35
    auto &block = static_cast<structured_control_flow::Block &>(*dataflow.get_parent());
×
36

37
    auto &scope_analysis = analysis_manager.get<analysis::ScopeAnalysis>();
×
38
    auto &parent = static_cast<structured_control_flow::Sequence &>(*scope_analysis.parent_scope(&block));
×
39

40
    // Locate edges
41
    const data_flow::Memlet *iedge_input = nullptr;
×
42
    const data_flow::Memlet *iedge_scale = nullptr;
×
43
    const data_flow::Memlet *iedge_bias = nullptr;
×
44
    const data_flow::Memlet *oedge_output = nullptr;
×
45
    for (const auto &edge : dataflow.in_edges(*this)) {
×
46
        if (edge.dst_conn() == "X") {
×
47
            iedge_input = &edge;
×
48
        } else if (edge.dst_conn() == "Scale") {
×
49
            iedge_scale = &edge;
×
50
        } else if (edge.dst_conn() == "B") {
×
51
            iedge_bias = &edge;
×
52
        }
×
53
    }
54
    for (const auto &edge : dataflow.out_edges(*this)) {
×
55
        if (edge.src_conn() == "Y") {
×
56
            oedge_output = &edge;
×
57
        }
×
58
    }
59
    if (!iedge_input || !iedge_scale || !oedge_output) return false;
×
60

61
    std::string input_name = static_cast<const data_flow::AccessNode &>(iedge_input->src()).data();
×
62
    std::string scale_name = static_cast<const data_flow::AccessNode &>(iedge_scale->src()).data();
×
63
    std::string bias_name;
×
64
    if (iedge_bias) {
×
65
        bias_name = static_cast<const data_flow::AccessNode &>(iedge_bias->src()).data();
×
66
    }
×
67
    std::string output_name = static_cast<const data_flow::AccessNode &>(oedge_output->dst()).data();
×
68

69
    // Create new sequence before
70
    auto &new_sequence = builder.add_sequence_before(parent, block, block.debug_info()).first;
×
71
    structured_control_flow::Sequence *last_scope = &new_sequence;
×
72

73
    // Create maps over output subset dims (parallel dims)
74
    data_flow::Subset domain_begin = oedge_output->begin_subset();
×
75
    data_flow::Subset domain_end = oedge_output->end_subset();
×
76

77
    std::vector<symbolic::Expression> loop_syms;
×
78
    structured_control_flow::Map *last_map = nullptr;
×
79
    for (size_t d = 0; d < domain_begin.size(); ++d) {
×
80
        std::string indvar_str = builder.find_new_name("_i");
×
81
        builder.add_container(indvar_str, types::Scalar(types::PrimitiveType::UInt64));
×
82
        auto indvar = symbolic::symbol(indvar_str);
×
83
        auto init = domain_begin[d];
×
84
        auto update = symbolic::add(indvar, symbolic::one());
×
85
        auto cond = symbolic::Lt(indvar, symbolic::add(domain_end[d], symbolic::one()));
×
86
        last_map = &builder.add_map(
×
87
            *last_scope,
×
88
            indvar,
89
            cond,
90
            init,
91
            update,
92
            structured_control_flow::ScheduleType_Sequential,
93
            {},
×
94
            block.debug_info()
×
95
        );
96
        last_scope = &last_map->root();
×
97
        loop_syms.push_back(indvar);
×
98
    }
×
99

100
    // Initialize temp variables for mean and variance
101
    std::string mean_temp_name = builder.find_new_name("_mean_tmp");
×
102
    std::string var_temp_name = builder.find_new_name("_var_tmp");
×
103
    std::string count_temp_name = builder.find_new_name("_count_tmp");
×
104
    types::Scalar temp_type(types::PrimitiveType::Float);
×
105
    builder.add_container(mean_temp_name, temp_type);
×
106
    builder.add_container(var_temp_name, temp_type);
×
107
    builder.add_container(count_temp_name, temp_type);
×
108

109
    auto &init_block = builder.add_block(*last_scope);
×
110
    auto &init_mean_tasklet = builder.add_tasklet(init_block, data_flow::TaskletCode::assign, "_out", {"0.0f"});
×
111
    auto &init_var_tasklet = builder.add_tasklet(init_block, data_flow::TaskletCode::assign, "_out", {"0.0f"});
×
112
    auto &init_count_tasklet = builder.add_tasklet(init_block, data_flow::TaskletCode::assign, "_out", {"0.0f"});
×
113
    auto &mean_access_init = builder.add_access(init_block, mean_temp_name);
×
114
    auto &var_access_init = builder.add_access(init_block, var_temp_name);
×
115
    auto &count_access_init = builder.add_access(init_block, count_temp_name);
×
116
    builder.add_computational_memlet(init_block, init_mean_tasklet, "_out", mean_access_init, {}, temp_type);
×
117
    builder.add_computational_memlet(init_block, init_var_tasklet, "_out", var_access_init, {}, temp_type);
×
118
    builder.add_computational_memlet(init_block, init_count_tasklet, "_out", count_access_init, {}, temp_type);
×
119

120
    // Add reduction for loop to compute mean and variance
121
    symbolic::Expression red_begin;
×
122
    symbolic::Expression red_end;
×
123
    if (axis_ >= 0) {
×
124
        red_begin = iedge_input->begin_subset()[axis_];
×
125
        red_end = iedge_input->end_subset()[axis_];
×
126
    } else {
×
127
        red_begin = iedge_input->begin_subset().back();
×
128
        red_end = iedge_input->end_subset().back();
×
129
    }
130
    std::string red_name = builder.find_new_name("_i");
×
131
    builder.add_container(red_name, types::Scalar(types::PrimitiveType::UInt64));
×
132
    auto red_indvar = symbolic::symbol(red_name);
×
133
    auto red_init = red_begin;
×
134
    auto red_update = symbolic::add(red_indvar, symbolic::one());
×
135
    auto red_cond = symbolic::Lt(red_indvar, symbolic::add(red_end, symbolic::one()));
×
NEW
136
    auto red_map = &builder.add_for(*last_scope, red_indvar, red_cond, red_init, red_update, {}, block.debug_info());
×
137

138
    // Create innermost block for mean and variance computation
139
    auto &compute_block = builder.add_block(red_map->root());
×
140

141
    // Create access nodes
142
    auto &input_access = builder.add_access(compute_block, input_name);
×
143
    auto &mean_access_in = builder.add_access(compute_block, mean_temp_name);
×
144
    auto &mean_access_out = builder.add_access(compute_block, mean_temp_name);
×
145
    auto &var_access_in = builder.add_access(compute_block, var_temp_name);
×
146
    auto &var_access_out = builder.add_access(compute_block, var_temp_name);
×
147
    auto &count_access_in = builder.add_access(compute_block, count_temp_name);
×
148
    auto &count_access_out = builder.add_access(compute_block, count_temp_name);
×
149

150
    // Create index expressions for input
151
    std::vector<symbolic::Expression> input_subset = loop_syms;
×
152

153
    // Replace the reduction axis index with the reduction variable for input
154
    if (axis_ >= 0 && axis_ < static_cast<int>(input_subset.size())) {
×
155
        input_subset.insert(input_subset.begin() + axis_, red_indvar);
×
156
    } else if (axis_ < 0) {
×
157
        input_subset.push_back(red_indvar);
×
158
    }
×
159

160
    // Add to mean (reduction)
161
    auto &add_mean_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
NEW
162
    builder.add_computational_memlet(
×
NEW
163
        compute_block, input_access, add_mean_tasklet, "_in1", input_subset, iedge_input->base_type()
×
164
    );
165
    builder.add_computational_memlet(compute_block, mean_access_in, add_mean_tasklet, "_in2", {}, temp_type);
×
166
    builder.add_computational_memlet(compute_block, add_mean_tasklet, "_out", mean_access_out, {}, temp_type);
×
167

168
    // Add to variance (reduction of squared values)
169
    auto &square_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::mul, "_out", {"_in1", "_in2"});
×
170
    auto &square_temp_access = builder.add_access(compute_block, builder.find_new_name("_square_tmp"));
×
NEW
171
    builder.add_computational_memlet(
×
NEW
172
        compute_block, input_access, square_tasklet, "_in1", input_subset, iedge_input->base_type()
×
173
    );
NEW
174
    builder.add_computational_memlet(
×
NEW
175
        compute_block, input_access, square_tasklet, "_in2", input_subset, iedge_input->base_type()
×
176
    );
UNCOV
177
    builder.add_computational_memlet(compute_block, square_tasklet, "_out", square_temp_access, {}, temp_type);
×
178

179
    auto &add_var_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
180
    builder.add_computational_memlet(compute_block, square_temp_access, add_var_tasklet, "_in1", {}, temp_type);
×
181
    builder.add_computational_memlet(compute_block, var_access_in, add_var_tasklet, "_in2", {}, temp_type);
×
182
    builder.add_computational_memlet(compute_block, add_var_tasklet, "_out", var_access_out, {}, temp_type);
×
183

184
    // Increment count
185
    auto &add_count_tasklet = builder.add_tasklet(compute_block, data_flow::TaskletCode::add, "_out", {"_in1", "1.0f"});
×
186
    builder.add_computational_memlet(compute_block, count_access_in, add_count_tasklet, "_in1", {}, temp_type);
×
187
    builder.add_computational_memlet(compute_block, add_count_tasklet, "_out", count_access_out, {}, temp_type);
×
188

189
    // Create normalization block
190
    auto &norm_block = builder.add_block(*last_scope);
×
191

192
    // Create access nodes for normalization
193
    auto &mean_access_norm = builder.add_access(norm_block, mean_temp_name);
×
194
    auto &var_access_norm = builder.add_access(norm_block, var_temp_name);
×
195
    auto &count_access_norm = builder.add_access(norm_block, count_temp_name);
×
196
    auto &input_access_norm = builder.add_access(norm_block, input_name);
×
197
    auto &scale_access_norm = builder.add_access(norm_block, scale_name);
×
198
    auto &output_access_norm = builder.add_access(norm_block, output_name);
×
199

200
    // Compute mean by dividing sum by count
201
    auto &div_mean_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
202
    auto &mean_result_access = builder.add_access(norm_block, builder.find_new_name("_mean_result"));
×
203
    builder.add_computational_memlet(norm_block, mean_access_norm, div_mean_tasklet, "_in1", {}, temp_type);
×
204
    builder.add_computational_memlet(norm_block, count_access_norm, div_mean_tasklet, "_in2", {}, temp_type);
×
205
    builder.add_computational_memlet(norm_block, div_mean_tasklet, "_out", mean_result_access, {}, temp_type);
×
206

207
    // Compute variance by dividing sum of squares by count and subtracting mean squared
208
    auto &div_var_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
209
    auto &var_div_access = builder.add_access(norm_block, builder.find_new_name("_var_div"));
×
210
    builder.add_computational_memlet(norm_block, var_access_norm, div_var_tasklet, "_in1", {}, temp_type);
×
211
    builder.add_computational_memlet(norm_block, count_access_norm, div_var_tasklet, "_in2", {}, temp_type);
×
212
    builder.add_computational_memlet(norm_block, div_var_tasklet, "_out", var_div_access, {}, temp_type);
×
213

214
    auto &square_mean_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::mul, "_out", {"_in", "_in"});
×
215
    auto &mean_squared_access = builder.add_access(norm_block, builder.find_new_name("_mean_squared"));
×
216
    builder.add_computational_memlet(norm_block, mean_result_access, square_mean_tasklet, "_in", {}, temp_type);
×
217
    builder.add_computational_memlet(norm_block, square_mean_tasklet, "_out", mean_squared_access, {}, temp_type);
×
218

219
    auto &sub_var_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sub, "_out", {"_in1", "_in2"});
×
220
    auto &var_result_access = builder.add_access(norm_block, builder.find_new_name("_var_result"));
×
221
    builder.add_computational_memlet(norm_block, var_div_access, sub_var_tasklet, "_in1", {}, temp_type);
×
222
    builder.add_computational_memlet(norm_block, mean_squared_access, sub_var_tasklet, "_in2", {}, temp_type);
×
223
    builder.add_computational_memlet(norm_block, sub_var_tasklet, "_out", var_result_access, {}, temp_type);
×
224

225
    // Add epsilon to variance and compute standard deviation
NEW
226
    auto &add_epsilon_tasklet =
×
NEW
227
        builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", epsilon_});
×
228
    auto &var_eps_access = builder.add_access(norm_block, builder.find_new_name("_var_eps"));
×
229
    builder.add_computational_memlet(norm_block, var_result_access, add_epsilon_tasklet, "_in1", {}, temp_type);
×
230
    builder.add_computational_memlet(norm_block, add_epsilon_tasklet, "_out", var_eps_access, {}, temp_type);
×
231

232
    auto &sqrt_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sqrt, "_out", {"_in"});
×
233
    auto &std_dev_access = builder.add_access(norm_block, builder.find_new_name("_std_dev"));
×
234
    builder.add_computational_memlet(norm_block, var_eps_access, sqrt_tasklet, "_in", {}, temp_type);
×
235
    builder.add_computational_memlet(norm_block, sqrt_tasklet, "_out", std_dev_access, {}, temp_type);
×
236

237
    // Normalize: (x - mean) / std_dev
238
    auto &sub_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::sub, "_out", {"_in1", "_in2"});
×
239
    auto &centered_access = builder.add_access(norm_block, builder.find_new_name("_centered"));
×
NEW
240
    builder.add_computational_memlet(
×
NEW
241
        norm_block, input_access_norm, sub_norm_tasklet, "_in1", loop_syms, iedge_input->base_type()
×
242
    );
243
    builder.add_computational_memlet(norm_block, mean_result_access, sub_norm_tasklet, "_in2", {}, temp_type);
×
244
    builder.add_computational_memlet(norm_block, sub_norm_tasklet, "_out", centered_access, {}, temp_type);
×
245

246
    auto &div_norm_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::div, "_out", {"_in1", "_in2"});
×
247
    auto &normalized_access = builder.add_access(norm_block, builder.find_new_name("_normalized"));
×
248
    builder.add_computational_memlet(norm_block, centered_access, div_norm_tasklet, "_in1", {}, temp_type);
×
249
    builder.add_computational_memlet(norm_block, std_dev_access, div_norm_tasklet, "_in2", {}, temp_type);
×
250
    builder.add_computational_memlet(norm_block, div_norm_tasklet, "_out", normalized_access, {}, temp_type);
×
251

252
    // Apply scale and bias: scale * normalized + bias (if bias is provided)
253
    auto &mul_scale_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::mul, "_out", {"_in1", "_in2"});
×
254
    auto &scaled_access = builder.add_access(norm_block, builder.find_new_name("_scaled"));
×
255
    builder.add_computational_memlet(norm_block, normalized_access, mul_scale_tasklet, "_in1", {}, temp_type);
×
NEW
256
    builder.add_computational_memlet(
×
NEW
257
        norm_block, scale_access_norm, mul_scale_tasklet, "_in2", loop_syms, iedge_scale->base_type()
×
258
    );
UNCOV
259
    builder.add_computational_memlet(norm_block, mul_scale_tasklet, "_out", scaled_access, {}, temp_type);
×
260

261
    if (iedge_bias) {
×
262
        // Add bias if provided
263
        auto &bias_access_norm = builder.add_access(norm_block, bias_name);
×
264
        auto &add_bias_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::add, "_out", {"_in1", "_in2"});
×
265
        builder.add_computational_memlet(norm_block, scaled_access, add_bias_tasklet, "_in1", {}, temp_type);
×
NEW
266
        builder.add_computational_memlet(
×
NEW
267
            norm_block, bias_access_norm, add_bias_tasklet, "_in2", loop_syms, iedge_bias->base_type()
×
268
        );
NEW
269
        builder.add_computational_memlet(
×
NEW
270
            norm_block, add_bias_tasklet, "_out", output_access_norm, loop_syms, oedge_output->base_type()
×
271
        );
UNCOV
272
    } else {
×
273
        // No bias, just assign scaled result to output
274
        auto &assign_tasklet = builder.add_tasklet(norm_block, data_flow::TaskletCode::assign, "_out", {"_in"});
×
275
        builder.add_computational_memlet(norm_block, scaled_access, assign_tasklet, "_in", {}, temp_type);
×
NEW
276
        builder.add_computational_memlet(
×
NEW
277
            norm_block, assign_tasklet, "_out", output_access_norm, loop_syms, oedge_output->base_type()
×
278
        );
279
    }
280

281
    // Cleanup old block
282
    builder.remove_memlet(block, *iedge_input);
×
283
    builder.remove_memlet(block, *iedge_scale);
×
284
    if (iedge_bias) {
×
285
        builder.remove_memlet(block, *iedge_bias);
×
286
    }
×
287
    builder.remove_memlet(block, *oedge_output);
×
288
    builder.remove_node(block, *this);
×
289
    builder.remove_child(parent, block);
×
290

291
    return true;
×
292
}
×
293

294
std::unique_ptr<data_flow::DataFlowNode> LayerNormalizationNode::
295
    clone(size_t element_id, const graph::Vertex vertex, data_flow::DataFlowGraph &parent) const {
×
NEW
296
    return std::unique_ptr<data_flow::DataFlowNode>(
×
NEW
297
        new LayerNormalizationNode(element_id, this->debug_info(), vertex, parent, axis_, epsilon_)
×
298
    );
UNCOV
299
}
×
300

301
nlohmann::json LayerNormalizationNodeSerializer::serialize(const data_flow::LibraryNode &library_node) {
×
302
    const LayerNormalizationNode &node = static_cast<const LayerNormalizationNode &>(library_node);
×
303
    nlohmann::json j;
×
304

305
    j["code"] = node.code().value();
×
306
    j["axis"] = node.axis();
×
307
    j["epsilon"] = node.epsilon();
×
308

309
    return j;
×
310
}
×
311

312
data_flow::LibraryNode &LayerNormalizationNodeSerializer::deserialize(
×
313
    const nlohmann::json &j, builder::StructuredSDFGBuilder &builder, structured_control_flow::Block &parent
314
) {
315
    auto code = j["code"].get<std::string>();
×
316
    if (code != LibraryNodeType_LayerNormalization.value()) {
×
317
        throw std::runtime_error("Invalid library node code");
×
318
    }
319

320
    sdfg::serializer::JSONSerializer serializer;
×
NEW
321
    DebugInfoRegion debug_info = serializer.json_to_debug_info_region(j["debug_info"], builder.debug_info());
×
322

323
    auto axis = j["axis"].get<int>();
×
324
    auto epsilon = j["epsilon"].get<std::string>();
×
325

326
    return builder.add_library_node<LayerNormalizationNode>(parent, debug_info, axis, epsilon);
×
327
}
×
328

329
} // namespace ml
330
} // namespace math
331
} // namespace sdfg
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc