• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

randombit / botan / 17159911587

22 Aug 2025 03:53PM UTC coverage: 90.656% (-0.006%) from 90.662%
17159911587

push

github

Brassinolide
fix clang-tidy & clang-format & macOS test failed

100250 of 110583 relevant lines covered (90.66%)

12199136.65 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

99.67
/src/tests/test_utils_bitvector.cpp
1
/*
2
 * (C) 2023-2024 Jack Lloyd
3
 * (C) 2023-2024 René Meusel, Rohde & Schwarz Cybersecurity
4
 *
5
 * Botan is released under the Simplified BSD License (see license.txt)
6
 */
7

8
#include "tests.h"
9

10
#if defined(BOTAN_HAS_BITVECTOR)
11
   #include <botan/internal/bitvector.h>
12
   #include <botan/internal/fmt.h>
13
   #include <algorithm>
14
   #include <numeric>
15
#endif
16

17
namespace Botan_Tests {
18

19
#if defined(BOTAN_HAS_BITVECTOR)
20

21
namespace {
22

23
/// Returns a random number in the range [min, max)
24
size_t rand_in_range(Botan::RandomNumberGenerator& rng, size_t min, size_t max) {
96✔
25
   if(min == max) {
96✔
26
      return min;
27
   }
28

29
   size_t val = Botan::load_le<size_t>(rng.random_array<sizeof(size_t)>());
96✔
30
   return min + (val % (max - min));
96✔
31
}
32

33
/// Returns @p n integers smaller than @p upper_bound in random order
34
std::vector<size_t> rand_indices(Botan::RandomNumberGenerator& rng, size_t n, size_t upper_bound) {
3✔
35
   auto shuffle = [&](std::vector<size_t>& v) {
6✔
36
      // Fisher-Yates shuffle
37
      if(v.size() < 2) {
3✔
38
         return;
39
      }
40
      for(size_t i = 0; i < v.size() - 1; ++i) {
93✔
41
         auto j = rand_in_range(rng, i, v.size());
90✔
42
         std::swap(v[i], v[j]);
90✔
43
      }
44
   };
3✔
45

46
   std::vector<size_t> indices(upper_bound);
3✔
47
   std::iota(indices.begin(), indices.end(), 0);
3✔
48
   shuffle(indices);
3✔
49
   indices.resize(n);
3✔
50
   return indices;
3✔
51
}
×
52

53
/// Create an empty bitvector of random size and chose a random number of points of interests
54
std::pair<Botan::bitvector, std::set<size_t>> rnd_bitvector_with_rnd_pois(Botan::RandomNumberGenerator& rng) {
3✔
55
   Botan::bitvector bv(rand_in_range(rng, 0, 65));
3✔
56
   size_t no_poi = rand_in_range(rng, 0, bv.size());
3✔
57
   auto points_of_interest = rand_indices(rng, no_poi, bv.size());
3✔
58

59
   return {bv, {points_of_interest.begin(), points_of_interest.end()}};
6✔
60
}
6✔
61

62
template <size_t mod>
63
auto pattern_generator(size_t offset = 0) {
79✔
64
   return [i = offset]() mutable -> bool {
5,209✔
65
      const bool result = (i % mod) != 0;
5,209✔
66
      ++i;
5,209✔
67
      return result;
68
   };
69
}
70

71
std::vector<Test::Result> test_bitvector_bitwise_accessors(Botan::RandomNumberGenerator& rng) {
1✔
72
   return {
1✔
73
      CHECK("default constructed bitvector",
74
            [](auto& result) {
1✔
75
               Botan::bitvector bv;
1✔
76
               result.confirm("default constructed bitvector is empty", bv.empty());
2✔
77
               result.test_eq("default constructed bitvector has zero size", bv.size(), size_t(0));
2✔
78
            }),
1✔
79

80
      CHECK("preallocated construction of bitvector",
81
            [](auto& result) {
1✔
82
               Botan::bitvector bv(10);
1✔
83
               result.confirm("allocated bitvector is not empty", !bv.empty());
2✔
84
               result.test_eq("allocated bitvector has allocated size", bv.size(), size_t(10));
1✔
85
               for(size_t i = 0; i < 10; ++i) {
11✔
86
                  result.confirm("bit not set yet", !bv.at(i));
20✔
87
               }
88
            }),
1✔
89

90
      CHECK("setting bits",
91
            [&](auto& result) {
1✔
92
               auto [bv, ones] = rnd_bitvector_with_rnd_pois(rng);
1✔
93

94
               for(size_t i : ones) {
2✔
95
                  if(rng.next_byte() % 2 == 0) {
1✔
96
                     bv.set(i);
×
97
                  } else {
98
                     bv.at(i) = true;
1✔
99
                  }
100
               }
101
               for(size_t i = 0; i < bv.size(); ++i) {
47✔
102
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == ones.contains(i));
138✔
103
               }
104
            }),
1✔
105

106
      CHECK("unsetting bits",
107
            [&](auto& result) {
1✔
108
               auto [bv, zeros] = rnd_bitvector_with_rnd_pois(rng);
1✔
109
               for(auto b : bv) {
23✔
110
                  b.set();
21✔
111
               }
112

113
               for(size_t i : zeros) {
13✔
114
                  if(rng.next_byte() % 2 == 0) {
12✔
115
                     bv.unset(i);
5✔
116
                  } else {
117
                     bv.at(i) = false;
7✔
118
                  }
119
               }
120
               for(size_t i = 0; i < bv.size(); ++i) {
22✔
121
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == !zeros.contains(i));
63✔
122
               }
123
            }),
1✔
124

125
      CHECK("flipping bits",
126
            [&](auto& result) {
1✔
127
               auto [bv, ones] = rnd_bitvector_with_rnd_pois(rng);
1✔
128

129
               for(size_t i = 0; i < bv.size(); ++i) {
27✔
130
                  if(std::find(ones.begin(), ones.end(), i) == ones.end()) {
52✔
131
                     bv.set(i);
26✔
132
                  }
133
                  bv.flip(i);
26✔
134
               }
135
               for(size_t i = 0; i < bv.size(); ++i) {
27✔
136
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == ones.contains(i));
78✔
137
               }
138
            }),
1✔
139

140
      CHECK("accessors validate offsets",
141
            [](auto& result) {
1✔
142
               Botan::bitvector bv(10);
1✔
143
               result.template test_throws<Botan::Invalid_Argument>(
2✔
144
                  ".at() const out of range", [&] { const_cast<const decltype(bv)&>(bv).at(10); });
2✔
145
               result.template test_throws<Botan::Invalid_Argument>(".at() out of range", [&] { bv.at(10); });
3✔
146
               result.template test_throws<Botan::Invalid_Argument>(".set() out of range", [&] { bv.set(10); });
3✔
147
               result.template test_throws<Botan::Invalid_Argument>(".unset() out of range", [&] { bv.unset(10); });
3✔
148
               result.template test_throws<Botan::Invalid_Argument>(".flip() out of range", [&] { bv.flip(10); });
4✔
149
            }),
1✔
150

151
      CHECK("multiblock handling",
152
            [](auto& result) {
1✔
153
               Botan::bitvector bv(128);
1✔
154
               result.test_eq("has more than 64 bits", bv.size(), 128);
2✔
155
               bv.set(1).set(63).set(64).set(127);
1✔
156
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
157
                  bool expected = (i == 1 || i == 63 || i == 64 || i == 127);
128✔
158
                  result.test_eq(Botan::fmt("bit {} in expected state", i), bv.at(i), expected);
256✔
159
               }
160
            }),
1✔
161

162
      CHECK("subscript operator",
163
            [](auto& result) {
1✔
164
               Botan::bitvector bv(128);
1✔
165
               bv[0].set();
1✔
166
               bv[1] = true;
1✔
167
               bv[2].flip();
1✔
168
               bv[64] = true;
1✔
169
               bv[80] = true;
1✔
170
               result.confirm("bit 0", bv[0]);
2✔
171
               result.confirm("bit 1", bv[1]);
2✔
172
               result.confirm("bit 2", bv[2]);
2✔
173
               result.confirm("bit 3", !bv[3]);
2✔
174
               result.confirm("bit 64", bv[64]);
2✔
175
               result.confirm("bit 80", bv[80]);
2✔
176
            }),
1✔
177

178
      CHECK("subscript operator does not validate offsets",
179
            [](auto& result) {
1✔
180
               Botan::bitvector bv(10);
1✔
181
               result.template test_throws<Botan::Invalid_Argument>(".at() out of range", [&] { bv.at(10); });
3✔
182
               // Technically the next line is undefined behaviour.
183
               // Though, the current implementation detail won't
184
               // cause issues, which might change!
185
               result.test_no_throw("subscript out of range", [&] { bv[10]; });
3✔
186
            }),
1✔
187

188
      CHECK("bitwise assignment modifiers",
189
            [](auto& result) {
1✔
190
               Botan::bitvector bv(4);
1✔
191

192
               result.require("precondition", !bv[0] && !bv[1]);
2✔
193
               bv[0] &= 1;  // NOLINT(*-use-bool-literals)
1✔
194
               result.confirm("bv[0] still 0", !bv[0]);
2✔
195
               bv[0].set();
1✔
196
               bv[0] &= 1;  // NOLINT(*-use-bool-literals)
1✔
197
               result.confirm("bv[0] still 1", bv[0]);
2✔
198
               bv[0] &= false;
1✔
199
               result.confirm("bv[0] now 0 again", !bv[0]);
2✔
200
               bv[0] &= !bv[1];
1✔
201
               result.confirm("bv[0] still 0 once more", !bv[0]);
2✔
202

203
               result.require("precondition 2", !bv[1] && !bv[2]);
2✔
204
               bv[1] |= 1;  // NOLINT(modernize-use-bool-literals)
1✔
205
               result.confirm("bv[1] is now 1", bv[1]);
2✔
206
               bv[1] |= 0;  // NOLINT(modernize-use-bool-literals)
1✔
207
               result.confirm("bv[1] is still 1", bv[1]);
2✔
208
               bv[1].unset();
1✔
209
               bv[1] |= false;
1✔
210
               result.confirm("bv[1] is 0", !bv[1]);
2✔
211
               bv[1] |= !bv[2];
1✔
212
               result.confirm("bv[1] is 1 again", bv[1]);
2✔
213

214
               result.require("precondition 3", !bv[2] && !bv[3]);
2✔
215
               bv[2] ^= 0;  // NOLINT(modernize-use-bool-literals)
1✔
216
               result.confirm("bv[2] is still 0", !bv[2]);
2✔
217
               bv[2] ^= true;
1✔
218
               result.confirm("bv[2] is now 1", bv[2]);
2✔
219
               bv[2] ^= !bv[3];
1✔
220
               result.confirm("bv[2] is 0 again", !bv[2]);
2✔
221
            }),
1✔
222
   };
11✔
223
}
1✔
224

225
std::vector<Test::Result> test_bitvector_capacity(Botan::RandomNumberGenerator& /*rng*/) {
1✔
226
   return {
1✔
227
      CHECK("default constructed bitvector",
228
            [](auto& result) {
1✔
229
               Botan::bitvector bv;
1✔
230
               result.confirm("empty", bv.empty());
2✔
231
               result.test_eq("no size", bv.size(), size_t(0));
2✔
232
               result.test_eq("no capacity", bv.capacity(), size_t(0));
3✔
233
            }),
1✔
234

235
      CHECK("allocated bitvector has capacity",
236
            [](auto& result) {
1✔
237
               Botan::bitvector bv(1);
1✔
238
               result.confirm("empty", !bv.empty());
2✔
239
               result.test_eq("small size", bv.size(), size_t(1));
2✔
240
               result.test_gte("a little capacity", bv.capacity(), size_t(8));
2✔
241
            }),
1✔
242

243
      CHECK("reserved bitvector has capacity",
244
            [](auto& result) {
1✔
245
               Botan::bitvector bv;
1✔
246
               result.test_eq("no size", bv.size(), size_t(0));
2✔
247
               result.test_eq("no capacity", bv.capacity(), size_t(0));
2✔
248

249
               bv.reserve(64);
1✔
250
               result.test_eq("no size", bv.size(), size_t(0));
2✔
251
               result.test_gte("no capacity", bv.capacity(), size_t(64));
2✔
252

253
               bv.reserve(128);
1✔
254
               result.test_eq("no size", bv.size(), size_t(0));
2✔
255
               result.test_gte("no capacity", bv.capacity(), size_t(128));
2✔
256
            }),
1✔
257

258
      CHECK("push_back() extends bitvector",
259
            [](Test::Result& result) {
1✔
260
               Botan::bitvector bv;
1✔
261
               result.confirm("empty", bv.empty());
2✔
262
               result.test_eq("no size", bv.size(), size_t(0));
1✔
263

264
               bv.push_back(true);
1✔
265
               bv.push_back(false);
1✔
266
               bv.push_back(true);
1✔
267
               bv.push_back(false);
1✔
268

269
               result.confirm("not empty", !bv.empty());
2✔
270
               result.test_eq("some size", bv.size(), size_t(4));
1✔
271
               result.test_gte("capacity is typically bigger than size", bv.capacity(), size_t(8));
1✔
272

273
               result.confirm("bit 0", bv.at(0));
2✔
274
               result.confirm("bit 1", !bv.at(1));
2✔
275
               result.confirm("bit 2", bv.at(2));
2✔
276
               result.confirm("bit 3", !bv.at(3));
2✔
277

278
               result.test_throws("bit 4 is not yet allocated", [&] { bv.at(4); });
4✔
279
            }),
1✔
280

281
      CHECK("pop_back() shortens bitvector",
282
            [](Test::Result& result) {
1✔
283
               Botan::bitvector bv;
1✔
284
               bv.push_back(true);
1✔
285
               bv.push_back(false);
1✔
286
               bv.push_back(true);
1✔
287
               bv.push_back(false);
1✔
288
               result.confirm("last is false", !bv.back());
2✔
289

290
               bv.pop_back();
1✔
291
               result.test_eq("size() == 3", bv.size(), 3);
1✔
292
               result.confirm("last is true", bv.back());
2✔
293

294
               bv.pop_back();
1✔
295
               result.test_eq("size() == 2", bv.size(), 2);
1✔
296
               result.confirm("last is false", !bv.back());
2✔
297

298
               bv.pop_back();
1✔
299
               result.test_eq("size() == 1", bv.size(), 1);
1✔
300
               result.confirm("last is true", bv.back());
2✔
301
               result.confirm("first is true", bv.front());
2✔
302

303
               bv.pop_back();
1✔
304
               result.confirm("empty", bv.empty());
2✔
305

306
               result.test_throws("bit 4 is not yet allocated", [&] { bv.at(4); });
4✔
307
            }),
1✔
308

309
      CHECK("resize()",
310
            [](auto& result) {
1✔
311
               Botan::bitvector bv(10);
1✔
312
               bv[0] = true;
1✔
313
               bv[5] = true;
1✔
314
               bv[9] = true;
1✔
315

316
               bv.resize(8);
1✔
317
               result.test_eq("size is reduced", bv.size(), size_t(8));
1✔
318

319
               for(size_t i = 0; i < bv.size(); ++i) {
9✔
320
                  const bool expected = (i == 0 || i == 5);
8✔
321
                  result.test_eq(Botan::fmt("{} is as expected", i), bv[i], expected);
16✔
322
               }
323

324
               bv.resize(0);
1✔
325
               result.confirm("resize(0) empties buffer", bv.empty());
2✔
326

327
               bv.resize(8);
1✔
328
               result.confirm("0 is false", !bv[0]);
2✔
329
               result.confirm("5 is false", !bv[5]);
2✔
330
            }),
1✔
331
   };
7✔
332
}
1✔
333

334
std::vector<Test::Result> test_bitvector_subvector(Botan::RandomNumberGenerator& /*rng*/) {
1✔
335
   auto make_bitpattern = [&]<typename T>(T& bitvector, size_t pattern_offset = 0) {
21✔
336
      auto next = pattern_generator<3>(pattern_offset);
20✔
337

338
      if constexpr(std::unsigned_integral<T>) {
339
         for(size_t i = 0; i < sizeof(T) * 8; ++i) {
316✔
340
            bitvector |= static_cast<T>(next()) << i;
304✔
341
         }
342
      } else {
343
         for(auto& i : bitvector) {
1,616✔
344
            i = next();
800✔
345
         }
346
      }
347
   };
8✔
348

349
   auto bitpattern_at = [&]<std::unsigned_integral T>(T /* ignored */, size_t pattern_offset) -> T {
13✔
350
      T bitvector = 0;
12✔
351
      make_bitpattern(bitvector, pattern_offset);
24✔
352
      return bitvector;
353
   };
1✔
354

355
   auto check_bitpattern = [&](auto& result, auto& bitvector, size_t offset = 0) {
44✔
356
      using bv_t = std::remove_cvref_t<decltype(bitvector)>;
357
      auto next = pattern_generator<3>(offset);
43✔
358

359
      if constexpr(std::unsigned_integral<bv_t>) {
360
         for(size_t i = 0; i < sizeof(bv_t) * 8; ++i) {
496✔
361
            result.confirm(Botan::fmt("{} is as expected", i), (bitvector & (bv_t(1) << i)) != 0, next());
960✔
362
         }
363
      } else {
364
         for(size_t i = 0; i < bitvector.size(); ++i) {
2,056✔
365
            result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], next());
4,058✔
366
         }
367
      }
368
   };
43✔
369

370
   auto check_bitpattern_with_zero_region = [&](auto& result, auto& bitvector, std::pair<size_t, size_t> zero_region) {
13✔
371
      auto next = pattern_generator<3>();
12✔
372
      for(size_t i = 0; i < bitvector.size(); ++i) {
1,212✔
373
         const bool i_in_range = (zero_region.first <= i && i < zero_region.second);
1,200✔
374
         const bool expected = next();
1,200✔
375
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], !i_in_range && expected);
2,400✔
376
      }
377
   };
12✔
378

379
   return {
1✔
380
      CHECK("range errors are caught",
381
            [&](auto& result) {
1✔
382
               Botan::bitvector bv(100);
1✔
383
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(0, 101); });
3✔
384
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(90, 11); });
3✔
385
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(100, 1); });
3✔
386
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(101, 0); });
4✔
387
            }),
1✔
388

389
      CHECK("empty copy is allowed",
390
            [&](auto& result) {
1✔
391
               Botan::bitvector bv1(100);
1✔
392
               auto bv2 = bv1.subvector(0, 0);
1✔
393
               result.test_eq("empty at 0", bv2.size(), size_t(0));
1✔
394
               auto bv3 = bv1.subvector(10, 0);
1✔
395
               result.test_eq("empty at 10", bv3.size(), size_t(0));
1✔
396
               auto bv4 = bv1.subvector(100, 0);
1✔
397
               result.test_eq("empty at 100", bv3.size(), size_t(0));
2✔
398
            }),
2✔
399

400
      CHECK("byte-aligned copy",
401
            [&](auto& result) {
1✔
402
               Botan::bitvector bv1(100);
1✔
403
               make_bitpattern(bv1);
1✔
404

405
               auto bv2 = bv1.subvector(16, 58);
1✔
406
               result.test_eq("size is as requested", bv2.size(), size_t(58));
1✔
407
               check_bitpattern(result, bv2, 16);
1✔
408

409
               auto bv3 = bv1.subvector(32);  // copy until the end
1✔
410
               result.test_eq("size is as expected", bv3.size(), size_t(68));
1✔
411
               check_bitpattern(result, bv3, 32);
1✔
412
            }),
3✔
413

414
      CHECK("byte-aligned 2",
415
            [&](auto& result) {
1✔
416
               Botan::bitvector bv1(100);
1✔
417
               make_bitpattern(bv1);
1✔
418

419
               auto bv2 = bv1.subvector(8, 91);
1✔
420
               result.test_eq("size is as expected", bv2.size(), size_t(91));
1✔
421
               check_bitpattern(result, bv2, 8);
1✔
422

423
               auto bv3 = bv1.subvector(16, 58);
1✔
424
               result.test_eq("size is as requested", bv3.size(), size_t(58));
1✔
425
               check_bitpattern(result, bv3, 16);
1✔
426

427
               auto bv4 = bv1.subvector(24);  // copy until the end
1✔
428
               result.test_eq("size is as expected", bv4.size(), size_t(100 - 24));
1✔
429
               check_bitpattern(result, bv4, 24);
1✔
430

431
               auto bv5 = bv1.subvector(32);  // copy until the end
1✔
432
               result.test_eq("size is as expected", bv5.size(), size_t(100 - 32));
1✔
433
               check_bitpattern(result, bv5, 32);
1✔
434

435
               auto bv6 = bv1.subvector(48, 51);  // copy until the end
1✔
436
               result.test_eq("size is as expected", bv6.size(), size_t(51));
1✔
437
               check_bitpattern(result, bv6, 48);
1✔
438
            }),
6✔
439

440
      CHECK("byte-aligned copy must zero-out unused bits",
441
            [&](auto& result) {
1✔
442
               Botan::bitvector bv1(100);
1✔
443
               make_bitpattern(bv1);
1✔
444

445
               auto bv2 = bv1.subvector(16, 17);
1✔
446
               result.test_eq("size is as requested", bv2.size(), size_t(17));
1✔
447
               check_bitpattern(result, bv2, 16);
1✔
448

449
               bv2.resize(32);
1✔
450
               for(size_t i = 17; i < bv2.size(); ++i) {
16✔
451
                  result.confirm("tail is zero", !bv2[i]);
30✔
452
               }
453
            }),
2✔
454

455
      CHECK("unaligned copy",
456
            [&](auto& result) {
1✔
457
               Botan::bitvector bv1(100);
1✔
458
               make_bitpattern(bv1);
1✔
459

460
               auto bv2 = bv1.subvector(19, 69);
1✔
461
               result.test_eq("size is as requested", bv2.size(), size_t(69));
1✔
462
               check_bitpattern(result, bv2, 19);
1✔
463

464
               auto bv3 = bv1.subvector(21);  // copy until the end
1✔
465
               result.test_eq("size is as expected", bv3.size(), size_t(79));
1✔
466
               check_bitpattern(result, bv3, 21);
1✔
467

468
               auto bv4 = bv1.subvector(1, 16);
1✔
469
               result.test_eq("size is as expected", bv4.size(), size_t(16));
1✔
470
               check_bitpattern(result, bv4, 1);
1✔
471

472
               auto bv5 = bv1.subvector(1, 32);
1✔
473
               result.test_eq("size is as expected", bv5.size(), size_t(32));
1✔
474
               check_bitpattern(result, bv5, 1);
1✔
475

476
               auto bv6 = bv5.subvector(1, 12);
1✔
477
               result.test_eq("size is as expected", bv6.size(), size_t(12));
1✔
478
               check_bitpattern(result, bv6, 1 + 1);
1✔
479

480
               auto bv7 = bv1.subvector(17, 67);
1✔
481
               result.test_eq("size is as expected", bv7.size(), size_t(67));
1✔
482
               check_bitpattern(result, bv7, 17);
1✔
483

484
               auto bv8 = bv1.subvector(33);  // copy until the end
1✔
485
               result.test_eq("size is as expected", bv8.size(), size_t(67));
1✔
486
               check_bitpattern(result, bv8, 33);
1✔
487
            }),
8✔
488

489
      CHECK("byte-aligned unsigned integer subvector",
490
            [&](auto& result) {
1✔
491
               Botan::bitvector bv1(100);
1✔
492
               make_bitpattern(bv1);
1✔
493

494
               const auto u8_0 = bv1.subvector<uint8_t>(0);
1✔
495
               const auto u8_32 = bv1.subvector<uint8_t>(32);
1✔
496
               check_bitpattern(result, u8_0, 0);
1✔
497
               check_bitpattern(result, u8_32, 32);
1✔
498

499
               const auto u16_0 = bv1.subvector<uint16_t>(0);
1✔
500
               const auto u16_56 = bv1.subvector<uint16_t>(56);
1✔
501
               check_bitpattern(result, u16_0, 0);
1✔
502
               check_bitpattern(result, u16_56, 56);
1✔
503

504
               const auto u32_0 = bv1.subvector<uint32_t>(0);
1✔
505
               const auto u32_48 = bv1.subvector<uint32_t>(48);
1✔
506
               check_bitpattern(result, u32_0, 0);
1✔
507
               check_bitpattern(result, u32_48, 48);
1✔
508

509
               const auto u64_0 = bv1.subvector<uint64_t>(0);
1✔
510
               const auto u64_32 = bv1.subvector<uint64_t>(32);
1✔
511
               check_bitpattern(result, u64_0, 0);
1✔
512
               check_bitpattern(result, u64_32, 32);
1✔
513

514
               result.test_throws("out of range (uint8_t)", [&] { bv1.subvector<uint8_t>(93); });
3✔
515
               result.test_throws("out of range (uint16_t)", [&] { bv1.subvector<uint16_t>(85); });
3✔
516
               result.test_throws("out of range (uint32_t)", [&] { bv1.subvector<uint32_t>(69); });
3✔
517
               result.test_throws("out of range (uint64_t)", [&] { bv1.subvector<uint64_t>(37); });
4✔
518
            }),
1✔
519

520
      CHECK("unaligned unsigned integer subvector",
521
            [&](Test::Result& result) {
1✔
522
               Botan::bitvector bv1(100);
1✔
523
               make_bitpattern(bv1);
1✔
524

525
               const auto u8_3 = bv1.subvector<uint8_t>(3);
1✔
526
               const auto u8_92 = bv1.subvector<uint8_t>(92);
1✔
527
               check_bitpattern(result, u8_3, 3);
1✔
528
               check_bitpattern(result, u8_92, 92);
1✔
529

530
               const auto u16_7 = bv1.subvector<uint16_t>(7);
1✔
531
               const auto u16_84 = bv1.subvector<uint16_t>(84);
1✔
532
               check_bitpattern(result, u16_7, 7);
1✔
533
               check_bitpattern(result, u16_84, 84);
1✔
534

535
               const auto u32_11 = bv1.subvector<uint32_t>(11);
1✔
536
               const auto u32_68 = bv1.subvector<uint32_t>(68);
1✔
537
               check_bitpattern(result, u32_11, 11);
1✔
538
               check_bitpattern(result, u32_68, 68);
1✔
539

540
               const auto u64_21 = bv1.subvector<uint64_t>(21);
1✔
541
               const auto u64_36 = bv1.subvector<uint64_t>(36);
1✔
542
               check_bitpattern(result, u64_21, 21);
1✔
543
               check_bitpattern(result, u64_36, 36);
1✔
544
            }),
1✔
545

546
      CHECK("byte-aligned unsigned integer subvector replacement",
547
            [&](auto& result) {
1✔
548
               Botan::bitvector bv1(100);
1✔
549
               make_bitpattern(bv1);
1✔
550

551
               bv1.subvector_replace(0, uint8_t(0));
1✔
552
               check_bitpattern_with_zero_region(result, bv1, {0, 8});
1✔
553
               bv1.subvector_replace(0, bitpattern_at(uint8_t(0), 0));
2✔
554
               check_bitpattern(result, bv1);
1✔
555

556
               bv1.subvector_replace(32, uint8_t(0));
1✔
557
               check_bitpattern_with_zero_region(result, bv1, {32, 32 + 8});
1✔
558
               bv1.subvector_replace(32, bitpattern_at(uint8_t(0), 32));
2✔
559
               check_bitpattern(result, bv1);
1✔
560

561
               bv1.subvector_replace(56, uint16_t(0));
1✔
562
               check_bitpattern_with_zero_region(result, bv1, {56, 56 + 16});
1✔
563
               bv1.subvector_replace(56, bitpattern_at(uint16_t(0), 56));
2✔
564
               check_bitpattern(result, bv1);
1✔
565

566
               bv1.subvector_replace(48, uint32_t(0));
1✔
567
               check_bitpattern_with_zero_region(result, bv1, {48, 48 + 32});
1✔
568
               bv1.subvector_replace(48, bitpattern_at(uint32_t(0), 48));
2✔
569
               check_bitpattern(result, bv1);
1✔
570

571
               bv1.subvector_replace(16, uint64_t(0));
1✔
572
               check_bitpattern_with_zero_region(result, bv1, {16, 16 + 64});
1✔
573
               bv1.subvector_replace(16, bitpattern_at(uint64_t(0), 16));
2✔
574
               check_bitpattern(result, bv1);
1✔
575

576
               result.test_throws("out of range (uint8_t)", [&] { bv1.subvector_replace<uint8_t>(93, 42); });
3✔
577
               result.test_throws("out of range (uint16_t)", [&] { bv1.subvector_replace<uint16_t>(85, 42); });
3✔
578
               result.test_throws("out of range (uint32_t)", [&] { bv1.subvector_replace<uint32_t>(69, 42); });
3✔
579
               result.test_throws("out of range (uint64_t)", [&] { bv1.subvector_replace<uint64_t>(37, 42); });
4✔
580
            }),
1✔
581

582
      CHECK("unaligned unsigned integer subvector replacement",
583
            [&](auto& result) {
1✔
584
               Botan::bitvector bv1(100);
1✔
585
               make_bitpattern(bv1);
1✔
586

587
               bv1.subvector_replace(3, uint8_t(0));
1✔
588
               check_bitpattern_with_zero_region(result, bv1, {3, 3 + 8});
1✔
589
               bv1.subvector_replace(3, bitpattern_at(uint8_t(0), 3));
2✔
590
               check_bitpattern(result, bv1);
1✔
591

592
               bv1.subvector_replace(92, uint8_t(0));
1✔
593
               check_bitpattern_with_zero_region(result, bv1, {92, 92 + 8});
1✔
594
               bv1.subvector_replace(92, bitpattern_at(uint8_t(0), 92));
2✔
595
               check_bitpattern(result, bv1);
1✔
596

597
               bv1.subvector_replace(7, uint16_t(0));
1✔
598
               check_bitpattern_with_zero_region(result, bv1, {7, 7 + 16});
1✔
599
               bv1.subvector_replace(7, bitpattern_at(uint16_t(0), 7));
2✔
600
               check_bitpattern(result, bv1);
1✔
601

602
               bv1.subvector_replace(84, uint16_t(0));
1✔
603
               check_bitpattern_with_zero_region(result, bv1, {84, 84 + 16});
1✔
604
               bv1.subvector_replace(84, bitpattern_at(uint16_t(0), 84));
2✔
605
               check_bitpattern(result, bv1);
1✔
606

607
               bv1.subvector_replace(11, uint32_t(0));
1✔
608
               check_bitpattern_with_zero_region(result, bv1, {11, 11 + 32});
1✔
609
               bv1.subvector_replace(11, bitpattern_at(uint32_t(0), 11));
2✔
610
               check_bitpattern(result, bv1);
1✔
611

612
               bv1.subvector_replace(68, uint32_t(0));
1✔
613
               check_bitpattern_with_zero_region(result, bv1, {68, 68 + 32});
1✔
614
               bv1.subvector_replace(68, bitpattern_at(uint32_t(0), 68));
2✔
615
               check_bitpattern(result, bv1);
1✔
616

617
               bv1.subvector_replace(21, uint64_t(0));
1✔
618
               check_bitpattern_with_zero_region(result, bv1, {21, 21 + 64});
1✔
619
               bv1.subvector_replace(21, bitpattern_at(uint64_t(0), 21));
2✔
620
               check_bitpattern(result, bv1);
1✔
621
            }),
1✔
622
   };
11✔
623
}
1✔
624

625
std::vector<Test::Result> test_bitvector_global_modifiers_and_predicates(Botan::RandomNumberGenerator& /*rng*/) {
1✔
626
   auto make_bitpattern = [](auto& bitvector) {
3✔
627
      auto next = pattern_generator<5>();
2✔
628
      for(auto& i : bitvector) {
400✔
629
         i = next();
198✔
630
      }
631
   };
2✔
632

633
   auto check_bitpattern = [](auto& result, auto& bitvector) {
2✔
634
      auto next = pattern_generator<5>();
1✔
635
      for(size_t i = 0; i < bitvector.size(); ++i) {
100✔
636
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], next());
198✔
637
      }
638
   };
1✔
639

640
   auto check_flipped_bitpattern = [](auto& result, auto& bitvector) {
2✔
641
      auto next = pattern_generator<5>();
1✔
642
      for(size_t i = 0; i < bitvector.size(); ++i) {
100✔
643
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], !next());
198✔
644
      }
645
   };
1✔
646

647
   return {
1✔
648
      CHECK("one bit",
649
            [](auto& result) {
1✔
650
               Botan::bitvector bv;
1✔
651
               bv.push_back(true);
1✔
652

653
               bv.flip();
1✔
654
               result.confirm("bit is flipped", !bv[0]);
2✔
655

656
               // check that unused bits aren't flipped
657
               bv.resize(8);
1✔
658
               for(auto&& b : bv) {
9✔
659
                  result.confirm("all bits are false", !b);
16✔
660
               }
661
               bv.resize(1);
1✔
662

663
               bv.flip();
1✔
664
               result.confirm("bit is flipped again", bv[0]);
2✔
665
            }),
1✔
666

667
      CHECK("bits in many blocks",
668
            [&](auto& result) {
1✔
669
               Botan::bitvector bv(99);
1✔
670

671
               make_bitpattern(bv);
1✔
672
               bv.flip();
1✔
673
               check_flipped_bitpattern(result, bv);
1✔
674

675
               bv = ~bv;
2✔
676
               check_bitpattern(result, bv);
1✔
677

678
               bv.resize(112);
1✔
679
               for(size_t i = 99; i < bv.size(); ++i) {
14✔
680
                  result.confirm("just-allocated bit is not set", !bv[i]);
26✔
681
               }
682
            }),
1✔
683

684
      CHECK("set and unset",
685
            [&](auto& result) {
1✔
686
               Botan::bitvector bv(99);
1✔
687

688
               make_bitpattern(bv);
1✔
689
               bv.set();
1✔
690
               bv.resize(128);
1✔
691
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
692
                  const bool expected = (i < 99);
128✔
693
                  result.test_eq("only set bits are set", bv[i], expected);
256✔
694
               }
695

696
               bv.unset();
1✔
697
               for(auto&& b : bv) {
130✔
698
                  result.confirm("bit is not set", !b);
256✔
699
               }
700
            }),
1✔
701

702
      CHECK("any, none and all",
703
            [&](auto& result) {
1✔
704
               Botan::bitvector bv(99);
1✔
705

706
               result.confirm("default construction yields all-zero", bv.none_vartime());
2✔
707
               result.confirm("default construction yields all-zero 2", !bv.any_vartime());
2✔
708
               result.confirm("default construction yields all-zero 3", !bv.all_vartime());
2✔
709
               result.confirm("default construction yields all-zero 4", bv.none());
2✔
710
               result.confirm("default construction yields all-zero 5", !bv.any());
2✔
711
               result.confirm("default construction yields all-zero 6", !bv.all());
2✔
712

713
               bv.set(42);
1✔
714
               result.confirm("setting a bit means there's a bit set", !bv.none_vartime());
2✔
715
               result.confirm("setting a bit means there's a bit set 2", bv.any_vartime());
2✔
716
               result.confirm("setting a bit means there's not all bits set", !bv.all_vartime());
2✔
717
               result.confirm("setting a bit means there's a bit set 3", !bv.none());
2✔
718
               result.confirm("setting a bit means there's a bit set 4", bv.any());
2✔
719
               result.confirm("setting a bit means there's not all bits set 2", !bv.all());
2✔
720

721
               bv.set();
1✔
722
               result.confirm("setting all bits means there's a bit set", !bv.none_vartime());
2✔
723
               result.confirm("setting all bits means there's a bit set 2", bv.any_vartime());
2✔
724
               result.confirm("setting all bits means all bits are set", bv.all_vartime());
2✔
725
               result.confirm("setting all bits means there's a bit set 3", !bv.none());
2✔
726
               result.confirm("setting all bits means there's a bit set 4", bv.any());
2✔
727
               result.confirm("setting all bits means all bits are set 2", bv.all());
2✔
728

729
               bv.unset(97);
1✔
730
               result.confirm("a single 0 at the end means that there's a bit set", !bv.none_vartime());
2✔
731
               result.confirm("a single 0 at the end means that there are bits set", bv.any_vartime());
2✔
732
               result.confirm("a single 0 at the end means that there are not all bits set", !bv.all_vartime());
2✔
733
               result.confirm("a single 0 at the end means that there's a bit set 2", !bv.none());
2✔
734
               result.confirm("a single 0 at the end means that there are bits set 2", bv.any());
2✔
735
               result.confirm("a single 0 at the end means that there are not all bits set 2", !bv.all());
2✔
736

737
               bv.unset();
1✔
738
               result.confirm("unsetting all bits means there's no bit set", bv.none_vartime());
2✔
739
               result.confirm("unsetting all bits means there's no bit set 2", !bv.any_vartime());
2✔
740
               result.confirm("unsetting all bits means there's not all bits set", !bv.all_vartime());
2✔
741
               result.confirm("unsetting all bits means there's no bit set 3", bv.none());
2✔
742
               result.confirm("unsetting all bits means there's no bit set 4", !bv.any());
2✔
743
               result.confirm("unsetting all bits means there's not all bits set 2", !bv.all());
2✔
744
            }),
1✔
745

746
      CHECK("hamming weight oddness",
747
            [](auto& result) {
1✔
748
               const auto evn = Botan::hex_decode("FE3410CB0278E4D26602");
1✔
749
               const auto odd = Botan::hex_decode("BB2418C2B4F288921203");
1✔
750

751
               result.confirm("odd hamming", Botan::bitvector(odd).has_odd_hamming_weight().as_bool());
3✔
752
               result.confirm("even hamming", !Botan::bitvector(evn).has_odd_hamming_weight().as_bool());
3✔
753
            }),
2✔
754

755
      CHECK("hamming weight",
756
            [](auto& result) {
1✔
757
               auto naive_count = [](auto& v) {
5✔
758
                  size_t weight = 0;
5✔
759
                  for(const auto& bit : v) {
440✔
760
                     weight += bit.template as<size_t>();
430✔
761
                  }
762
                  return weight;
5✔
763
               };
764

765
               // the last three bits of this bitvector are set, then there's a gap
766
               auto bv = Botan::bitvector(Botan::hex_decode("FE3410CB0278E4D26602E0"));
2✔
767
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(37));
1✔
768
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
769

770
               bv.pop_back();
1✔
771
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(36));
1✔
772
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
773

774
               bv.pop_back();
1✔
775
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(35));
1✔
776
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
777

778
               bv.pop_back();
1✔
779
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(34));
1✔
780
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
781

782
               bv.pop_back();
1✔
783
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(34));
1✔
784
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
785
            }),
1✔
786
   };
7✔
787
}
1✔
788

789
std::vector<Test::Result> test_bitvector_binary_operators(Botan::RandomNumberGenerator& /*rng*/) {
1✔
790
   auto check_set = [](auto& result, auto bits, std::vector<size_t> set_bits) {
13✔
791
      for(size_t i = 0; i < bits.size(); ++i) {
252✔
792
         const auto should_be_set = std::find(set_bits.begin(), set_bits.end(), i) != set_bits.end();
240✔
793
         result.test_eq(Botan::fmt("{} should {}be set", i, (!should_be_set ? "not " : "")), bits[i], should_be_set);
661✔
794
      }
795
   };
12✔
796

797
   auto is_secure_allocator = []<template <typename> typename AllocatorT>(auto& result,
7✔
798
                                                                          const Botan::bitvector_base<AllocatorT>&) {
799
      result.confirm("allocator is Botan::secure_allocator<>",
12✔
800
                     std::same_as<Botan::secure_allocator<uint8_t>, AllocatorT<uint8_t>>);
801
   };
6✔
802

803
   auto is_standard_allocator = []<template <typename> typename AllocatorT>(auto& result,
4✔
804
                                                                            const Botan::bitvector_base<AllocatorT>&) {
805
      result.confirm("allocator is std::allocator<>", std::same_as<std::allocator<uint8_t>, AllocatorT<uint8_t>>);
6✔
806
   };
3✔
807

808
   return {
1✔
809
      CHECK("bitwise_equals",
810
            [&](auto& result) {
1✔
811
               Botan::bitvector lhs(20);
1✔
812
               lhs.set(0).set(4).set(15).set(16).set(19);
1✔
813
               Botan::bitvector rhs(20);
1✔
814
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
815

816
               result.test_eq("Not equal bitvectors", lhs.equals_vartime(rhs), false);
1✔
817
               result.test_eq("Not equal bitvectors 2", lhs.equals(rhs), false);
2✔
818

819
               lhs.unset().set(13);
1✔
820
               rhs.unset().set(13);
1✔
821

822
               result.test_eq("equal bitvectors", lhs.equals_vartime(rhs), true);
1✔
823
               result.test_eq("equal bitvectors 2", lhs.equals(rhs), true);
2✔
824
            }),
2✔
825

826
      CHECK("bitwise OR",
827
            [&](auto& result) {
1✔
828
               Botan::bitvector lhs(20);
1✔
829
               lhs.set(0).set(4).set(15).set(16).set(19);
1✔
830
               Botan::bitvector rhs(20);
1✔
831
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
832
               Botan::bitvector unary(20);
1✔
833
               unary.set(8);
1✔
834

835
               Botan::bitvector res = lhs | rhs;
1✔
836
               check_set(result, res, {0, 1, 4, 15, 16, 17, 18, 19});
4✔
837

838
               res |= unary;
1✔
839
               check_set(result, res, {0, 1, 4, 8, 15, 16, 17, 18, 19});
3✔
840

841
               is_standard_allocator(result, res);
1✔
842
            }),
4✔
843

844
      CHECK("bitwise AND",
845
            [&](auto& result) {
1✔
846
               Botan::bitvector lhs(20);
1✔
847
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
848
               Botan::bitvector rhs(20);
1✔
849
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
850
               Botan::bitvector unary(20);
1✔
851
               unary.set(8).set(16);
1✔
852

853
               Botan::bitvector res = lhs & rhs;
1✔
854
               check_set(result, res, {4, 16, 18});
4✔
855

856
               res &= unary;
1✔
857
               check_set(result, res, {16});
3✔
858

859
               is_standard_allocator(result, res);
1✔
860
            }),
4✔
861

862
      CHECK("bitwise XOR",
863
            [&](auto& result) {
1✔
864
               Botan::bitvector lhs(20);
1✔
865
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
866
               Botan::bitvector rhs(20);
1✔
867
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
868
               Botan::bitvector unary(20);
1✔
869
               unary.set(8).set(16);
1✔
870

871
               Botan::bitvector res = lhs ^ rhs;
1✔
872
               check_set(result, res, {0, 1, 15, 17});
4✔
873

874
               res ^= unary;
1✔
875
               check_set(result, res, {0, 1, 8, 15, 16, 17});
3✔
876

877
               is_standard_allocator(result, res);
1✔
878
            }),
4✔
879

880
      CHECK("bitwise operators with heterogeneous allocators",
881
            [&](auto& result) {
1✔
882
               Botan::bitvector lhs(20);
1✔
883
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
884
               Botan::secure_bitvector rhs(20);
1✔
885
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
886
               Botan::bitvector unary(20);
1✔
887
               unary.set(8).set(16);
1✔
888

889
               auto res1 = lhs | rhs;
1✔
890
               is_secure_allocator(result, res1);
1✔
891
               check_set(result, res1, {0, 1, 4, 15, 16, 17, 18, 20});
3✔
892

893
               auto res2 = rhs | lhs;
1✔
894
               is_secure_allocator(result, res2);
1✔
895
               check_set(result, res2, {0, 1, 4, 15, 16, 17, 18, 20});
3✔
896

897
               auto res3 = lhs & rhs;
1✔
898
               is_secure_allocator(result, res3);
1✔
899
               check_set(result, res3, {4, 16, 18});
3✔
900

901
               auto res4 = rhs & lhs;
1✔
902
               is_secure_allocator(result, res4);
1✔
903
               check_set(result, res4, {4, 16, 18});
3✔
904

905
               auto res5 = lhs ^ rhs;
1✔
906
               is_secure_allocator(result, res5);
1✔
907
               check_set(result, res5, {0, 1, 15, 17});
3✔
908

909
               auto res6 = rhs ^ lhs;
1✔
910
               is_secure_allocator(result, res6);
1✔
911
               check_set(result, res6, {0, 1, 15, 17});
4✔
912
            }),
8✔
913
   };
6✔
914
}
1✔
915

916
std::vector<Test::Result> test_bitvector_serialization(Botan::RandomNumberGenerator& /*rng*/) {
1✔
917
   constexpr uint8_t outlen = 64;
1✔
918
   const auto bytearray = [] {
1✔
919
      std::array<uint8_t, outlen> out{};
920
      for(uint8_t i = 0; i < outlen; ++i) {
921
         out[i] = i;
922
      }
923
      return out;
924
   }();
925

926
   auto validate_bytewise = [](auto& result, const auto& bv, std::span<const uint8_t> bytes) {
3✔
927
      for(size_t i = 0; i < bytes.size(); ++i) {
129✔
928
         const uint8_t b = (static_cast<uint8_t>(bv[0 + i * 8]) << 0) | (static_cast<uint8_t>(bv[1 + i * 8]) << 1) |
127✔
929
                           (static_cast<uint8_t>(bv[2 + i * 8]) << 2) | (static_cast<uint8_t>(bv[3 + i * 8]) << 3) |
127✔
930
                           (static_cast<uint8_t>(bv[4 + i * 8]) << 4) | (static_cast<uint8_t>(bv[5 + i * 8]) << 5) |
127✔
931
                           (static_cast<uint8_t>(bv[6 + i * 8]) << 6) | (static_cast<uint8_t>(bv[7 + i * 8]) << 7);
127✔
932

933
         result.test_eq(Botan::fmt("byte {} is as expected", i), static_cast<size_t>(b), static_cast<size_t>(bytes[i]));
254✔
934
      }
935
   };
2✔
936

937
   return {
1✔
938
      CHECK("empty byte-array",
939
            [](auto& result) {
1✔
940
               std::vector<uint8_t> bytes;
1✔
941
               result.require("empty buffer", bytes.empty());
2✔
942

943
               Botan::bitvector bv(bytes);
1✔
944
               result.confirm("empty bit vector", bv.empty());
2✔
945

946
               auto rendered = bv.to_bytes();
1✔
947
               result.confirm("empty bit vector renders an empty buffer", rendered.empty());
2✔
948
            }),
1✔
949

950
      CHECK("to_bytes() uses secure_allocator if necessary",
951
            [](auto& result) {
1✔
952
               Botan::bitvector bv;
1✔
953
               Botan::secure_bitvector sbv;
1✔
954

955
               auto rbv = bv.to_bytes();
1✔
956
               auto rsbv = sbv.to_bytes();
1✔
957

958
               result.confirm("ordinary bitvector uses ordinary std::vector",
2✔
959
                              std::is_same_v<std::vector<uint8_t>, decltype(rbv)>);
960
               result.confirm("secure bitvector uses secure_vector",
2✔
961
                              std::is_same_v<Botan::secure_vector<uint8_t>, decltype(rsbv)>);
962
            }),
1✔
963

964
      CHECK("load all bits from byte-array (aligned data)",
965
            [&](auto& result) {
1✔
966
               Botan::bitvector bv(bytearray);
1✔
967
               validate_bytewise(result, bv, bytearray);
1✔
968

969
               const auto rbv = bv.to_bytes();
1✔
970
               result.confirm("uint8_t rendered correctly", std::ranges::equal(bytearray, rbv));
3✔
971
            }),
2✔
972

973
      CHECK("load all bits from byte-array (unaligned blocks)",
974
            [&](auto& result) {
1✔
975
               std::array<uint8_t, 63> unaligned_bytearray{};
1✔
976
               Botan::copy_mem(unaligned_bytearray, std::span{bytearray}.first<unaligned_bytearray.size()>());
1✔
977

978
               Botan::bitvector bv(unaligned_bytearray);
1✔
979
               validate_bytewise(result, bv, unaligned_bytearray);
1✔
980

981
               const auto rbv = bv.to_bytes();
1✔
982
               result.confirm("uint8_t rendered correctly", std::ranges::equal(unaligned_bytearray, rbv));
2✔
983
            }),
3✔
984

985
      CHECK("load bits from byte-array (unaligned data)",
986
            [&](auto& result) {
1✔
987
               constexpr size_t bits_to_load = 31;
1✔
988
               constexpr size_t bytes_to_load = Botan::ceil_tobytes(bits_to_load);
1✔
989

990
               Botan::bitvector bv(bytearray, bits_to_load);
1✔
991

992
               for(size_t i = 0; i < bits_to_load; ++i) {
32✔
993
                  const bool expected = (i == 8) || (i == 17) || (i == 24) || (i == 25);
31✔
994
                  result.test_eq(Botan::fmt("bit {} is correct", i), bv.at(i), expected);
62✔
995
               }
996

997
               const auto rbv = bv.to_bytes();
1✔
998
               std::array<uint8_t, bytes_to_load> expected_bytes{};
1✔
999
               Botan::copy_mem(expected_bytes, std::span{bytearray}.first<bytes_to_load>());
1✔
1000
               expected_bytes.back() &= (uint8_t(1) << (bits_to_load % 8)) - 1;
1✔
1001
               result.confirm("uint8_t rendered correctly", std::ranges::equal(expected_bytes, rbv));
2✔
1002
            }),
2✔
1003

1004
      CHECK("to_bytes(std::span) can handle non-zero out-memory",
1005
            [&](auto& result) {
1✔
1006
               constexpr size_t bits_to_load = 33;
1✔
1007
               constexpr size_t bytes_to_load = Botan::ceil_tobytes(bits_to_load);
1✔
1008

1009
               Botan::bitvector bv(bytearray, bits_to_load);
1✔
1010
               bv.set(32);
1✔
1011

1012
               std::array<uint8_t, bytes_to_load> out = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
1✔
1013
               bv.to_bytes(out);
1✔
1014

1015
               result.test_eq_sz("uint8_t rendered correctly", out[4], 0x01);
2✔
1016
            }),
1✔
1017
   };
7✔
1018
}
1✔
1019

1020
std::vector<Test::Result> test_bitvector_constant_time_operations(Botan::RandomNumberGenerator& /*rng*/) {
1✔
1021
   constexpr Botan::CT::Choice yes = Botan::CT::Choice::yes();
1✔
1022
   constexpr Botan::CT::Choice no = Botan::CT::Choice::no();
1✔
1023

1024
   return {
1✔
1025
      CHECK("conditional XOR, block aligned",
1026
            [&](auto& result) {
1✔
1027
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF"));
2✔
1028
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F"));
2✔
1029
               const auto initial_bv1 = bv1;
1✔
1030
               const auto xor_result = bv1 ^ bv2;
1✔
1031

1032
               bv1.ct_conditional_xor(no, bv2);
1✔
1033
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1034

1035
               bv1.ct_conditional_xor(yes, bv2);
1✔
1036
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1037
            }),
4✔
1038

1039
      CHECK("conditional XOR, byte aligned",
1040
            [&](auto& result) {
1✔
1041
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF42"));
2✔
1042
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F13"));
2✔
1043
               const auto initial_bv1 = bv1;
1✔
1044
               const auto xor_result = bv1 ^ bv2;
1✔
1045

1046
               bv1.ct_conditional_xor(no, bv2);
1✔
1047
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1048

1049
               bv1.ct_conditional_xor(yes, bv2);
1✔
1050
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1051
            }),
4✔
1052

1053
      CHECK("conditional XOR, no alignment",
1054
            [&](auto& result) {
1✔
1055
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF42"));
1✔
1056
               bv1.push_back(true);
1✔
1057
               bv1.push_back(false);
1✔
1058
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F13"));
1✔
1059
               bv2.push_back(false);
1✔
1060
               bv2.push_back(false);
1✔
1061

1062
               const auto initial_bv1 = bv1;
1✔
1063
               const auto xor_result = bv1 ^ bv2;
1✔
1064

1065
               bv1.ct_conditional_xor(no, bv2);
1✔
1066
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1067

1068
               bv1.ct_conditional_xor(yes, bv2);
1✔
1069
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1070
            }),
4✔
1071
   };
4✔
1072
}
1✔
1073

1074
std::vector<Test::Result> test_bitvector_conditional_xor_workload(Botan::RandomNumberGenerator& /*rng*/) {
1✔
1075
   Test::Result res("Conditional XOR, Gauss Workload");
1✔
1076

1077
   auto rng = Test::new_rng("Conditional XOR, Gauss Workload");
1✔
1078

1079
   const size_t matrix_rows = 1664;
1✔
1080
   const size_t matrix_columns = 8192;
1✔
1081

1082
   std::vector<Botan::bitvector> bitvec_vec;
1✔
1083
   bitvec_vec.reserve(matrix_rows);
1✔
1084
   for(size_t i = 0; i < matrix_rows; ++i) {
1,665✔
1085
      bitvec_vec.push_back(Botan::bitvector(rng->random_vec(matrix_columns / 8)));
4,992✔
1086
   }
1087

1088
   // Simulate #ops of Gaussian Elimination
1089
   const size_t total_iter = matrix_rows * (3 * matrix_rows - 1) / 2;
1✔
1090
   const auto start = Test::timestamp();
1✔
1091
   for(size_t i = 0; i < total_iter; ++i) {
4,152,513✔
1092
      const auto choice = Botan::CT::Choice::from_int(static_cast<uint8_t>(rng->next_byte() % 2));
4,152,512✔
1093
      bitvec_vec.at(i % matrix_rows).ct_conditional_xor(choice, bitvec_vec.at(rng->next_byte() % matrix_rows));
4,152,512✔
1094
   }
1095
   res.set_ns_consumed(Test::timestamp() - start);
1✔
1096

1097
   res.confirm("Prevent compiler from optimizing away",
3✔
1098
               bitvec_vec.at(0).any_vartime() || bitvec_vec.at(0).none_vartime());
1✔
1099
   return {res};
3✔
1100
}
3✔
1101

1102
std::vector<Test::Result> test_bitvector_iterators(Botan::RandomNumberGenerator& /*rng*/) {
1✔
1103
   return {
1✔
1104
      CHECK("Iterators: range-based for loop",
1105
            [](auto& result) {
1✔
1106
               Botan::bitvector bv(6);
1✔
1107
               bv.set(0).set(3).set(4);
1✔
1108

1109
               for(size_t i = 0; auto& ref : bv) {
8✔
1110
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1111
                  result.test_eq(Botan::fmt("bit {} is as expected", i), ref, expected);
6✔
1112
                  ++i;
6✔
1113
               }
1114

1115
               for(size_t i = 0; const auto& ref : bv) {
8✔
1116
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1117
                  result.test_eq(Botan::fmt("const bit {} is as expected", i), ref, expected);
6✔
1118
                  ++i;
6✔
1119
               }
1120

1121
               for(auto ref : bv) {
14✔
1122
                  ref = true;
6✔
1123
               }
1124

1125
               result.confirm("all bits are set", bv.all_vartime());
2✔
1126
            }),
1✔
1127

1128
      CHECK("Iterators: bare usage",
1129
            [](auto& result) {
1✔
1130
               Botan::bitvector bv(6);
1✔
1131
               bv.set(0).set(3).set(4);
1✔
1132

1133
               size_t i = 0;
1✔
1134
               for(auto itr = bv.begin(); itr != bv.end(); ++itr, ++i) {
7✔
1135
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1136
                  result.test_eq(Botan::fmt("bit {} is as expected", i), *itr, expected);
12✔
1137
               }
1138

1139
               i = 0;
1✔
1140
               for(auto itr = bv.cbegin(); itr != bv.cend(); itr++, ++i) {
7✔
1141
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1142
                  result.test_eq(Botan::fmt("const bit {} is as expected", i), itr->is_set(), expected);
12✔
1143
               }
1144

1145
               i = 6;
1✔
1146
               auto ritr = bv.end();
1✔
1147
               // NOLINTNEXTLINE(*-avoid-do-while)
1148
               do {
1149
                  --ritr;
6✔
1150
                  --i;
6✔
1151
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1152
                  result.test_eq(Botan::fmt("reverse bit {} is as expected", i), *ritr, expected);
6✔
1153
               } while(ritr != bv.begin());
11✔
1154

1155
               for(auto& itr : bv) {
8✔
1156
                  itr.flip();
6✔
1157
               }
1158

1159
               i = 0;
1✔
1160
               for(auto itr = bv.begin(); itr != bv.end(); ++itr, ++i) {
7✔
1161
                  const bool expected = i == 1 || i == 2 || i == 5;
6✔
1162
                  result.test_eq(Botan::fmt("flipped bit {} is as expected", i), *itr, expected);
12✔
1163
               }
1164
            }),
1✔
1165

1166
      CHECK("Iterators: std::distance and std::advance",
1167
            [](auto& result) {
1✔
1168
               Botan::bitvector bv(6);
1✔
1169
               using signed_size_t = std::make_signed_t<size_t>;
1170

1171
               result.test_is_eq("distance", std::distance(bv.begin(), bv.end()), signed_size_t(6));
2✔
1172
               result.test_is_eq("const distance", std::distance(bv.cbegin(), bv.cend()), signed_size_t(6));
3✔
1173

1174
               auto b = bv.begin();
1✔
1175
               std::advance(b, 3);
1✔
1176
               result.test_is_eq("half distance", std::distance(bv.begin(), b), signed_size_t(3));
3✔
1177
            }),
1✔
1178

1179
      CHECK("Iterators: large bitvector",
1180
            [](auto& result) {
1✔
1181
               Botan::bitvector bv(500);
1✔
1182

1183
               for(auto itr = bv.begin(); itr != bv.end(); ++itr) {
1,001✔
1184
                  if(std::distance(bv.begin(), itr) % 2 == 0) {
1,000✔
1185
                     itr->set();
250✔
1186
                  }
1187
                  if(std::distance(bv.begin(), itr) % 3 == 0) {
1,000✔
1188
                     *itr = true;
167✔
1189
                  }
1190
               }
1191

1192
               for(size_t i = 0; const auto& bit : bv) {
502✔
1193
                  const bool expected = (i % 2 == 0) || (i % 3 == 0);
500✔
1194
                  result.test_eq(Botan::fmt("bit {} is as expected", i), bit, expected);
500✔
1195
                  ++i;
500✔
1196
               }
1197
            }),
1✔
1198

1199
      CHECK("Iterators: satiesfies C++20 concepts",
1200
            [](auto& result) {
1✔
1201
               Botan::secure_bitvector bv(42);
1✔
1202
               auto ro_itr = bv.cbegin();
1✔
1203
               auto rw_itr = bv.begin();
1✔
1204

1205
               using ro = decltype(ro_itr);
1206
               using rw = decltype(rw_itr);
1207

1208
               result.confirm("ro input iterator", std::input_iterator<ro>);
2✔
1209
               result.confirm("rw input iterator", std::input_iterator<rw>);
2✔
1210
               result.confirm("ro is not an output iterator", !std::output_iterator<ro, bool>);
2✔
1211
               result.confirm("rw output iterator", std::output_iterator<rw, bool>);
2✔
1212
               result.confirm("ro bidirectional iterator", std::bidirectional_iterator<ro>);
2✔
1213
               result.confirm("rw bidirectional iterator", std::bidirectional_iterator<rw>);
2✔
1214
               result.confirm("ro not a contiguous iterator", !std::contiguous_iterator<ro>);
2✔
1215
               result.confirm("rw not a contiguous iterator", !std::contiguous_iterator<rw>);
2✔
1216
            }),
1✔
1217
   };
6✔
1218
}
1✔
1219

1220
using TestBitvector = Botan::Strong<Botan::bitvector, struct TestBitvector_>;
1221
using TestSecureBitvector = Botan::Strong<Botan::secure_bitvector, struct TestBitvector_>;
1222
using TestUInt32 = Botan::Strong<uint32_t, struct TestUInt32_>;
1223

1224
std::vector<Test::Result> test_bitvector_strongtype_adapter(Botan::RandomNumberGenerator& /*rng*/) {
1✔
1225
   Test::Result result("Bitvector in strong type");
1✔
1226

1227
   TestBitvector bv1(33);
1✔
1228

1229
   result.confirm("bv1 is not empty", !bv1.empty());
2✔
1230
   result.test_eq("bv1 has size 33", bv1.size(), size_t(33));
1✔
1231

1232
   bv1[0] = true;
1✔
1233
   bv1.at(1) = true;
1✔
1234
   bv1.set(2);
2✔
1235
   bv1.unset(3);
2✔
1236
   bv1.flip(4);
2✔
1237
   bv1.push_back(true);
1✔
1238
   bv1.push_back(false);
1✔
1239
   bv1.pop_back();
1✔
1240

1241
   result.confirm("bv1 front is set", bv1.front());
2✔
1242
   result.confirm("bv1 back is set", bv1.back());
2✔
1243
   result.confirm("bv1 has some one bits", bv1.any_vartime());
2✔
1244
   result.confirm("bv1 is not all zero", !bv1.none_vartime());
2✔
1245
   result.confirm("bv1 is not all one", !bv1.all_vartime());
2✔
1246

1247
   result.confirm("hamming weight of bv1", bv1.has_odd_hamming_weight().as_bool());
2✔
1248

1249
   for(size_t i = 0; auto bit : bv1) {
36✔
1250
      const bool expected = (i == 0 || i == 1 || i == 2 || i == 4 || i == 33);
34✔
1251
      result.confirm(Botan::fmt("bv1 bit {} is set", i), bit == expected);
68✔
1252
      ++i;
34✔
1253
   }
1254

1255
   bv1.flip();
2✔
1256

1257
   for(size_t i = 0; auto bit : bv1) {
36✔
1258
      const bool expected = (i == 0 || i == 1 || i == 2 || i == 4 || i == 33);
34✔
1259
      result.confirm(Botan::fmt("bv1 bit {} is set", i), bit != expected);
68✔
1260
      ++i;
34✔
1261
   }
1262

1263
   auto bv2 = bv1.as<TestSecureBitvector>();
1✔
1264

1265
   auto bv3 = bv1 | bv2;
1✔
1266
   result.confirm("bv3 is a secure_bitvector", std::same_as<Botan::secure_bitvector, decltype(bv3)>);
2✔
1267

1268
   auto bv4 = bv2.subvector<TestSecureBitvector>(0, 5);
1✔
1269
   result.confirm("bv4 is a TestSecureBitvector", std::same_as<TestSecureBitvector, decltype(bv4)>);
2✔
1270

1271
   auto bv5 = bv2.subvector<TestUInt32>(1);
1✔
1272
   result.confirm("bv5 is a TestUInt32", std::same_as<TestUInt32, decltype(bv5)>);
2✔
1273
   result.test_is_eq<TestUInt32::wrapped_type>("bv5 has expected value", bv5.get(), 0xFFFFFFF4);
1✔
1274

1275
   const auto str = bv4.to_string();
1✔
1276
   result.test_eq("bv4 to_string", str, "00010");
2✔
1277

1278
   return {result};
3✔
1279
}
6✔
1280

1281
}  // namespace
1282

1283
class BitVector_Tests final : public Test {
×
1284
   public:
1285
      std::vector<Test::Result> run() override {
1✔
1286
         std::vector<Test::Result> results;
1✔
1287
         auto& rng = Test::rng();
1✔
1288

1289
         std::vector<std::function<std::vector<Test::Result>(Botan::RandomNumberGenerator&)>> funcs{
1✔
1290
            test_bitvector_bitwise_accessors,
1291
            test_bitvector_capacity,
1292
            test_bitvector_subvector,
1293
            test_bitvector_global_modifiers_and_predicates,
1294
            test_bitvector_binary_operators,
1295
            test_bitvector_serialization,
1296
            test_bitvector_constant_time_operations,
1297
            test_bitvector_conditional_xor_workload,
1298
            test_bitvector_iterators,
1299
            test_bitvector_strongtype_adapter,
1300
         };
11✔
1301

1302
         for(const auto& test_func : funcs) {
11✔
1303
            auto fn_results = test_func(rng);
10✔
1304
            results.insert(results.end(), fn_results.begin(), fn_results.end());
10✔
1305
         }
10✔
1306

1307
         return results;
1✔
1308
      }
2✔
1309
};
1310

1311
BOTAN_REGISTER_TEST("utils", "bitvector", BitVector_Tests);
1312

1313
#endif
1314

1315
}  // namespace Botan_Tests
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc