• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

python-control / python-control / 16081041622

04 Jul 2025 09:18PM UTC coverage: 94.733% (-0.01%) from 94.745%
16081041622

push

github

web-flow
Merge pull request #1155 from murrayrm/fix_nyquist_rescaling-24Mar2025

Update Nyquist rescaling + other improvements

9946 of 10499 relevant lines covered (94.73%)

8.28 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

94.91
control/freqplot.py
1
# freqplot.py - frequency domain plots for control systems
2
#
3
# Initial author: Richard M. Murray
4
# Creation date: 24 May 2009
5

6
"""Frequency domain plots for control systems.
7

8
This module contains some standard control system plots: Bode plots,
9
Nyquist plots and other frequency response plots.  The code for
10
Nichols charts is in nichols.py.  The code for pole-zero diagrams is
11
in pzmap.py and rlocus.py.
12

13
"""
14

15
import itertools
9✔
16
import math
9✔
17
import warnings
9✔
18

19
import matplotlib as mpl
9✔
20
import matplotlib.pyplot as plt
9✔
21
import numpy as np
9✔
22

23
from . import config
9✔
24
from .bdalg import feedback
9✔
25
from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _find_axes_center, \
9✔
26
    _get_color, _get_color_offset, _get_line_labels, _make_legend_labels, \
27
    _process_ax_keyword, _process_legend_keywords, _process_line_labels, \
28
    _update_plot_title
29
from .ctrlutil import unwrap
9✔
30
from .exception import ControlMIMONotImplemented
9✔
31
from .frdata import FrequencyResponseData
9✔
32
from .lti import LTI, _process_frequency_response, frequency_response
9✔
33
from .margins import stability_margins
9✔
34
from .statesp import StateSpace
9✔
35
from .xferfcn import TransferFunction
9✔
36

37
__all__ = ['bode_plot', 'NyquistResponseData', 'nyquist_response',
9✔
38
           'nyquist_plot', 'singular_values_response',
39
           'singular_values_plot', 'gangof4_plot', 'gangof4_response',
40
           'bode', 'nyquist', 'gangof4', 'FrequencyResponseList',
41
           'NyquistResponseList']
42

43
# Default values for module parameter variables
44
_freqplot_defaults = {
9✔
45
    'freqplot.feature_periphery_decades': 1,
46
    'freqplot.number_of_samples': 1000,
47
    'freqplot.dB': False,  # Plot gain in dB
48
    'freqplot.deg': True,  # Plot phase in degrees
49
    'freqplot.Hz': False,  # Plot frequency in Hertz
50
    'freqplot.grid': True,  # Turn on grid for gain and phase
51
    'freqplot.wrap_phase': False,  # Wrap the phase plot at a given value
52
    'freqplot.freq_label': "Frequency [{units}]",
53
    'freqplot.magnitude_label': "Magnitude",
54
    'freqplot.share_magnitude': 'row',
55
    'freqplot.share_phase': 'row',
56
    'freqplot.share_frequency': 'col',
57
    'freqplot.title_frame': 'axes',
58
}
59

60
#
61
# Frequency response data list class
62
#
63
# This class is a subclass of list that adds a plot() method, enabling
64
# direct plotting from routines returning a list of FrequencyResponseData
65
# objects.
66
#
67

68
class FrequencyResponseList(list):
9✔
69
    """List of FrequencyResponseData objects with plotting capability.
70

71
    This class consists of a list of `FrequencyResponseData` objects.
72
    It is a subclass of the Python `list` class, with a `plot` method that
73
    plots the individual `FrequencyResponseData` objects.
74

75
    """
76
    def plot(self, *args, plot_type=None, **kwargs):
9✔
77
        """Plot a list of frequency responses.
78

79
        See `FrequencyResponseData.plot` for details.
80

81
        """
82
        if plot_type == None:
9✔
83
            for response in self:
9✔
84
                if plot_type is not None and response.plot_type != plot_type:
9✔
85
                    raise TypeError(
×
86
                        "inconsistent plot_types in data; set plot_type "
87
                        "to 'bode', 'nichols', or 'svplot'")
88
                plot_type = response.plot_type
9✔
89

90
        # Use FRD plot method, which can handle lists via plot functions
91
        return FrequencyResponseData.plot(
9✔
92
            self, plot_type=plot_type, *args, **kwargs)
93

94
#
95
# Bode plot
96
#
97
# This is the default method for plotting frequency responses.  There are
98
# lots of options available for tuning the format of the plot, (hopefully)
99
# covering most of the common use cases.
100
#
101

102
def bode_plot(
9✔
103
        data, omega=None, *fmt, ax=None, omega_limits=None, omega_num=None,
104
        plot=None, plot_magnitude=True, plot_phase=None,
105
        overlay_outputs=None, overlay_inputs=None, phase_label=None,
106
        magnitude_label=None, label=None, display_margins=None,
107
        margins_method='best', title=None, sharex=None, sharey=None, **kwargs):
108
    """Bode plot for a system.
109

110
    Plot the magnitude and phase of the frequency response over a
111
    (optional) frequency range.
112

113
    Parameters
114
    ----------
115
    data : list of `FrequencyResponseData` or `LTI`
116
        List of LTI systems or `FrequencyResponseData` objects.  A
117
        single system or frequency response can also be passed.
118
    omega : array_like, optional
119
        Set of frequencies in rad/sec to plot over.  If not specified, this
120
        will be determined from the properties of the systems.  Ignored if
121
        `data` is not a list of systems.
122
    *fmt : `matplotlib.pyplot.plot` format string, optional
123
        Passed to `matplotlib` as the format string for all lines in the plot.
124
        The `omega` parameter must be present (use omega=None if needed).
125
    dB : bool
126
        If True, plot result in dB.  Default is False.
127
    Hz : bool
128
        If True, plot frequency in Hz (omega must be provided in rad/sec).
129
        Default value (False) set by `config.defaults['freqplot.Hz']`.
130
    deg : bool
131
        If True, plot phase in degrees (else radians).  Default
132
        value (True) set by `config.defaults['freqplot.deg']`.
133
    display_margins : bool or str
134
        If True, draw gain and phase margin lines on the magnitude and phase
135
        graphs and display the margins at the top of the graph.  If set to
136
        'overlay', the values for the gain and phase margin are placed on
137
        the graph.  Setting `display_margins` turns off the axes grid, unless
138
        `grid` is explicitly set to True.
139
    **kwargs : `matplotlib.pyplot.plot` keyword properties, optional
140
        Additional keywords passed to `matplotlib` to specify line properties.
141

142
    Returns
143
    -------
144
    cplt : `ControlPlot` object
145
        Object containing the data that were plotted.  See `ControlPlot`
146
        for more detailed information.
147
    cplt.lines : Array of `matplotlib.lines.Line2D` objects
148
        Array containing information on each line in the plot.  The shape
149
        of the array matches the subplots shape and the value of the array
150
        is a list of Line2D objects in that subplot.
151
    cplt.axes : 2D ndarray of `matplotlib.axes.Axes`
152
        Axes for each subplot.
153
    cplt.figure : `matplotlib.figure.Figure`
154
        Figure containing the plot.
155
    cplt.legend : 2D array of `matplotlib.legend.Legend`
156
        Legend object(s) contained in the plot.
157

158
    Other Parameters
159
    ----------------
160
    ax : array of `matplotlib.axes.Axes`, optional
161
        The matplotlib axes to draw the figure on.  If not specified, the
162
        axes for the current figure are used or, if there is no current
163
        figure with the correct number and shape of axes, a new figure is
164
        created.  The shape of the array must match the shape of the
165
        plotted data.
166
    freq_label, magnitude_label, phase_label : str, optional
167
        Labels to use for the frequency, magnitude, and phase axes.
168
        Defaults are set by `config.defaults['freqplot.<keyword>']`.
169
    grid : bool, optional
170
        If True, plot grid lines on gain and phase plots.  Default is set by
171
        `config.defaults['freqplot.grid']`.
172
    initial_phase : float, optional
173
        Set the reference phase to use for the lowest frequency.  If set, the
174
        initial phase of the Bode plot will be set to the value closest to the
175
        value specified.  Units are in either degrees or radians, depending on
176
        the `deg` parameter. Default is -180 if wrap_phase is False, 0 if
177
        wrap_phase is True.
178
    label : str or array_like of str, optional
179
        If present, replace automatically generated label(s) with the given
180
        label(s).  If sysdata is a list, strings should be specified for each
181
        system.  If MIMO, strings required for each system, output, and input.
182
    legend_map : array of str, optional
183
        Location of the legend for multi-axes plots.  Specifies an array
184
        of legend location strings matching the shape of the subplots, with
185
        each entry being either None (for no legend) or a legend location
186
        string (see `~matplotlib.pyplot.legend`).
187
    legend_loc : int or str, optional
188
        Include a legend in the given location. Default is 'center right',
189
        with no legend for a single response.  Use False to suppress legend.
190
    margins_method : str, optional
191
        Method to use in computing margins (see `stability_margins`).
192
    omega_limits : array_like of two values
193
        Set limits for plotted frequency range. If Hz=True the limits are
194
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
195
        elements is equivalent to providing `omega_limits`. Ignored if
196
        data is not a list of systems.
197
    omega_num : int
198
        Number of samples to use for the frequency range.  Defaults to
199
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
200
        not a list of systems.
201
    overlay_inputs, overlay_outputs : bool, optional
202
        If set to True, combine input and/or output signals onto a single
203
        plot and use line colors, labels, and a legend to distinguish them.
204
    plot : bool, optional
205
        (legacy) If given, `bode_plot` returns the legacy return values
206
        of magnitude, phase, and frequency.  If False, just return the
207
        values with no plot.
208
    plot_magnitude, plot_phase : bool, optional
209
        If set to False, do not plot the magnitude or phase, respectively.
210
    rcParams : dict
211
        Override the default parameters used for generating plots.
212
        Default is set by `config.defaults['ctrlplot.rcParams']`.
213
    share_frequency, share_magnitude, share_phase : str or bool, optional
214
        Determine whether and how axis limits are shared between the
215
        indicated variables.  Can be set set to 'row' to share across all
216
        subplots in a row, 'col' to set across all subplots in a column, or
217
        False to allow independent limits.  Note: if `sharex` is given,
218
        it sets the value of `share_frequency`; if `sharey` is given, it
219
        sets the value of both `share_magnitude` and `share_phase`.
220
        Default values are 'row' for `share_magnitude` and `share_phase`,
221
        'col', for `share_frequency`, and can be set using
222
        `config.defaults['freqplot.share_<axis>']`.
223
    show_legend : bool, optional
224
        Force legend to be shown if True or hidden if False.  If
225
        None, then show legend when there is more than one line on an
226
        axis or `legend_loc` or `legend_map` has been specified.
227
    title : str, optional
228
        Set the title of the plot.  Defaults to plot type and system name(s).
229
    title_frame : str, optional
230
        Set the frame of reference used to center the plot title. If set to
231
        'axes' (default), the horizontal position of the title will be
232
        centered relative to the axes.  If set to 'figure', it will be
233
        centered with respect to the figure (faster execution).  The default
234
        value can be set using `config.defaults['freqplot.title_frame']`.
235
    wrap_phase : bool or float
236
        If wrap_phase is False (default), then the phase will be unwrapped
237
        so that it is continuously increasing or decreasing.  If wrap_phase is
238
        True the phase will be restricted to the range [-180, 180) (or
239
        [:math:`-\\pi`, :math:`\\pi`) radians). If `wrap_phase` is specified
240
        as a float, the phase will be offset by 360 degrees if it falls below
241
        the specified value. Default value is False and can be set using
242
        `config.defaults['freqplot.wrap_phase']`.
243

244
    See Also
245
    --------
246
    frequency_response
247

248
    Notes
249
    -----
250
    Starting with python-control version 0.10, `bode_plot` returns a
251
    `ControlPlot` object instead of magnitude, phase, and
252
    frequency. To recover the old behavior, call `bode_plot` with
253
    `plot` = True, which will force the legacy values (mag, phase, omega) to
254
    be returned (with a warning).  To obtain just the frequency response of
255
    a system (or list of systems) without plotting, use the
256
    `frequency_response` command.
257

258
    If a discrete-time model is given, the frequency response is plotted
259
    along the upper branch of the unit circle, using the mapping ``z =
260
    exp(1j * omega * dt)`` where `omega` ranges from 0 to pi/`dt` and `dt`
261
    is the discrete timebase.  If timebase not specified (`dt` = True),
262
    `dt` is set to 1.
263

264
    The default values for Bode plot configuration parameters can be reset
265
    using the `config.defaults` dictionary, with module name 'bode'.
266

267
    Examples
268
    --------
269
    >>> G = ct.ss([[-1, -2], [3, -4]], [[5], [7]], [[6, 8]], [[9]])
270
    >>> out = ct.bode_plot(G)
271

272
    """
273
    #
274
    # Process keywords and set defaults
275
    #
276

277
    # Make a copy of the kwargs dictionary since we will modify it
278
    kwargs = dict(kwargs)
9✔
279

280
    # Legacy keywords for margins
281
    display_margins = config._process_legacy_keyword(
9✔
282
        kwargs, 'margins', 'display_margins', display_margins)
283
    if kwargs.pop('margin_info', False):
9✔
284
        warnings.warn(
×
285
            "keyword 'margin_info' is deprecated; "
286
            "use 'display_margins='overlay'")
287
        if display_margins is False:
×
288
            raise ValueError(
×
289
                "conflicting_keywords: `display_margins` and `margin_info`")
290

291
    # Turn off grid if display margins, unless explicitly overridden
292
    if display_margins and 'grid' not in kwargs:
9✔
293
        kwargs['grid'] = False
9✔
294

295
    margins_method = config._process_legacy_keyword(
9✔
296
        kwargs, 'method', 'margins_method', margins_method)
297

298
    # Get values for params (and pop from list to allow keyword use in plot)
299
    dB = config._get_param(
9✔
300
        'freqplot', 'dB', kwargs, _freqplot_defaults, pop=True)
301
    deg = config._get_param(
9✔
302
        'freqplot', 'deg', kwargs, _freqplot_defaults, pop=True)
303
    Hz = config._get_param(
9✔
304
        'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True)
305
    grid = config._get_param(
9✔
306
        'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True)
307
    wrap_phase = config._get_param(
9✔
308
        'freqplot', 'wrap_phase', kwargs, _freqplot_defaults, pop=True)
309
    initial_phase = config._get_param(
9✔
310
        'freqplot', 'initial_phase', kwargs, None, pop=True)
311
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
312
    title_frame = config._get_param(
9✔
313
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
314

315
    # Set the default labels
316
    freq_label = config._get_param(
9✔
317
        'freqplot', 'freq_label', kwargs, _freqplot_defaults, pop=True)
318
    if magnitude_label is None:
9✔
319
        magnitude_label = config._get_param(
9✔
320
            'freqplot', 'magnitude_label', kwargs,
321
            _freqplot_defaults, pop=True) + (" [dB]" if dB else "")
322
    if phase_label is None:
9✔
323
        phase_label = "Phase [deg]" if deg else "Phase [rad]"
9✔
324

325
    # Use sharex and sharey as proxies for share_{magnitude, phase, frequency}
326
    if sharey is not None:
9✔
327
        if 'share_magnitude' in kwargs or 'share_phase' in kwargs:
9✔
328
            ValueError(
×
329
                "sharey cannot be present with share_magnitude/share_phase")
330
        kwargs['share_magnitude'] = sharey
9✔
331
        kwargs['share_phase'] = sharey
9✔
332
    if sharex is not None:
9✔
333
        if 'share_frequency' in kwargs:
9✔
334
            ValueError(
×
335
                "sharex cannot be present with share_frequency")
336
        kwargs['share_frequency'] = sharex
9✔
337

338
    if not isinstance(data, (list, tuple)):
9✔
339
        data = [data]
9✔
340

341
    #
342
    # Pre-process the data to be plotted (unwrap phase, limit frequencies)
343
    #
344
    # To maintain compatibility with legacy uses of bode_plot(), we do some
345
    # initial processing on the data, specifically phase unwrapping and
346
    # setting the initial value of the phase.  If bode_plot is called with
347
    # plot == False, then these values are returned to the user (instead of
348
    # the list of lines created, which is the new output for _plot functions.
349
    #
350

351
    # If we were passed a list of systems, convert to data
352
    if any([isinstance(
9✔
353
            sys, (StateSpace, TransferFunction)) for sys in data]):
354
        data = frequency_response(
9✔
355
            data, omega=omega, omega_limits=omega_limits,
356
            omega_num=omega_num, Hz=Hz)
357
    else:
358
        # Generate warnings if frequency keywords were given
359
        if omega_num is not None:
9✔
360
            warnings.warn("`omega_num` ignored when passed response data")
9✔
361
        elif omega is not None:
9✔
362
            warnings.warn("`omega` ignored when passed response data")
9✔
363

364
        # Check to make sure omega_limits is sensible
365
        if omega_limits is not None and \
9✔
366
           (len(omega_limits) != 2 or omega_limits[1] <= omega_limits[0]):
367
            raise ValueError(f"invalid limits: {omega_limits=}")
9✔
368

369
    # If plot_phase is not specified, check the data first, otherwise true
370
    if plot_phase is None:
9✔
371
        plot_phase = True if data[0].plot_phase is None else data[0].plot_phase
9✔
372

373
    if not plot_magnitude and not plot_phase:
9✔
374
        raise ValueError(
9✔
375
            "plot_magnitude and plot_phase both False; no data to plot")
376

377
    mag_data, phase_data, omega_data = [], [], []
9✔
378
    for response in data:
9✔
379
        noutputs, ninputs = response.noutputs, response.ninputs
9✔
380

381
        if initial_phase is None:
9✔
382
            # Start phase in the range 0 to -360 w/ initial phase = 0
383
            # TODO: change this to 0 to 270 (?)
384
            # If wrap_phase is true, use 0 instead (phase \in (-pi, pi])
385
            initial_phase_value = -math.pi if wrap_phase is not True else 0
9✔
386
        elif isinstance(initial_phase, (int, float)):
9✔
387
            # Allow the user to override the default calculation
388
            if deg:
9✔
389
                initial_phase_value = initial_phase/180. * math.pi
9✔
390
            else:
391
                initial_phase_value = initial_phase
9✔
392
        else:
393
            raise ValueError("initial_phase must be a number.")
×
394

395
        # Shift and wrap the phase
396
        phase = np.angle(response.frdata)               # 3D array
9✔
397
        for i, j in itertools.product(range(noutputs), range(ninputs)):
9✔
398
            # Shift the phase if needed
399
            if abs(phase[i, j, 0] - initial_phase_value) > math.pi:
9✔
400
                phase[i, j] -= 2*math.pi * round(
9✔
401
                    (phase[i, j, 0] - initial_phase_value) / (2*math.pi))
402

403
            # Phase wrapping
404
            if wrap_phase is False:
9✔
405
                phase[i, j] = unwrap(phase[i, j]) # unwrap the phase
9✔
406
            elif wrap_phase is True:
9✔
407
                pass                                    # default calc OK
9✔
408
            elif isinstance(wrap_phase, (int, float)):
9✔
409
                phase[i, j] = unwrap(phase[i, j]) # unwrap phase first
9✔
410
                if deg:
9✔
411
                    wrap_phase *= math.pi/180.
9✔
412

413
                # Shift the phase if it is below the wrap_phase
414
                phase[i, j] += 2*math.pi * np.maximum(
9✔
415
                    0, np.ceil((wrap_phase - phase[i, j])/(2*math.pi)))
416
            else:
417
                raise ValueError("wrap_phase must be bool or float.")
×
418

419
        # Save the data for later use
420
        mag_data.append(np.abs(response.frdata))
9✔
421
        phase_data.append(phase)
9✔
422
        omega_data.append(response.omega)
9✔
423

424
    #
425
    # Process `plot` keyword
426
    #
427
    # We use the `plot` keyword to track legacy usage of `bode_plot`.
428
    # Prior to v0.10, the `bode_plot` command returned mag, phase, and
429
    # omega.  Post v0.10, we return an array with the same shape as the
430
    # axes we use for plotting, with each array element containing a list
431
    # of lines drawn on that axes.
432
    #
433
    # There are three possibilities at this stage in the code:
434
    #
435
    # * plot == True: set explicitly by the user. Return mag, phase, omega,
436
    #   with a warning.
437
    #
438
    # * plot == False: set explicitly by the user. Return mag, phase,
439
    #   omega, with a warning.
440
    #
441
    # * plot == None: this is the new default setting.  Return an array of
442
    #   lines that were drawn.
443
    #
444
    # If `bode_plot` was called with no `plot` argument and the return
445
    # values were used, the new code will cause problems (you get an array
446
    # of lines instead of magnitude, phase, and frequency).  To recover the
447
    # old behavior, call `bode_plot` with `plot=True`.
448
    #
449
    # All of this should be removed in v0.11+ when we get rid of deprecated
450
    # code.
451
    #
452

453
    if plot is not None:
9✔
454
        warnings.warn(
9✔
455
            "bode_plot() return value of mag, phase, omega is deprecated; "
456
            "use frequency_response()", FutureWarning)
457

458
    if plot is False:
9✔
459
        # Process the data to match what we were sent
460
        for i in range(len(mag_data)):
9✔
461
            mag_data[i] = _process_frequency_response(
9✔
462
                data[i], omega_data[i], mag_data[i], squeeze=data[i].squeeze)
463
            phase_data[i] = _process_frequency_response(
9✔
464
                data[i], omega_data[i], phase_data[i], squeeze=data[i].squeeze)
465

466
        if len(data) == 1:
9✔
467
            return mag_data[0], phase_data[0], omega_data[0]
9✔
468
        else:
469
            return mag_data, phase_data, omega_data
9✔
470
    #
471
    # Find/create axes
472
    #
473
    # Data are plotted in a standard subplots array, whose size depends on
474
    # which signals are being plotted and how they are combined.  The
475
    # baseline layout for data is to plot everything separately, with
476
    # the magnitude and phase for each output making up the rows and the
477
    # columns corresponding to the different inputs.
478
    #
479
    #      Input 0                 Input m
480
    # +---------------+       +---------------+
481
    # |  mag H_y0,u0  |  ...  |  mag H_y0,um  |
482
    # +---------------+       +---------------+
483
    # +---------------+       +---------------+
484
    # | phase H_y0,u0 |  ...  | phase H_y0,um |
485
    # +---------------+       +---------------+
486
    #         :                       :
487
    # +---------------+       +---------------+
488
    # |  mag H_yp,u0  |  ...  |  mag H_yp,um  |
489
    # +---------------+       +---------------+
490
    # +---------------+       +---------------+
491
    # | phase H_yp,u0 |  ...  | phase H_yp,um |
492
    # +---------------+       +---------------+
493
    #
494
    # Several operations are available that change this layout.
495
    #
496
    # * Omitting: either the magnitude or the phase plots can be omitted
497
    #   using the plot_magnitude and plot_phase keywords.
498
    #
499
    # * Overlay: inputs and/or outputs can be combined onto a single set of
500
    #   axes using the overlay_inputs and overlay_outputs keywords.  This
501
    #   basically collapses data along either the rows or columns, and a
502
    #   legend is generated.
503
    #
504

505
    # Decide on the maximum number of inputs and outputs
506
    ninputs, noutputs = 0, 0
9✔
507
    for response in data:       # TODO: make more pythonic/numpic
9✔
508
        ninputs = max(ninputs, response.ninputs)
9✔
509
        noutputs = max(noutputs, response.noutputs)
9✔
510

511
    # Figure how how many rows and columns to use + offsets for inputs/outputs
512
    if overlay_outputs and overlay_inputs:
9✔
513
        nrows = plot_magnitude + plot_phase
9✔
514
        ncols = 1
9✔
515
    elif overlay_outputs:
9✔
516
        nrows = plot_magnitude + plot_phase
9✔
517
        ncols = ninputs
9✔
518
    elif overlay_inputs:
9✔
519
        nrows = (noutputs if plot_magnitude else 0) + \
9✔
520
            (noutputs if plot_phase else 0)
521
        ncols = 1
9✔
522
    else:
523
        nrows = (noutputs if plot_magnitude else 0) + \
9✔
524
            (noutputs if plot_phase else 0)
525
        ncols = ninputs
9✔
526

527
    if ax is None:
9✔
528
        # Set up default sharing of axis limits if not specified
529
        for kw in ['share_magnitude', 'share_phase', 'share_frequency']:
9✔
530
            if kw not in kwargs or kwargs[kw] is None:
9✔
531
                kwargs[kw] = config.defaults['freqplot.' + kw]
9✔
532

533
    fig, ax_array = _process_ax_keyword(
9✔
534
        ax, (nrows, ncols), squeeze=False, rcParams=rcParams, clear_text=True)
535
    legend_loc, legend_map, show_legend = _process_legend_keywords(
9✔
536
        kwargs, (nrows,ncols), 'center right')
537

538
    # Get the values for sharing axes limits
539
    share_magnitude = kwargs.pop('share_magnitude', None)
9✔
540
    share_phase = kwargs.pop('share_phase', None)
9✔
541
    share_frequency = kwargs.pop('share_frequency', None)
9✔
542

543
    # Set up axes variables for easier access below
544
    if plot_magnitude and not plot_phase:
9✔
545
        mag_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
546
        for i in range(noutputs):
9✔
547
            for j in range(ninputs):
9✔
548
                if overlay_outputs and overlay_inputs:
9✔
549
                    mag_map[i, j] = (0, 0)
9✔
550
                elif overlay_outputs:
9✔
551
                    mag_map[i, j] = (0, j)
9✔
552
                elif overlay_inputs:
9✔
553
                    mag_map[i, j] = (i, 0)
×
554
                else:
555
                    mag_map[i, j] = (i, j)
9✔
556
        phase_map = np.full((noutputs, ninputs), None)
9✔
557
        share_phase = False
9✔
558

559
    elif plot_phase and not plot_magnitude:
9✔
560
        phase_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
561
        for i in range(noutputs):
9✔
562
            for j in range(ninputs):
9✔
563
                if overlay_outputs and overlay_inputs:
9✔
564
                    phase_map[i, j] = (0, 0)
×
565
                elif overlay_outputs:
9✔
566
                    phase_map[i, j] = (0, j)
×
567
                elif overlay_inputs:
9✔
568
                    phase_map[i, j] = (i, 0)
9✔
569
                else:
570
                    phase_map[i, j] = (i, j)
9✔
571
        mag_map = np.full((noutputs, ninputs), None)
9✔
572
        share_magnitude = False
9✔
573

574
    else:
575
        mag_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
576
        phase_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
577
        for i in range(noutputs):
9✔
578
            for j in range(ninputs):
9✔
579
                if overlay_outputs and overlay_inputs:
9✔
580
                    mag_map[i, j] = (0, 0)
×
581
                    phase_map[i, j] = (1, 0)
×
582
                elif overlay_outputs:
9✔
583
                    mag_map[i, j] = (0, j)
×
584
                    phase_map[i, j] = (1, j)
×
585
                elif overlay_inputs:
9✔
586
                    mag_map[i, j] = (i*2, 0)
×
587
                    phase_map[i, j] = (i*2 + 1, 0)
×
588
                else:
589
                    mag_map[i, j] = (i*2, j)
9✔
590
                    phase_map[i, j] = (i*2 + 1, j)
9✔
591

592
    # Identity map needed for setting up shared axes
593
    ax_map = np.empty((nrows, ncols), dtype=tuple)
9✔
594
    for i, j in itertools.product(range(nrows), range(ncols)):
9✔
595
        ax_map[i, j] = (i, j)
9✔
596

597
    #
598
    # Set up axes limit sharing
599
    #
600
    # This code uses the share_magnitude, share_phase, and share_frequency
601
    # keywords to decide which axes have shared limits and what ticklabels
602
    # to include.  The sharing code needs to come before the plots are
603
    # generated, but additional code for removing tick labels needs to come
604
    # *during* and *after* the plots are generated (see below).
605
    #
606
    # Note: if the various share_* keywords are None then a previous set of
607
    # axes are available and no updates should be made.
608
    #
609

610
    # Utility function to turn on sharing
611
    def _share_axes(ref, share_map, axis):
9✔
612
        ref_ax = ax_array[ref]
9✔
613
        for index in np.nditer(share_map, flags=["refs_ok"]):
9✔
614
            if index.item() == ref:
9✔
615
                continue
9✔
616
            if axis == 'x':
9✔
617
                ax_array[index.item()].sharex(ref_ax)
9✔
618
            elif axis == 'y':
9✔
619
                ax_array[index.item()].sharey(ref_ax)
9✔
620
            else:
621
                raise ValueError("axis must be 'x' or 'y'")
×
622

623
    # Process magnitude, phase, and frequency axes
624
    for name, value, map, axis in zip(
9✔
625
            ['share_magnitude', 'share_phase', 'share_frequency'],
626
            [ share_magnitude,   share_phase,   share_frequency],
627
            [ mag_map,           phase_map,     ax_map],
628
            [ 'y',               'y',           'x']):
629
        if value in [True, 'all']:
9✔
630
            _share_axes(map[0 if axis == 'y' else -1, 0], map, axis)
9✔
631
        elif axis == 'y' and value in ['row']:
9✔
632
            for i in range(noutputs if not overlay_outputs else 1):
9✔
633
                _share_axes(map[i, 0], map[i], 'y')
9✔
634
        elif axis == 'x' and value in ['col']:
9✔
635
            for j in range(ncols):
9✔
636
                _share_axes(map[-1, j], map[:, j], 'x')
9✔
637
        elif value in [False, 'none']:
9✔
638
            # TODO: turn off any sharing that is on
639
            pass
9✔
640
        elif value is not None:
9✔
641
            raise ValueError(
×
642
                f"unknown value for `{name}`: '{value}'")
643

644
    #
645
    # Plot the data
646
    #
647
    # The mag_map and phase_map arrays have the indices axes needed for
648
    # making the plots.  Labels are used on each axes for later creation of
649
    # legends.  The generic labels if of the form:
650
    #
651
    #     To output label, From input label, system name
652
    #
653
    # The input and output labels are omitted if overlay_inputs or
654
    # overlay_outputs is False, respectively.  The system name is always
655
    # included, since multiple calls to plot() will require a legend that
656
    # distinguishes which system signals are plotted.  The system name is
657
    # stripped off later (in the legend-handling code) if it is not needed.
658
    #
659
    # Note: if we are building on top of an existing plot, tick labels
660
    # should be preserved from the existing axes.  For log scale axes the
661
    # tick labels seem to appear no matter what => we have to detect if
662
    # they are present at the start and, it not, remove them after calling
663
    # loglog or semilogx.
664
    #
665

666
    # Create a list of lines for the output
667
    out = np.empty((nrows, ncols), dtype=object)
9✔
668
    for i in range(nrows):
9✔
669
        for j in range(ncols):
9✔
670
            out[i, j] = []      # unique list in each element
9✔
671

672
    # Process label keyword
673
    line_labels = _process_line_labels(label, len(data), ninputs, noutputs)
9✔
674

675
    # Utility function for creating line label
676
    def _make_line_label(response, output_index, input_index):
9✔
677
        label = ""              # start with an empty label
9✔
678

679
        # Add the output name if it won't appear as an axes label
680
        if noutputs > 1 and overlay_outputs:
9✔
681
            label += response.output_labels[output_index]
9✔
682

683
        # Add the input name if it won't appear as a column label
684
        if ninputs > 1 and overlay_inputs:
9✔
685
            label += ", " if label != "" else ""
9✔
686
            label += response.input_labels[input_index]
9✔
687

688
        # Add the system name (will strip off later if redundant)
689
        label += ", " if label != "" else ""
9✔
690
        label += f"{response.sysname}"
9✔
691

692
        return label
9✔
693

694
    for index, response in enumerate(data):
9✔
695
        # Get the (pre-processed) data in fully indexed form
696
        mag = mag_data[index]
9✔
697
        phase = phase_data[index]
9✔
698
        omega_sys, sysname = omega_data[index], response.sysname
9✔
699

700
        for i, j in itertools.product(range(noutputs), range(ninputs)):
9✔
701
            # Get the axes to use for magnitude and phase
702
            ax_mag = ax_array[mag_map[i, j]]
9✔
703
            ax_phase = ax_array[phase_map[i, j]]
9✔
704

705
            # Get the frequencies and convert to Hz, if needed
706
            omega_plot = omega_sys / (2 * math.pi) if Hz else omega_sys
9✔
707
            if response.isdtime(strict=True):
9✔
708
                nyq_freq = (0.5/response.dt) if Hz else (math.pi/response.dt)
9✔
709

710
            # Save the magnitude and phase to plot
711
            mag_plot = 20 * np.log10(mag[i, j]) if dB else mag[i, j]
9✔
712
            phase_plot = phase[i, j] * 180. / math.pi if deg else phase[i, j]
9✔
713

714
            # Generate a label
715
            if line_labels is None:
9✔
716
                label = _make_line_label(response, i, j)
9✔
717
            else:
718
                label = line_labels[index, i, j]
9✔
719

720
            # Magnitude
721
            if plot_magnitude:
9✔
722
                pltfcn = ax_mag.semilogx if dB else ax_mag.loglog
9✔
723

724
                # Plot the main data
725
                lines = pltfcn(
9✔
726
                    omega_plot, mag_plot, *fmt, label=label, **kwargs)
727
                out[mag_map[i, j]] += lines
9✔
728

729
                # Save the information needed for the Nyquist line
730
                if response.isdtime(strict=True):
9✔
731
                    ax_mag.axvline(
9✔
732
                        nyq_freq, color=lines[0].get_color(), linestyle='--',
733
                        label='_nyq_mag_' + sysname)
734

735
                # Add a grid to the plot
736
                ax_mag.grid(grid, which='both')
9✔
737

738
            # Phase
739
            if plot_phase:
9✔
740
                lines = ax_phase.semilogx(
9✔
741
                    omega_plot, phase_plot, *fmt, label=label, **kwargs)
742
                out[phase_map[i, j]] += lines
9✔
743

744
                # Save the information needed for the Nyquist line
745
                if response.isdtime(strict=True):
9✔
746
                    ax_phase.axvline(
9✔
747
                        nyq_freq, color=lines[0].get_color(), linestyle='--',
748
                        label='_nyq_phase_' + sysname)
749

750
                # Add a grid to the plot
751
                ax_phase.grid(grid, which='both')
9✔
752

753
        #
754
        # Display gain and phase margins (SISO only)
755
        #
756

757
        if display_margins:
9✔
758
            if ninputs > 1 or noutputs > 1:
9✔
759
                raise NotImplementedError(
760
                    "margins are not available for MIMO systems")
761

762
            if display_margins == 'overlay' and len(data) > 1:
9✔
763
                raise NotImplementedError(
764
                    f"{display_margins=} not supported for multi-trace plots")
765

766
            # Compute stability margins for the system
767
            margins = stability_margins(response, method=margins_method)
9✔
768
            gm, pm, Wcg, Wcp = (margins[i] for i in [0, 1, 3, 4])
9✔
769

770
            # Figure out sign of the phase at the first gain crossing
771
            # (needed if phase_wrap is True)
772
            phase_at_cp = phase[
9✔
773
                0, 0, (np.abs(omega_data[0] - Wcp)).argmin()]
774
            if phase_at_cp >= 0.:
9✔
775
                phase_limit = 180.
9✔
776
            else:
777
                phase_limit = -180.
9✔
778

779
            if Hz:
9✔
780
                Wcg, Wcp = Wcg/(2*math.pi), Wcp/(2*math.pi)
9✔
781

782
            # Draw lines at gain and phase limits
783
            if plot_magnitude:
9✔
784
                ax_mag.axhline(y=0 if dB else 1, color='k', linestyle=':',
9✔
785
                               zorder=-20)
786

787
            if plot_phase:
9✔
788
                ax_phase.axhline(y=phase_limit if deg else
9✔
789
                                 math.radians(phase_limit),
790
                                 color='k', linestyle=':', zorder=-20)
791

792
            # Annotate the phase margin (if it exists)
793
            if plot_phase and pm != float('inf') and Wcp != float('nan'):
9✔
794
                # Draw dotted lines marking the gain crossover frequencies
795
                if plot_magnitude:
9✔
796
                    ax_mag.axvline(Wcp, color='k', linestyle=':', zorder=-30)
9✔
797
                ax_phase.axvline(Wcp, color='k', linestyle=':', zorder=-30)
9✔
798

799
                # Draw solid segments indicating the margins
800
                if deg:
9✔
801
                    ax_phase.semilogx(
9✔
802
                        [Wcp, Wcp], [phase_limit + pm, phase_limit],
803
                        color='k', zorder=-20)
804
                else:
805
                    ax_phase.semilogx(
9✔
806
                        [Wcp, Wcp], [math.radians(phase_limit) +
807
                                     math.radians(pm),
808
                                     math.radians(phase_limit)],
809
                        color='k', zorder=-20)
810

811
            # Annotate the gain margin (if it exists)
812
            if plot_magnitude and gm != float('inf') and \
9✔
813
               Wcg != float('nan'):
814
                # Draw dotted lines marking the phase crossover frequencies
815
                ax_mag.axvline(Wcg, color='k', linestyle=':', zorder=-30)
9✔
816
                if plot_phase:
9✔
817
                    ax_phase.axvline(Wcg, color='k', linestyle=':', zorder=-30)
9✔
818

819
                # Draw solid segments indicating the margins
820
                if dB:
9✔
821
                    ax_mag.semilogx(
9✔
822
                        [Wcg, Wcg], [0, -20*np.log10(gm)],
823
                        color='k', zorder=-20)
824
                else:
825
                    ax_mag.loglog(
9✔
826
                        [Wcg, Wcg], [1., 1./gm], color='k', zorder=-20)
827

828
            if display_margins == 'overlay':
9✔
829
                # TODO: figure out how to handle case of multiple lines
830
                # Put the margin information in the lower left corner
831
                if plot_magnitude:
9✔
832
                    ax_mag.text(
9✔
833
                        0.04, 0.06,
834
                        'G.M.: %.2f %s\nFreq: %.2f %s' %
835
                        (20*np.log10(gm) if dB else gm,
836
                         'dB ' if dB else '',
837
                         Wcg, 'Hz' if Hz else 'rad/s'),
838
                        horizontalalignment='left',
839
                        verticalalignment='bottom',
840
                        transform=ax_mag.transAxes,
841
                        fontsize=8 if int(mpl.__version__[0]) == 1 else 6)
842

843
                if plot_phase:
9✔
844
                    ax_phase.text(
9✔
845
                        0.04, 0.06,
846
                        'P.M.: %.2f %s\nFreq: %.2f %s' %
847
                        (pm if deg else math.radians(pm),
848
                         'deg' if deg else 'rad',
849
                         Wcp, 'Hz' if Hz else 'rad/s'),
850
                        horizontalalignment='left',
851
                        verticalalignment='bottom',
852
                        transform=ax_phase.transAxes,
853
                        fontsize=8 if int(mpl.__version__[0]) == 1 else 6)
854

855
            else:
856
                # Put the title underneath the suptitle (one line per system)
857
                ax_ = ax_mag if ax_mag else ax_phase
9✔
858
                axes_title = ax_.get_title()
9✔
859
                if axes_title is not None and axes_title != "":
9✔
860
                    axes_title += "\n"
9✔
861
                with plt.rc_context(rcParams):
9✔
862
                    ax_.set_title(
9✔
863
                        axes_title + f"{sysname}: "
864
                        "Gm = %.2f %s(at %.2f %s), "
865
                        "Pm = %.2f %s (at %.2f %s)" %
866
                        (20*np.log10(gm) if dB else gm,
867
                         'dB ' if dB else '',
868
                         Wcg, 'Hz' if Hz else 'rad/s',
869
                         pm if deg else math.radians(pm),
870
                         'deg' if deg else 'rad',
871
                         Wcp, 'Hz' if Hz else 'rad/s'))
872

873
    #
874
    # Finishing handling axes limit sharing
875
    #
876
    # This code handles labels on Bode plots and also removes tick labels
877
    # on shared axes.  It needs to come *after* the plots are generated,
878
    # in order to handle two things:
879
    #
880
    # * manually generated labels and grids need to reflect the limits for
881
    #   shared axes, which we don't know until we have plotted everything;
882
    #
883
    # * the loglog and semilog functions regenerate the labels (not quite
884
    #   sure why, since using sharex and sharey in subplots does not have
885
    #   this behavior).
886
    #
887
    # Note: as before, if the various share_* keywords are None then a
888
    # previous set of axes are available and no updates are made. (TODO: true?)
889
    #
890

891
    for i in range(noutputs):
9✔
892
        for j in range(ninputs):
9✔
893
            # Utility function to generate phase labels
894
            def gen_zero_centered_series(val_min, val_max, period):
9✔
895
                v1 = np.ceil(val_min / period - 0.2)
9✔
896
                v2 = np.floor(val_max / period + 0.2)
9✔
897
                return np.arange(v1, v2 + 1) * period
9✔
898

899
            # Label the phase axes using multiples of 45 degrees
900
            if plot_phase:
9✔
901
                ax_phase = ax_array[phase_map[i, j]]
9✔
902

903
                # Set the labels
904
                if deg:
9✔
905
                    ylim = ax_phase.get_ylim()
9✔
906
                    num = np.floor((ylim[1] - ylim[0]) / 45)
9✔
907
                    factor = max(1, np.round(num / (32 / nrows)) * 2)
9✔
908
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
909
                        ylim[0], ylim[1], 45 * factor))
910
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
911
                        ylim[0], ylim[1], 15 * factor), minor=True)
912
                else:
913
                    ylim = ax_phase.get_ylim()
9✔
914
                    num = np.ceil((ylim[1] - ylim[0]) / (math.pi/4))
9✔
915
                    factor = max(1, np.round(num / (36 / nrows)) * 2)
9✔
916
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
917
                        ylim[0], ylim[1], math.pi / 4. * factor))
918
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
919
                        ylim[0], ylim[1], math.pi / 12. * factor), minor=True)
920

921
    # Turn off y tick labels for shared axes
922
    for i in range(0, noutputs):
9✔
923
        for j in range(1, ncols):
9✔
924
            if share_magnitude in [True, 'all', 'row']:
9✔
925
                ax_array[mag_map[i, j]].tick_params(labelleft=False)
9✔
926
            if share_phase in [True, 'all', 'row']:
9✔
927
                ax_array[phase_map[i, j]].tick_params(labelleft=False)
9✔
928

929
    # Turn off x tick labels for shared axes
930
    for i in range(0, nrows-1):
9✔
931
        for j in range(0, ncols):
9✔
932
            if share_frequency in [True, 'all', 'col']:
9✔
933
                ax_array[i, j].tick_params(labelbottom=False)
9✔
934

935
    # If specific omega_limits were given, use them
936
    if omega_limits is not None:
9✔
937
        for i, j in itertools.product(range(nrows), range(ncols)):
9✔
938
            ax_array[i, j].set_xlim(omega_limits)
9✔
939

940
    #
941
    # Label the axes (including header labels)
942
    #
943
    # Once the data are plotted, we label the axes.  The horizontal axes is
944
    # always frequency and this is labeled only on the bottom most row.  The
945
    # vertical axes can consist either of a single signal or a combination
946
    # of signals (when overlay_inputs or overlay_outputs is True)
947
    #
948
    # Input/output signals are give at the top of columns and left of rows
949
    # when these are individually plotted.
950
    #
951

952
    # Label the columns (do this first to get row labels in the right spot)
953
    for j in range(ncols):
9✔
954
        # If we have more than one column, label the individual responses
955
        if (noutputs > 1 and not overlay_outputs or ninputs > 1) \
9✔
956
           and not overlay_inputs:
957
            with plt.rc_context(rcParams):
9✔
958
                ax_array[0, j].set_title(f"From {data[0].input_labels[j]}")
9✔
959

960
        # Label the frequency axis
961
        ax_array[-1, j].set_xlabel(
9✔
962
            freq_label.format(units="Hz" if Hz else "rad/s"))
963

964
    # Label the rows
965
    for i in range(noutputs if not overlay_outputs else 1):
9✔
966
        if plot_magnitude:
9✔
967
            ax_mag = ax_array[mag_map[i, 0]]
9✔
968
            ax_mag.set_ylabel(magnitude_label)
9✔
969
        if plot_phase:
9✔
970
            ax_phase = ax_array[phase_map[i, 0]]
9✔
971
            ax_phase.set_ylabel(phase_label)
9✔
972

973
        if (noutputs > 1 or ninputs > 1) and not overlay_outputs:
9✔
974
            if plot_magnitude and plot_phase:
9✔
975
                # Get existing ylabel for left column and add a blank line
976
                ax_mag.set_ylabel("\n" + ax_mag.get_ylabel())
9✔
977
                ax_phase.set_ylabel("\n" + ax_phase.get_ylabel())
9✔
978

979
                # Find the midpoint between the row axes (+ tight_layout)
980
                _, ypos = _find_axes_center(fig, [ax_mag, ax_phase])
9✔
981

982
                # Get the bounding box including the labels
983
                inv_transform = fig.transFigure.inverted()
9✔
984
                mag_bbox = inv_transform.transform(
9✔
985
                    ax_mag.get_tightbbox(fig.canvas.get_renderer()))
986

987
                # Figure out location for text (center left in figure frame)
988
                xpos = mag_bbox[0, 0]               # left edge
9✔
989

990
                # Put a centered label as text outside the box
991
                fig.text(
9✔
992
                    0.8 * xpos, ypos, f"To {data[0].output_labels[i]}\n",
993
                    rotation=90, ha='left', va='center',
994
                    fontsize=rcParams['axes.titlesize'])
995
            else:
996
                # Only a single axes => add label to the left
997
                ax_array[i, 0].set_ylabel(
9✔
998
                    f"To {data[0].output_labels[i]}\n" +
999
                    ax_array[i, 0].get_ylabel())
1000

1001
    #
1002
    # Update the plot title (= figure suptitle)
1003
    #
1004
    # If plots are built up by multiple calls to plot() and the title is
1005
    # not given, then the title is updated to provide a list of unique text
1006
    # items in each successive title.  For data generated by the frequency
1007
    # response function this will generate a common prefix followed by a
1008
    # list of systems (e.g., "Step response for sys[1], sys[2]").
1009
    #
1010

1011
    # Set initial title for the data (unique system names, preserving order)
1012
    seen = set()
9✔
1013
    sysnames = [response.sysname for response in data if not
9✔
1014
                (response.sysname in seen or seen.add(response.sysname))]
1015

1016
    if ax is None and title is None:
9✔
1017
        if data[0].title is None:
9✔
1018
            title = "Bode plot for " + ", ".join(sysnames)
9✔
1019
        else:
1020
            # Allow data to set the title (used by gangof4)
1021
            title = data[0].title
9✔
1022
        _update_plot_title(title, fig, rcParams=rcParams, frame=title_frame)
9✔
1023
    elif ax is None:
9✔
1024
        _update_plot_title(
9✔
1025
            title, fig=fig, rcParams=rcParams, frame=title_frame,
1026
            use_existing=False)
1027

1028
    #
1029
    # Create legends
1030
    #
1031
    # Legends can be placed manually by passing a legend_map array that
1032
    # matches the shape of the sublots, with each item being a string
1033
    # indicating the location of the legend for that axes (or None for no
1034
    # legend).
1035
    #
1036
    # If no legend spec is passed, a minimal number of legends are used so
1037
    # that each line in each axis can be uniquely identified.  The details
1038
    # depends on the various plotting parameters, but the general rule is
1039
    # to place legends in the top row and right column.
1040
    #
1041
    # Because plots can be built up by multiple calls to plot(), the legend
1042
    # strings are created from the line labels manually.  Thus an initial
1043
    # call to plot() may not generate any legends (e.g., if no signals are
1044
    # overlaid), but subsequent calls to plot() will need a legend for each
1045
    # different response (system).
1046
    #
1047

1048
    # Create axis legends
1049
    if show_legend != False:
9✔
1050
        # Figure out where to put legends
1051
        if legend_map is None:
9✔
1052
            legend_map = np.full(ax_array.shape, None, dtype=object)
9✔
1053
            legend_map[0, -1] = legend_loc
9✔
1054

1055
        legend_array = np.full(ax_array.shape, None, dtype=object)
9✔
1056
        for i, j in itertools.product(range(nrows), range(ncols)):
9✔
1057
            if legend_map[i, j] is None:
9✔
1058
                continue
9✔
1059
            ax = ax_array[i, j]
9✔
1060

1061
            # Get the labels to use, removing common strings
1062
            lines = [line for line in ax.get_lines()
9✔
1063
                     if line.get_label()[0] != '_']
1064
            labels = _make_legend_labels(
9✔
1065
                [line.get_label() for line in lines],
1066
                ignore_common=line_labels is not None)
1067

1068
            # Generate the label, if needed
1069
            if show_legend == True or len(labels) > 1:
9✔
1070
                with plt.rc_context(rcParams):
9✔
1071
                    legend_array[i, j] = ax.legend(
9✔
1072
                        lines, labels, loc=legend_map[i, j])
1073
    else:
1074
        legend_array = None
9✔
1075

1076
    #
1077
    # Legacy return processing
1078
    #
1079
    if plot is True:            # legacy usage; remove in future release
9✔
1080
        # Process the data to match what we were sent
1081
        for i in range(len(mag_data)):
9✔
1082
            mag_data[i] = _process_frequency_response(
9✔
1083
                data[i], omega_data[i], mag_data[i], squeeze=data[i].squeeze)
1084
            phase_data[i] = _process_frequency_response(
9✔
1085
                data[i], omega_data[i], phase_data[i], squeeze=data[i].squeeze)
1086

1087
        if len(data) == 1:
9✔
1088
            return mag_data[0], phase_data[0], omega_data[0]
9✔
1089
        else:
1090
            return mag_data, phase_data, omega_data
9✔
1091

1092
    return ControlPlot(out, ax_array, fig, legend=legend_array)
9✔
1093

1094

1095
#
1096
# Nyquist plot
1097
#
1098

1099
# Default values for module parameter variables
1100
_nyquist_defaults = {
9✔
1101
    'nyquist.primary_style': ['-', '-.'],       # style for primary curve
1102
    'nyquist.mirror_style': ['--', ':'],        # style for mirror curve
1103
    'nyquist.arrows': 3,                        # number of arrows around curve
1104
    'nyquist.arrow_size': 8,                    # pixel size for arrows
1105
    'nyquist.encirclement_threshold': 0.05,     # warning threshold
1106
    'nyquist.indent_radius': 1e-4,              # indentation radius
1107
    'nyquist.indent_direction': 'right',        # indentation direction
1108
    'nyquist.indent_points': 200,               # number of points to insert
1109
    'nyquist.max_curve_magnitude': 15,          # rescale large values
1110
    'nyquist.blend_fraction': 0.15,             # when to start scaling
1111
    'nyquist.max_curve_offset': 0.02,           # offset of primary/mirror
1112
    'nyquist.start_marker': 'o',                # marker at start of curve
1113
    'nyquist.start_marker_size': 4,             # size of the marker
1114
    'nyquist.circle_style':                     # style for unit circles
1115
      {'color': 'black', 'linestyle': 'dashed', 'linewidth': 1}
1116
}
1117

1118

1119
class NyquistResponseData:
9✔
1120
    """Nyquist response data object.
1121

1122
    Nyquist contour analysis allows the stability and robustness of a
1123
    closed loop linear system to be evaluated using the open loop response
1124
    of the loop transfer function.  The NyquistResponseData class is used
1125
    by the `nyquist_response` function to return the
1126
    response of a linear system along the Nyquist 'D' contour.  The
1127
    response object can be used to obtain information about the Nyquist
1128
    response or to generate a Nyquist plot.
1129

1130
    Parameters
1131
    ----------
1132
    count : integer
1133
        Number of encirclements of the -1 point by the Nyquist curve for
1134
        a system evaluated along the Nyquist contour.
1135
    contour : complex array
1136
        The Nyquist 'D' contour, with appropriate indentations to avoid
1137
        open loop poles and zeros near/on the imaginary axis.
1138
    response : complex array
1139
        The value of the linear system under study along the Nyquist contour.
1140
    dt : None or float
1141
        The system timebase.
1142
    sysname : str
1143
        The name of the system being analyzed.
1144
    return_contour : bool
1145
        If True, when the object is accessed as an iterable return two
1146
        elements: `count` (number of encirclements) and `contour`.  If
1147
        False (default), then return only `count`.
1148

1149
    """
1150
    def __init__(
9✔
1151
            self, count, contour, response, dt, sysname=None,
1152
            return_contour=False):
1153
        self.count = count
9✔
1154
        self.contour = contour
9✔
1155
        self.response = response
9✔
1156
        self.dt = dt
9✔
1157
        self.sysname = sysname
9✔
1158
        self.return_contour = return_contour
9✔
1159

1160
    # Implement iter to allow assigning to a tuple
1161
    def __iter__(self):
9✔
1162
        if self.return_contour:
9✔
1163
            return iter((self.count, self.contour))
9✔
1164
        else:
1165
            return iter((self.count, ))
9✔
1166

1167
    # Implement (thin) getitem to allow access via legacy indexing
1168
    def __getitem__(self, index):
9✔
1169
        return list(self.__iter__())[index]
×
1170

1171
    # Implement (thin) len to emulate legacy testing interface
1172
    def __len__(self):
9✔
1173
        return 2 if self.return_contour else 1
9✔
1174

1175
    def plot(self, *args, **kwargs):
9✔
1176
        """Plot a list of Nyquist responses.
1177

1178
        See `nyquist_plot` for details.
1179

1180
        """
1181
        return nyquist_plot(self, *args, **kwargs)
9✔
1182

1183

1184
class NyquistResponseList(list):
9✔
1185
    """List of NyquistResponseData objects with plotting capability.
1186

1187
    This class consists of a list of `NyquistResponseData` objects.
1188
    It is a subclass of the Python `list` class, with a `plot` method that
1189
    plots the individual `NyquistResponseData` objects.
1190

1191
    """
1192
    def plot(self, *args, **kwargs):
9✔
1193
        """Plot a list of Nyquist responses.
1194

1195
        See `nyquist_plot` for details.
1196

1197
        """
1198
        return nyquist_plot(self, *args, **kwargs)
9✔
1199

1200

1201
def nyquist_response(
9✔
1202
        sysdata, omega=None, omega_limits=None, omega_num=None,
1203
        return_contour=False, warn_encirclements=True, warn_nyquist=True,
1204
        _kwargs=None, _check_kwargs=True, **kwargs):
1205
    """Nyquist response for a system.
1206

1207
    Computes a Nyquist contour for the system over a (optional) frequency
1208
    range and evaluates the number of net encirclements.  The curve is
1209
    computed by evaluating the Nyquist segment along the positive imaginary
1210
    axis, with a mirror image generated to reflect the negative imaginary
1211
    axis.  Poles on or near the imaginary axis are avoided using a small
1212
    indentation.  The portion of the Nyquist contour at infinity is not
1213
    explicitly computed (since it maps to a constant value for any system
1214
    with a proper transfer function).
1215

1216
    Parameters
1217
    ----------
1218
    sysdata : LTI or list of LTI
1219
        List of linear input/output systems (single system is OK). Nyquist
1220
        curves for each system are plotted on the same graph.
1221
    omega : array_like, optional
1222
        Set of frequencies to be evaluated, in rad/sec.
1223

1224
    Returns
1225
    -------
1226
    responses : list of `NyquistResponseData`
1227
        For each system, a Nyquist response data object is returned.  If
1228
        `sysdata` is a single system, a single element is returned (not a
1229
        list).
1230
    response.count : int
1231
        Number of encirclements of the point -1 by the Nyquist curve.  If
1232
        multiple systems are given, an array of counts is returned.
1233
    response.contour : ndarray
1234
        The contour used to create the primary Nyquist curve segment.  To
1235
        obtain the Nyquist curve values, evaluate system(s) along contour.
1236

1237
    Other Parameters
1238
    ----------------
1239
    encirclement_threshold : float, optional
1240
        Define the threshold for generating a warning if the number of net
1241
        encirclements is a non-integer value.  Default value is 0.05 and can
1242
        be set using `config.defaults['nyquist.encirclement_threshold']`.
1243
    indent_direction : str, optional
1244
        For poles on the imaginary axis, set the direction of indentation to
1245
        be 'right' (default), 'left', or 'none'.  The default value can
1246
        be set using `config.defaults['nyquist.indent_direction']`.
1247
    indent_points : int, optional
1248
        Number of points to insert in the Nyquist contour around poles that
1249
        are at or near the imaginary axis.
1250
    indent_radius : float, optional
1251
        Amount to indent the Nyquist contour around poles on or near the
1252
        imaginary axis. Portions of the Nyquist plot corresponding to
1253
        indented portions of the contour are plotted using a different line
1254
        style. The default value can be set using
1255
        `config.defaults['nyquist.indent_radius']`.
1256
    omega_limits : array_like of two values
1257
        Set limits for plotted frequency range. If Hz=True the limits are
1258
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
1259
        elements is equivalent to providing `omega_limits`.
1260
    omega_num : int, optional
1261
        Number of samples to use for the frequency range.  Defaults to
1262
        `config.defaults['freqplot.number_of_samples']`.
1263
    warn_nyquist : bool, optional
1264
        If set to False, turn off warnings about frequencies above Nyquist.
1265
    warn_encirclements : bool, optional
1266
        If set to False, turn off warnings about number of encirclements not
1267
        meeting the Nyquist criterion.
1268

1269
    Notes
1270
    -----
1271
    If a discrete-time model is given, the frequency response is computed
1272
    along the upper branch of the unit circle, using the mapping ``z =
1273
    exp(1j * omega * dt)`` where `omega` ranges from 0 to pi/`dt` and
1274
    `dt` is the discrete timebase.  If timebase not specified
1275
    (`dt` = True), `dt` is set to 1.
1276

1277
    If a continuous-time system contains poles on or near the imaginary
1278
    axis, a small indentation will be used to avoid the pole.  The radius
1279
    of the indentation is given by `indent_radius` and it is taken to the
1280
    right of stable poles and the left of unstable poles.  If a pole is
1281
    exactly on the imaginary axis, the `indent_direction` parameter can be
1282
    used to set the direction of indentation.  Setting `indent_direction`
1283
    to 'none' will turn off indentation.
1284

1285
    For those portions of the Nyquist plot in which the contour is indented
1286
    to avoid poles, resulting in a scaling of the Nyquist plot, the line
1287
    styles are according to the settings of the `primary_style` and
1288
    `mirror_style` keywords.  By default the scaled portions of the primary
1289
    curve use a dotted line style and the scaled portion of the mirror
1290
    image use a dashdot line style.
1291

1292
    If the legacy keyword `return_contour` is specified as True, the
1293
    response object can be iterated over to return ``(count, contour)``.
1294
    This behavior is deprecated and will be removed in a future release.
1295

1296
    See Also
1297
    --------
1298
    nyquist_plot
1299

1300
    Examples
1301
    --------
1302
    >>> G = ct.zpk([], [-1, -2, -3], gain=100)
1303
    >>> response = ct.nyquist_response(G)
1304
    >>> count = response.count
1305
    >>> cplt = response.plot()
1306

1307
    """
1308
    # Create unified list of keyword arguments
1309
    if _kwargs is None:
9✔
1310
        _kwargs = kwargs
9✔
1311
    else:
1312
        # Use existing dictionary, to keep track of processed keywords
1313
        _kwargs |= kwargs
9✔
1314

1315
    # Get values for params
1316
    omega_num_given = omega_num is not None
9✔
1317
    omega_num = config._get_param('freqplot', 'number_of_samples', omega_num)
9✔
1318
    indent_radius = config._get_param(
9✔
1319
        'nyquist', 'indent_radius', _kwargs, _nyquist_defaults, pop=True)
1320
    encirclement_threshold = config._get_param(
9✔
1321
        'nyquist', 'encirclement_threshold', _kwargs,
1322
        _nyquist_defaults, pop=True)
1323
    indent_direction = config._get_param(
9✔
1324
        'nyquist', 'indent_direction', _kwargs, _nyquist_defaults, pop=True)
1325
    indent_points = config._get_param(
9✔
1326
        'nyquist', 'indent_points', _kwargs, _nyquist_defaults, pop=True)
1327

1328
    if _check_kwargs and _kwargs:
9✔
1329
        raise TypeError("unrecognized keywords: ", str(_kwargs))
9✔
1330

1331
    # Convert the first argument to a list
1332
    syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata]
9✔
1333

1334
    # Determine the range of frequencies to use, based on args/features
1335
    omega, omega_range_given = _determine_omega_vector(
9✔
1336
        syslist, omega, omega_limits, omega_num, feature_periphery_decades=2)
1337

1338
    # If omega was not specified explicitly, start at omega = 0
1339
    if not omega_range_given:
9✔
1340
        if omega_num_given:
9✔
1341
            # Just reset the starting point
1342
            omega[0] = 0.0
9✔
1343
        else:
1344
            # Insert points between the origin and the first frequency point
1345
            omega = np.concatenate((
9✔
1346
                np.linspace(0, omega[0], indent_points), omega[1:]))
1347

1348
    # Go through each system and keep track of the results
1349
    responses = []
9✔
1350
    for idx, sys in enumerate(syslist):
9✔
1351
        if not sys.issiso():
9✔
1352
            # TODO: Add MIMO nyquist plots.
1353
            raise ControlMIMONotImplemented(
9✔
1354
                "Nyquist plot currently only supports SISO systems.")
1355

1356
        # Figure out the frequency range
1357
        if isinstance(sys, FrequencyResponseData) and sys._ifunc is None \
9✔
1358
           and not omega_range_given:
1359
            omega_sys = sys.omega               # use system frequencies
9✔
1360
        else:
1361
            omega_sys = np.asarray(omega)       # use common omega vector
9✔
1362

1363
        # Determine the contour used to evaluate the Nyquist curve
1364
        if sys.isdtime(strict=True):
9✔
1365
            # Restrict frequencies for discrete-time systems
1366
            nyq_freq = math.pi / sys.dt
9✔
1367
            if not omega_range_given:
9✔
1368
                # limit up to and including Nyquist frequency
1369
                omega_sys = np.hstack((
9✔
1370
                    omega_sys[omega_sys < nyq_freq], nyq_freq))
1371

1372
            # Issue a warning if we are sampling above Nyquist
1373
            if np.any(omega_sys * sys.dt > np.pi) and warn_nyquist:
9✔
1374
                warnings.warn("evaluation above Nyquist frequency")
9✔
1375

1376
        # do indentations in s-plane where it is more convenient
1377
        splane_contour = 1j * omega_sys
9✔
1378

1379
        # Bend the contour around any poles on/near the imaginary axis
1380
        if isinstance(sys, (StateSpace, TransferFunction)) \
9✔
1381
                and indent_direction != 'none':
1382
            if sys.isctime():
9✔
1383
                splane_poles = sys.poles()
9✔
1384
                splane_cl_poles = sys.feedback().poles()
9✔
1385
            else:
1386
                # map z-plane poles to s-plane. We ignore any at the origin
1387
                # to avoid numerical warnings because we know we
1388
                # don't need to indent for them
1389
                zplane_poles = sys.poles()
9✔
1390
                zplane_poles = zplane_poles[~np.isclose(abs(zplane_poles), 0.)]
9✔
1391
                splane_poles = np.log(zplane_poles) / sys.dt
9✔
1392

1393
                zplane_cl_poles = sys.feedback().poles()
9✔
1394
                # eliminate z-plane poles at the origin to avoid warnings
1395
                zplane_cl_poles = zplane_cl_poles[
9✔
1396
                    ~np.isclose(abs(zplane_cl_poles), 0.)]
1397
                splane_cl_poles = np.log(zplane_cl_poles) / sys.dt
9✔
1398

1399
            #
1400
            # Check to make sure indent radius is small enough
1401
            #
1402
            # If there is a closed loop pole that is near the imaginary axis
1403
            # at a point that is near an open loop pole, it is possible that
1404
            # indentation might skip or create an extraneous encirclement.
1405
            # We check for that situation here and generate a warning if that
1406
            # could happen.
1407
            #
1408
            for p_cl in splane_cl_poles:
9✔
1409
                # See if any closed loop poles are near the imaginary axis
1410
                if abs(p_cl.real) <= indent_radius:
9✔
1411
                    # See if any open loop poles are close to closed loop poles
1412
                    if len(splane_poles) > 0:
9✔
1413
                        p_ol = splane_poles[
9✔
1414
                            (np.abs(splane_poles - p_cl)).argmin()]
1415

1416
                        if abs(p_ol - p_cl) <= indent_radius and \
9✔
1417
                                warn_encirclements:
1418
                            warnings.warn(
9✔
1419
                                "indented contour may miss closed loop pole; "
1420
                                "consider reducing indent_radius to below "
1421
                                f"{abs(p_ol - p_cl):5.2g}", stacklevel=2)
1422

1423
            #
1424
            # See if we should add some frequency points near imaginary poles
1425
            #
1426
            for p in splane_poles:
9✔
1427
                # See if we need to process this pole (skip if on the negative
1428
                # imaginary axis or not near imaginary axis + user override)
1429
                if p.imag < 0 or abs(p.real) > indent_radius or \
9✔
1430
                   omega_range_given:
1431
                    continue
9✔
1432

1433
                # Find the frequencies before the pole frequency
1434
                below_points = np.argwhere(
9✔
1435
                    splane_contour.imag - abs(p.imag) < -indent_radius)
1436
                if below_points.size > 0:
9✔
1437
                    first_point = below_points[-1].item()
9✔
1438
                    start_freq = p.imag - indent_radius
9✔
1439
                else:
1440
                    # Add the points starting at the beginning of the contour
1441
                    assert splane_contour[0] == 0
9✔
1442
                    first_point = 0
9✔
1443
                    start_freq = 0
9✔
1444

1445
                # Find the frequencies after the pole frequency
1446
                above_points = np.argwhere(
9✔
1447
                    splane_contour.imag - abs(p.imag) > indent_radius)
1448
                last_point = above_points[0].item()
9✔
1449

1450
                # Add points for half/quarter circle around pole frequency
1451
                # (these will get indented left or right below)
1452
                splane_contour = np.concatenate((
9✔
1453
                    splane_contour[0:first_point+1],
1454
                    (1j * np.linspace(
1455
                        start_freq, p.imag + indent_radius, indent_points)),
1456
                    splane_contour[last_point:]))
1457

1458
            # Indent points that are too close to a pole
1459
            if len(splane_poles) > 0: # accommodate no splane poles if dtime sys
9✔
1460
                for i, s in enumerate(splane_contour):
9✔
1461
                    # Find the nearest pole
1462
                    p = splane_poles[(np.abs(splane_poles - s)).argmin()]
9✔
1463

1464
                    # See if we need to indent around it
1465
                    if abs(s - p) < indent_radius:
9✔
1466
                        # Figure out how much to offset (simple trigonometry)
1467
                        offset = np.sqrt(
9✔
1468
                            indent_radius ** 2 - (s - p).imag ** 2) \
1469
                            - (s - p).real
1470

1471
                        # Figure out which way to offset the contour point
1472
                        if p.real < 0 or (p.real == 0 and
9✔
1473
                                        indent_direction == 'right'):
1474
                            # Indent to the right
1475
                            splane_contour[i] += offset
9✔
1476

1477
                        elif p.real > 0 or (p.real == 0 and
9✔
1478
                                            indent_direction == 'left'):
1479
                            # Indent to the left
1480
                            splane_contour[i] -= offset
9✔
1481

1482
                        else:
1483
                            raise ValueError(
9✔
1484
                                "unknown value for indent_direction")
1485

1486
        # change contour to z-plane if necessary
1487
        if sys.isctime():
9✔
1488
            contour = splane_contour
9✔
1489
        else:
1490
            contour = np.exp(splane_contour * sys.dt)
9✔
1491

1492
        # Make sure we don't try to evaluate at a pole
1493
        if isinstance(sys, (StateSpace, TransferFunction)):
9✔
1494
            if any([pole in contour for pole in sys.poles()]):
9✔
1495
                raise RuntimeError(
9✔
1496
                    "attempt to evaluate at a pole; indent required")
1497

1498
        # Compute the primary curve
1499
        resp = sys(contour)
9✔
1500

1501
        # Compute CW encirclements of -1 by integrating the (unwrapped) angle
1502
        phase = -unwrap(np.angle(resp + 1))
9✔
1503
        encirclements = np.sum(np.diff(phase)) / np.pi
9✔
1504
        count = int(np.round(encirclements, 0))
9✔
1505

1506
        # Let the user know if the count might not make sense
1507
        if abs(encirclements - count) > encirclement_threshold and \
9✔
1508
           warn_encirclements:
1509
            warnings.warn(
9✔
1510
                "number of encirclements was a non-integer value; this can"
1511
                " happen is contour is not closed, possibly based on a"
1512
                " frequency range that does not include zero.")
1513

1514
        #
1515
        # Make sure that the encirclements match the Nyquist criterion
1516
        #
1517
        # If the user specifies the frequency points to use, it is possible
1518
        # to miss encirclements, so we check here to make sure that the
1519
        # Nyquist criterion is actually satisfied.
1520
        #
1521
        if isinstance(sys, (StateSpace, TransferFunction)):
9✔
1522
            # Count the number of open/closed loop RHP poles
1523
            if sys.isctime():
9✔
1524
                if indent_direction == 'right':
9✔
1525
                    P = (sys.poles().real > 0).sum()
9✔
1526
                else:
1527
                    P = (sys.poles().real >= 0).sum()
9✔
1528
                Z = (sys.feedback().poles().real >= 0).sum()
9✔
1529
            else:
1530
                if indent_direction == 'right':
9✔
1531
                    P = (np.abs(sys.poles()) > 1).sum()
9✔
1532
                else:
1533
                    P = (np.abs(sys.poles()) >= 1).sum()
×
1534
                Z = (np.abs(sys.feedback().poles()) >= 1).sum()
9✔
1535

1536
            # Check to make sure the results make sense; warn if not
1537
            if Z != count + P and warn_encirclements:
9✔
1538
                warnings.warn(
9✔
1539
                    "number of encirclements does not match Nyquist criterion;"
1540
                    " check frequency range and indent radius/direction",
1541
                    UserWarning, stacklevel=2)
1542
            elif indent_direction == 'none' and any(sys.poles().real == 0) \
9✔
1543
                 and warn_encirclements:
1544
                warnings.warn(
×
1545
                    "system has pure imaginary poles but indentation is"
1546
                    " turned off; results may be meaningless",
1547
                    RuntimeWarning, stacklevel=2)
1548

1549
        # Decide on system name
1550
        sysname = sys.name if sys.name is not None else f"Unknown-{idx}"
9✔
1551

1552
        responses.append(NyquistResponseData(
9✔
1553
            count, contour, resp, sys.dt, sysname=sysname,
1554
            return_contour=return_contour))
1555

1556
    if isinstance(sysdata, (list, tuple)):
9✔
1557
        return NyquistResponseList(responses)
9✔
1558
    else:
1559
        return responses[0]
9✔
1560

1561

1562
def nyquist_plot(
9✔
1563
        data, omega=None, plot=None, label_freq=0, color=None, label=None,
1564
        return_contour=None, title=None, ax=None,
1565
        unit_circle=False, mt_circles=None, ms_circles=None, **kwargs):
1566
    """Nyquist plot for a system.
1567

1568
    Generates a Nyquist plot for the system over a (optional) frequency
1569
    range.  The curve is computed by evaluating the Nyquist segment along
1570
    the positive imaginary axis, with a mirror image generated to reflect
1571
    the negative imaginary axis.  Poles on or near the imaginary axis are
1572
    avoided using a small indentation.  The portion of the Nyquist contour
1573
    at infinity is not explicitly computed (since it maps to a constant
1574
    value for any system with a proper transfer function).
1575

1576
    Parameters
1577
    ----------
1578
    data : list of `LTI` or `NyquistResponseData`
1579
        List of linear input/output systems (single system is OK) or
1580
        Nyquist responses (computed using `nyquist_response`).
1581
        Nyquist curves for each system are plotted on the same graph.
1582
    omega : array_like, optional
1583
        Set of frequencies to be evaluated, in rad/sec. Specifying
1584
        `omega` as a list of two elements is equivalent to providing
1585
        `omega_limits`.
1586
    unit_circle : bool, optional
1587
        If True, display the unit circle, to read gain crossover
1588
        frequency.  The circle style is determined by
1589
        `config.defaults['nyquist.circle_style']`.
1590
    mt_circles : array_like, optional
1591
        Draw circles corresponding to the given magnitudes of sensitivity.
1592
    ms_circles : array_like, optional
1593
        Draw circles corresponding to the given magnitudes of complementary
1594
        sensitivity.
1595
    **kwargs : `matplotlib.pyplot.plot` keyword properties, optional
1596
        Additional keywords passed to `matplotlib` to specify line properties.
1597

1598
    Returns
1599
    -------
1600
    cplt : `ControlPlot` object
1601
        Object containing the data that were plotted.  See `ControlPlot`
1602
        for more detailed information.
1603
    cplt.lines : 2D array of `matplotlib.lines.Line2D`
1604
        Array containing information on each line in the plot.  The shape
1605
        of the array is given by (nsys, 4) where nsys is the number of
1606
        systems or Nyquist responses passed to the function.  The second
1607
        index specifies the segment type:
1608

1609
            - lines[idx, 0]: unscaled portion of the primary curve
1610
            - lines[idx, 1]: scaled portion of the primary curve
1611
            - lines[idx, 2]: unscaled portion of the mirror curve
1612
            - lines[idx, 3]: scaled portion of the mirror curve
1613

1614
    cplt.axes : 2D array of `matplotlib.axes.Axes`
1615
        Axes for each subplot.
1616
    cplt.figure : `matplotlib.figure.Figure`
1617
        Figure containing the plot.
1618
    cplt.legend : 2D array of `matplotlib.legend.Legend`
1619
        Legend object(s) contained in the plot.
1620

1621
    Other Parameters
1622
    ----------------
1623
    arrows : int or 1D/2D array of floats, optional
1624
        Specify the number of arrows to plot on the Nyquist curve.  If an
1625
        integer is passed. that number of equally spaced arrows will be
1626
        plotted on each of the primary segment and the mirror image.  If a
1627
        1D array is passed, it should consist of a sorted list of floats
1628
        between 0 and 1, indicating the location along the curve to plot an
1629
        arrow.  If a 2D array is passed, the first row will be used to
1630
        specify arrow locations for the primary curve and the second row
1631
        will be used for the mirror image.  Default value is 2 and can be
1632
        set using `config.defaults['nyquist.arrows']`.
1633
    arrow_size : float, optional
1634
        Arrowhead width and length (in display coordinates).  Default value is
1635
        8 and can be set using `config.defaults['nyquist.arrow_size']`.
1636
    arrow_style : matplotlib.patches.ArrowStyle, optional
1637
        Define style used for Nyquist curve arrows (overrides `arrow_size`).
1638
    ax : `matplotlib.axes.Axes`, optional
1639
        The matplotlib axes to draw the figure on.  If not specified and
1640
        the current figure has a single axes, that axes is used.
1641
        Otherwise, a new figure is created.
1642
    blend_fraction : float, optional
1643
        For portions of the Nyquist curve that are scaled to have a maximum
1644
        magnitude of `max_curve_magnitude`, begin a smooth rescaling at
1645
        this fraction of `max_curve_magnitude`. Default value is 0.15.
1646
    encirclement_threshold : float, optional
1647
        Define the threshold for generating a warning if the number of net
1648
        encirclements is a non-integer value.  Default value is 0.05 and can
1649
        be set using `config.defaults['nyquist.encirclement_threshold']`.
1650
    indent_direction : str, optional
1651
        For poles on the imaginary axis, set the direction of indentation to
1652
        be 'right' (default), 'left', or 'none'.
1653
    indent_points : int, optional
1654
        Number of points to insert in the Nyquist contour around poles that
1655
        are at or near the imaginary axis.
1656
    indent_radius : float, optional
1657
        Amount to indent the Nyquist contour around poles on or near the
1658
        imaginary axis. Portions of the Nyquist plot corresponding to indented
1659
        portions of the contour are plotted using a different line style.
1660
    label : str or array_like of str, optional
1661
        If present, replace automatically generated label(s) with the given
1662
        label(s).  If sysdata is a list, strings should be specified for each
1663
        system.
1664
    label_freq : int, optional
1665
        Label every nth frequency on the plot.  If not specified, no labels
1666
        are generated.
1667
    legend_loc : int or str, optional
1668
        Include a legend in the given location. Default is 'upper right',
1669
        with no legend for a single response.  Use False to suppress legend.
1670
    max_curve_magnitude : float, optional
1671
        Restrict the maximum magnitude of the Nyquist plot to this value.
1672
        Portions of the Nyquist plot whose magnitude is restricted are
1673
        plotted using a different line style.  The default value is 20 and
1674
        can be set using `config.defaults['nyquist.max_curve_magnitude']`.
1675
    max_curve_offset : float, optional
1676
        When plotting scaled portion of the Nyquist plot, increase/decrease
1677
        the magnitude by this fraction of the max_curve_magnitude to allow
1678
        any overlaps between the primary and mirror curves to be avoided.
1679
        The default value is 0.02 and can be set using
1680
        `config.defaults['nyquist.max_curve_magnitude']`.
1681
    mirror_style : [str, str] or False
1682
        Linestyles for mirror image of the Nyquist curve.  The first element
1683
        is used for unscaled portions of the Nyquist curve, the second element
1684
        is used for portions that are scaled (using max_curve_magnitude).  If
1685
        False then omit completely.  Default linestyle (['--', ':']) is
1686
        determined by `config.defaults['nyquist.mirror_style']`.
1687
    omega_limits : array_like of two values
1688
        Set limits for plotted frequency range. If Hz=True the limits are
1689
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
1690
        elements is equivalent to providing `omega_limits`.
1691
    omega_num : int, optional
1692
        Number of samples to use for the frequency range.  Defaults to
1693
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
1694
        not a list of systems.
1695
    plot : bool, optional
1696
        (legacy) If given, `nyquist_plot` returns the legacy return values
1697
        of (counts, contours).  If False, return the values with no plot.
1698
    primary_style : [str, str], optional
1699
        Linestyles for primary image of the Nyquist curve.  The first
1700
        element is used for unscaled portions of the Nyquist curve,
1701
        the second element is used for portions that are scaled (using
1702
        max_curve_magnitude).  Default linestyle (['-', '-.']) is
1703
        determined by `config.defaults['nyquist.mirror_style']`.
1704
    rcParams : dict
1705
        Override the default parameters used for generating plots.
1706
        Default is set by `config.defaults['ctrlplot.rcParams']`.
1707
    return_contour : bool, optional
1708
        (legacy) If True, return the encirclement count and Nyquist
1709
        contour used to generate the Nyquist plot.
1710
    show_legend : bool, optional
1711
        Force legend to be shown if True or hidden if False.  If
1712
        None, then show legend when there is more than one line on the
1713
        plot or `legend_loc` has been specified.
1714
    start_marker : str, optional
1715
        Matplotlib marker to use to mark the starting point of the Nyquist
1716
        plot.  Defaults value is 'o' and can be set using
1717
        `config.defaults['nyquist.start_marker']`.
1718
    start_marker_size : float, optional
1719
        Start marker size (in display coordinates).  Default value is
1720
        4 and can be set using `config.defaults['nyquist.start_marker_size']`.
1721
    title : str, optional
1722
        Set the title of the plot.  Defaults to plot type and system name(s).
1723
    title_frame : str, optional
1724
        Set the frame of reference used to center the plot title. If set to
1725
        'axes' (default), the horizontal position of the title will
1726
        centered relative to the axes.  If set to 'figure', it will be
1727
        centered with respect to the figure (faster execution).
1728
    warn_nyquist : bool, optional
1729
        If set to False, turn off warnings about frequencies above Nyquist.
1730
    warn_encirclements : bool, optional
1731
        If set to False, turn off warnings about number of encirclements not
1732
        meeting the Nyquist criterion.
1733

1734
    See Also
1735
    --------
1736
    nyquist_response
1737

1738
    Notes
1739
    -----
1740
    If a discrete-time model is given, the frequency response is computed
1741
    along the upper branch of the unit circle, using the mapping ``z =
1742
    exp(1j * omega * dt)`` where `omega` ranges from 0 to pi/`dt` and
1743
    `dt` is the discrete timebase.  If timebase not specified
1744
    (`dt` = True), `dt` is set to 1.
1745

1746
    If a continuous-time system contains poles on or near the imaginary
1747
    axis, a small indentation will be used to avoid the pole.  The radius
1748
    of the indentation is given by `indent_radius` and it is taken to the
1749
    right of stable poles and the left of unstable poles.  If a pole is
1750
    exactly on the imaginary axis, the `indent_direction` parameter can be
1751
    used to set the direction of indentation.  Setting `indent_direction`
1752
    to 'none' will turn off indentation.  If `return_contour` is True,
1753
    the exact contour used for evaluation is returned.
1754

1755
    For those portions of the Nyquist plot in which the contour is indented
1756
    to avoid poles, resulting in a scaling of the Nyquist plot, the line
1757
    styles are according to the settings of the `primary_style` and
1758
    `mirror_style` keywords.  By default the scaled portions of the primary
1759
    curve use a dashdot line style and the scaled portions of the mirror
1760
    image use a dotted line style.
1761

1762
    Examples
1763
    --------
1764
    >>> G = ct.zpk([], [-1, -2, -3], gain=100)
1765
    >>> out = ct.nyquist_plot(G)
1766

1767
    """
1768
    #
1769
    # Keyword processing
1770
    #
1771
    # Keywords for the nyquist_plot function can either be keywords that
1772
    # are unique to this function, keywords that are intended for use by
1773
    # nyquist_response (if data is a list of systems), or keywords that
1774
    # are intended for the plotting commands.
1775
    #
1776
    # We first pop off all keywords that are used directly by this
1777
    # function.  If data is a list of systems, when then pop off keywords
1778
    # that correspond to nyquist_response() keywords.  The remaining
1779
    # keywords are passed to matplotlib (and will generate an error if
1780
    # unrecognized).
1781
    #
1782

1783
    # Get values for params (and pop from list to allow keyword use in plot)
1784
    arrows = config._get_param(
9✔
1785
        'nyquist', 'arrows', kwargs, _nyquist_defaults, pop=True)
1786
    arrow_size = config._get_param(
9✔
1787
        'nyquist', 'arrow_size', kwargs, _nyquist_defaults, pop=True)
1788
    arrow_style = config._get_param('nyquist', 'arrow_style', kwargs, None)
9✔
1789
    ax_user = ax
9✔
1790
    max_curve_magnitude = config._get_param(
9✔
1791
        'nyquist', 'max_curve_magnitude', kwargs, _nyquist_defaults, pop=True)
1792
    blend_fraction = config._get_param(
9✔
1793
        'nyquist', 'blend_fraction', kwargs, _nyquist_defaults, pop=True)
1794
    max_curve_offset = config._get_param(
9✔
1795
        'nyquist', 'max_curve_offset', kwargs, _nyquist_defaults, pop=True)
1796
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
1797
    start_marker = config._get_param(
9✔
1798
        'nyquist', 'start_marker', kwargs, _nyquist_defaults, pop=True)
1799
    start_marker_size = config._get_param(
9✔
1800
        'nyquist', 'start_marker_size', kwargs, _nyquist_defaults, pop=True)
1801
    title_frame = config._get_param(
9✔
1802
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
1803

1804
    # Set line styles for the curves
1805
    def _parse_linestyle(style_name, allow_false=False):
9✔
1806
        style = config._get_param(
9✔
1807
            'nyquist', style_name, kwargs, _nyquist_defaults, pop=True)
1808
        if isinstance(style, str):
9✔
1809
            # Only one style provided, use the default for the other
1810
            style = [style, _nyquist_defaults['nyquist.' + style_name][1]]
9✔
1811
            warnings.warn(
9✔
1812
                "use of a single string for linestyle will be deprecated "
1813
                " in a future release", PendingDeprecationWarning)
1814
        if (allow_false and style is False) or \
9✔
1815
           (isinstance(style, list) and len(style) == 2):
1816
            return style
9✔
1817
        else:
1818
            raise ValueError(f"invalid '{style_name}': {style}")
9✔
1819

1820
    primary_style = _parse_linestyle('primary_style')
9✔
1821
    mirror_style = _parse_linestyle('mirror_style', allow_false=True)
9✔
1822

1823
    # Parse the arrows keyword
1824
    if not arrows:
9✔
1825
        arrow_pos = []
9✔
1826
    elif isinstance(arrows, int):
9✔
1827
        N = arrows
9✔
1828
        # Space arrows out, starting midway along each "region"
1829
        arrow_pos = np.linspace(0.5/N, 1 + 0.5/N, N, endpoint=False)
9✔
1830
    elif isinstance(arrows, (list, np.ndarray)):
9✔
1831
        arrow_pos = np.sort(np.atleast_1d(arrows))
9✔
1832
    else:
1833
        raise ValueError("unknown or unsupported arrow location")
9✔
1834

1835
    # Set the arrow style
1836
    if arrow_style is None:
9✔
1837
        arrow_style = mpl.patches.ArrowStyle(
9✔
1838
            'simple', head_width=arrow_size, head_length=arrow_size)
1839

1840
    # If argument was a singleton, turn it into a tuple
1841
    if not isinstance(data, (list, tuple)):
9✔
1842
        data = [data]
9✔
1843

1844
    # Process label keyword
1845
    line_labels = _process_line_labels(label, len(data))
9✔
1846

1847
    # If we are passed a list of systems, compute response first
1848
    if all([isinstance(
9✔
1849
            sys, (StateSpace, TransferFunction, FrequencyResponseData))
1850
            for sys in data]):
1851
        # Get the response; pop explicit keywords here, kwargs in _response()
1852
        nyquist_responses = nyquist_response(
9✔
1853
            data, omega=omega, return_contour=return_contour,
1854
            omega_limits=kwargs.pop('omega_limits', None),
1855
            omega_num=kwargs.pop('omega_num', None),
1856
            warn_encirclements=kwargs.pop('warn_encirclements', True),
1857
            warn_nyquist=kwargs.pop('warn_nyquist', True),
1858
            _kwargs=kwargs, _check_kwargs=False)
1859
    else:
1860
        nyquist_responses = data
9✔
1861

1862
    # Legacy return value processing
1863
    if plot is not None or return_contour is not None:
9✔
1864
        warnings.warn(
9✔
1865
            "nyquist_plot() return value of count[, contour] is deprecated; "
1866
            "use nyquist_response()", FutureWarning)
1867

1868
        # Extract out the values that we will eventually return
1869
        counts = [response.count for response in nyquist_responses]
9✔
1870
        contours = [response.contour for response in nyquist_responses]
9✔
1871

1872
    if plot is False:
9✔
1873
        # Make sure we used all of the keywords
1874
        if kwargs:
9✔
1875
            raise TypeError("unrecognized keywords: ", str(kwargs))
×
1876

1877
        if len(data) == 1:
9✔
1878
            counts, contours = counts[0], contours[0]
9✔
1879

1880
        # Return counts and (optionally) the contour we used
1881
        return (counts, contours) if return_contour else counts
9✔
1882

1883
    fig, ax = _process_ax_keyword(
9✔
1884
        ax_user, shape=(1, 1), squeeze=True, rcParams=rcParams)
1885
    legend_loc, _, show_legend = _process_legend_keywords(
9✔
1886
        kwargs, None, 'upper right')
1887

1888
    # Figure out where the blended curve should start
1889
    if blend_fraction < 0 or blend_fraction > 1:
9✔
1890
        raise ValueError("blend_fraction must be between 0 and 1")
9✔
1891
    blend_curve_start = (1 - blend_fraction) * max_curve_magnitude
9✔
1892

1893
    # Create a list of lines for the output
1894
    out = np.empty((len(nyquist_responses), 4), dtype=object)
9✔
1895
    for i in range(len(nyquist_responses)):
9✔
1896
        for j in range(4):
9✔
1897
            out[i, j] = []      # unique list in each element
9✔
1898

1899
    for idx, response in enumerate(nyquist_responses):
9✔
1900
        resp = response.response
9✔
1901
        if response.dt in [0, None]:
9✔
1902
            splane_contour = response.contour
9✔
1903
        else:
1904
            splane_contour = np.log(response.contour) / response.dt
9✔
1905

1906
        # Find the different portions of the curve (with scaled pts marked)
1907
        reg_mask = np.logical_or(
9✔
1908
            np.abs(resp) > blend_curve_start,
1909
            np.logical_not(np.isclose(splane_contour.real, 0)))
1910

1911
        scale_mask = ~reg_mask \
9✔
1912
            & np.concatenate((~reg_mask[1:], ~reg_mask[-1:])) \
1913
            & np.concatenate((~reg_mask[0:1], ~reg_mask[:-1]))
1914

1915
        # Rescale the points with large magnitude
1916
        rescale_idx = (np.abs(resp) > blend_curve_start)
9✔
1917

1918
        if np.any(rescale_idx):  # Only process if rescaling is needed
9✔
1919
            subset = resp[rescale_idx]
9✔
1920
            abs_subset = np.abs(subset)
9✔
1921
            unit_vectors = subset / abs_subset  # Preserve phase/direction
9✔
1922

1923
            if blend_curve_start == max_curve_magnitude:
9✔
1924
                # Clip at max_curve_magnitude
1925
                resp[rescale_idx] = max_curve_magnitude * unit_vectors
9✔
1926
            else:
1927
                # Logistic scaling
1928
                newmag = blend_curve_start + \
9✔
1929
                    (max_curve_magnitude - blend_curve_start) * \
1930
                    (abs_subset - blend_curve_start) / \
1931
                    (abs_subset + max_curve_magnitude - 2 * blend_curve_start)
1932
                resp[rescale_idx] = newmag * unit_vectors
9✔
1933

1934
        # Get the label to use for the line
1935
        label = response.sysname if line_labels is None else line_labels[idx]
9✔
1936

1937
        # Plot the regular portions of the curve (and grab the color)
1938
        x_reg = np.ma.masked_where(reg_mask, resp.real)
9✔
1939
        y_reg = np.ma.masked_where(reg_mask, resp.imag)
9✔
1940
        p = ax.plot(
9✔
1941
            x_reg, y_reg, primary_style[0], color=color, label=label, **kwargs)
1942
        c = p[0].get_color()
9✔
1943
        out[idx, 0] += p
9✔
1944

1945
        # Figure out how much to offset the curve: the offset goes from
1946
        # zero at the start of the scaled section to max_curve_offset as
1947
        # we move along the curve
1948
        curve_offset = _compute_curve_offset(
9✔
1949
            resp, scale_mask, max_curve_offset)
1950

1951
        # Plot the scaled sections of the curve (changing linestyle)
1952
        x_scl = np.ma.masked_where(scale_mask, resp.real)
9✔
1953
        y_scl = np.ma.masked_where(scale_mask, resp.imag)
9✔
1954
        if x_scl.count() >= 1 and y_scl.count() >= 1:
9✔
1955
            out[idx, 1] += ax.plot(
9✔
1956
                x_scl * (1 + curve_offset),
1957
                y_scl * (1 + curve_offset),
1958
                primary_style[1], color=c, **kwargs)
1959
        else:
1960
            out[idx, 1] += [None]
9✔
1961

1962
        # Plot the primary curve (invisible) for setting arrows
1963
        x, y = resp.real.copy(), resp.imag.copy()
9✔
1964
        x[reg_mask] *= (1 + curve_offset[reg_mask])
9✔
1965
        y[reg_mask] *= (1 + curve_offset[reg_mask])
9✔
1966
        p = ax.plot(x, y, linestyle='None', color=c)
9✔
1967

1968
        # Add arrows
1969
        _add_arrows_to_line2D(
9✔
1970
            ax, p[0], arrow_pos, arrowstyle=arrow_style, dir=1)
1971

1972
        # Plot the mirror image
1973
        if mirror_style is not False:
9✔
1974
            # Plot the regular and scaled segments
1975
            out[idx, 2] += ax.plot(
9✔
1976
                x_reg, -y_reg, mirror_style[0], color=c, **kwargs)
1977
            if x_scl.count() >= 1 and y_scl.count() >= 1:
9✔
1978
                out[idx, 3] += ax.plot(
9✔
1979
                    x_scl * (1 - curve_offset),
1980
                    -y_scl * (1 - curve_offset),
1981
                    mirror_style[1], color=c, **kwargs)
1982
            else:
1983
                out[idx, 3] += [None]
9✔
1984

1985
            # Add the arrows (on top of an invisible contour)
1986
            x, y = resp.real.copy(), resp.imag.copy()
9✔
1987
            x[reg_mask] *= (1 - curve_offset[reg_mask])
9✔
1988
            y[reg_mask] *= (1 - curve_offset[reg_mask])
9✔
1989
            p = ax.plot(x, -y, linestyle='None', color=c, **kwargs)
9✔
1990
            _add_arrows_to_line2D(
9✔
1991
                ax, p[0], arrow_pos, arrowstyle=arrow_style, dir=-1)
1992
        else:
1993
            out[idx, 2] += [None]
9✔
1994
            out[idx, 3] += [None]
9✔
1995

1996
        # Mark the start of the curve
1997
        if start_marker:
9✔
1998
            segment = 0 if 0 in rescale_idx else 1      # regular vs scaled
9✔
1999
            out[idx, segment] += ax.plot(
9✔
2000
                resp[0].real, resp[0].imag, start_marker,
2001
                color=c, markersize=start_marker_size)
2002

2003
        # Mark the -1 point
2004
        ax.plot([-1], [0], 'r+')
9✔
2005

2006
        #
2007
        # Draw circles for gain crossover and sensitivity functions
2008
        #
2009
        theta = np.linspace(0, 2*np.pi, 100)
9✔
2010
        cos = np.cos(theta)
9✔
2011
        sin = np.sin(theta)
9✔
2012
        label_pos = 15
9✔
2013

2014
        # Display the unit circle, to read gain crossover frequency
2015
        if unit_circle:
9✔
2016
            ax.plot(cos, sin, **config.defaults['nyquist.circle_style'])
9✔
2017

2018
        # Draw circles for given magnitudes of sensitivity
2019
        if ms_circles is not None:
9✔
2020
            for ms in ms_circles:
9✔
2021
                pos_x = -1 + (1/ms)*cos
9✔
2022
                pos_y = (1/ms)*sin
9✔
2023
                ax.plot(
9✔
2024
                    pos_x, pos_y, **config.defaults['nyquist.circle_style'])
2025
                ax.text(pos_x[label_pos], pos_y[label_pos], ms)
9✔
2026

2027
        # Draw circles for given magnitudes of complementary sensitivity
2028
        if mt_circles is not None:
9✔
2029
            for mt in mt_circles:
9✔
2030
                if mt != 1:
9✔
2031
                    ct = -mt**2/(mt**2-1)  # Mt center
9✔
2032
                    rt = mt/(mt**2-1)  # Mt radius
9✔
2033
                    pos_x = ct+rt*cos
9✔
2034
                    pos_y = rt*sin
9✔
2035
                    ax.plot(
9✔
2036
                        pos_x, pos_y,
2037
                        **config.defaults['nyquist.circle_style'])
2038
                    ax.text(pos_x[label_pos], pos_y[label_pos], mt)
9✔
2039
                else:
2040
                    _, _, ymin, ymax = ax.axis()
9✔
2041
                    pos_y = np.linspace(ymin, ymax, 100)
9✔
2042
                    ax.vlines(
9✔
2043
                        -0.5, ymin=ymin, ymax=ymax,
2044
                        **config.defaults['nyquist.circle_style'])
2045
                    ax.text(-0.5, pos_y[label_pos], 1)
9✔
2046

2047
        # Label the frequencies of the points on the Nyquist curve
2048
        if label_freq:
9✔
2049
            ind = slice(None, None, label_freq)
9✔
2050
            omega_sys = np.imag(splane_contour[np.real(splane_contour) == 0])
9✔
2051
            for xpt, ypt, omegapt in zip(x[ind], y[ind], omega_sys[ind]):
9✔
2052
                # Convert to Hz
2053
                f = omegapt / (2 * np.pi)
9✔
2054

2055
                # Factor out multiples of 1000 and limit the
2056
                # result to the range [-8, 8].
2057
                pow1000 = max(min(get_pow1000(f), 8), -8)
9✔
2058

2059
                # Get the SI prefix.
2060
                prefix = gen_prefix(pow1000)
9✔
2061

2062
                # Apply the text. (Use a space before the text to
2063
                # prevent overlap with the data.)
2064
                #
2065
                # np.round() is used because 0.99... appears
2066
                # instead of 1.0, and this would otherwise be
2067
                # truncated to 0.
2068
                ax.text(xpt, ypt, ' ' +
9✔
2069
                         str(int(np.round(f / 1000 ** pow1000, 0))) + ' ' +
2070
                         prefix + 'Hz')
2071

2072
    # Label the axes
2073
    ax.set_xlabel("Real axis")
9✔
2074
    ax.set_ylabel("Imaginary axis")
9✔
2075
    ax.grid(color="lightgray")
9✔
2076

2077
    # List of systems that are included in this plot
2078
    lines, labels = _get_line_labels(ax)
9✔
2079

2080
    # Add legend if there is more than one system plotted
2081
    if show_legend == True or (show_legend != False and len(labels) > 1):
9✔
2082
        with plt.rc_context(rcParams):
9✔
2083
            legend = ax.legend(lines, labels, loc=legend_loc)
9✔
2084
    else:
2085
        legend = None
9✔
2086

2087
    # Add the title
2088
    sysnames = [response.sysname for response in nyquist_responses]
9✔
2089
    if ax_user is None and title is None:
9✔
2090
        title = "Nyquist plot for " + ", ".join(sysnames)
9✔
2091
        _update_plot_title(
9✔
2092
            title, fig=fig, rcParams=rcParams, frame=title_frame)
2093
    elif ax_user is None:
9✔
2094
        _update_plot_title(
9✔
2095
            title, fig=fig, rcParams=rcParams, frame=title_frame,
2096
            use_existing=False)
2097

2098
    # Legacy return processing
2099
    if plot is True or return_contour is not None:
9✔
2100
        if len(data) == 1:
9✔
2101
            counts, contours = counts[0], contours[0]
9✔
2102

2103
        # Return counts and (optionally) the contour we used
2104
        return (counts, contours) if return_contour else counts
9✔
2105

2106
    return ControlPlot(out, ax, fig, legend=legend)
9✔
2107

2108

2109
#
2110
# Function to compute Nyquist curve offsets
2111
#
2112
# This function computes a smoothly varying offset that starts and ends at
2113
# zero at the ends of a scaled segment.
2114
#
2115
def _compute_curve_offset(resp, mask, max_offset):
9✔
2116
    # Compute the arc length along the curve
2117
    s_curve = np.cumsum(
9✔
2118
        np.sqrt(np.diff(resp.real) ** 2 + np.diff(resp.imag) ** 2))
2119

2120
    # Initialize the offset
2121
    offset = np.zeros(resp.size)
9✔
2122
    arclen = np.zeros(resp.size)
9✔
2123

2124
    # Walk through the response and keep track of each continuous component
2125
    i, nsegs = 0, 0
9✔
2126
    while i < resp.size:
9✔
2127
        # Skip the regular segment
2128
        while i < resp.size and mask[i]:
9✔
2129
            i += 1              # Increment the counter
9✔
2130
            if i == resp.size:
9✔
2131
                break
9✔
2132
            # Keep track of the arclength
2133
            arclen[i] = arclen[i-1] + np.abs(resp[i] - resp[i-1])
9✔
2134

2135
        nsegs += 0.5
9✔
2136
        if i == resp.size:
9✔
2137
            break
9✔
2138

2139
        # Save the starting offset of this segment
2140
        seg_start = i
9✔
2141

2142
        # Walk through the scaled segment
2143
        while i < resp.size and not mask[i]:
9✔
2144
            i += 1
9✔
2145
            if i == resp.size:  # See if we are done with this segment
9✔
2146
                break
×
2147
            # Keep track of the arclength
2148
            arclen[i] = arclen[i-1] + np.abs(resp[i] - resp[i-1])
9✔
2149

2150
        nsegs += 0.5
9✔
2151
        if i == resp.size:
9✔
2152
            break
×
2153

2154
        # Save the ending offset of this segment
2155
        seg_end = i
9✔
2156

2157
        # Now compute the scaling for this segment
2158
        s_segment = arclen[seg_end-1] - arclen[seg_start]
9✔
2159
        offset[seg_start:seg_end] = max_offset * s_segment/s_curve[-1] * \
9✔
2160
            np.sin(np.pi * (arclen[seg_start:seg_end]
2161
                            - arclen[seg_start])/s_segment)
2162

2163
    return offset
9✔
2164

2165

2166
#
2167
# Gang of Four plot
2168
#
2169
def gangof4_response(
9✔
2170
        P, C, omega=None, omega_limits=None, omega_num=None, Hz=False):
2171
    """Compute response of "Gang of 4" transfer functions.
2172

2173
    Generates a 2x2 frequency response for the "Gang of 4" sensitivity
2174
    functions [T, PS; CS, S].
2175

2176
    Parameters
2177
    ----------
2178
    P, C : LTI
2179
        Linear input/output systems (process and control).
2180
    omega : array
2181
        Range of frequencies (list or bounds) in rad/sec.
2182
    omega_limits : array_like of two values
2183
        Set limits for plotted frequency range. If Hz=True the limits are
2184
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2185
        elements is equivalent to providing `omega_limits`. Ignored if
2186
        data is not a list of systems.
2187
    omega_num : int
2188
        Number of samples to use for the frequency range.  Defaults to
2189
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
2190
        not a list of systems.
2191
    Hz : bool, optional
2192
        If True, when computing frequency limits automatically set
2193
        limits to full decades in Hz instead of rad/s.
2194

2195
    Returns
2196
    -------
2197
    response : `FrequencyResponseData`
2198
        Frequency response with inputs 'r' and 'd' and outputs 'y', and 'u'
2199
        representing the 2x2 matrix of transfer functions in the Gang of 4.
2200

2201
    Examples
2202
    --------
2203
    >>> P = ct.tf([1], [1, 1])
2204
    >>> C = ct.tf([2], [1])
2205
    >>> response = ct.gangof4_response(P, C)
2206
    >>> cplt = response.plot()
2207

2208
    """
2209
    if not P.issiso() or not C.issiso():
9✔
2210
        # TODO: Add MIMO go4 plots.
2211
        raise ControlMIMONotImplemented(
×
2212
            "Gang of four is currently only implemented for SISO systems.")
2213

2214
    # Compute the sensitivity functions
2215
    L = P * C
9✔
2216
    S = feedback(1, L)
9✔
2217
    T = L * S
9✔
2218

2219
    # Select a default range if none is provided
2220
    # TODO: This needs to be made more intelligent
2221
    omega, _ = _determine_omega_vector(
9✔
2222
        [P, C, S], omega, omega_limits, omega_num, Hz=Hz)
2223

2224
    #
2225
    # bode_plot based implementation
2226
    #
2227

2228
    # Compute the response of the Gang of 4
2229
    resp_T = T(1j * omega)
9✔
2230
    resp_PS = (P * S)(1j * omega)
9✔
2231
    resp_CS = (C * S)(1j * omega)
9✔
2232
    resp_S = S(1j * omega)
9✔
2233

2234
    # Create a single frequency response data object with the underlying data
2235
    data = np.empty((2, 2, omega.size), dtype=complex)
9✔
2236
    data[0, 0, :] = resp_T
9✔
2237
    data[0, 1, :] = resp_PS
9✔
2238
    data[1, 0, :] = resp_CS
9✔
2239
    data[1, 1, :] = resp_S
9✔
2240

2241
    return FrequencyResponseData(
9✔
2242
        data, omega, outputs=['y', 'u'], inputs=['r', 'd'],
2243
        title=f"Gang of Four for P={P.name}, C={C.name}",
2244
        sysname=f"P={P.name}, C={C.name}", plot_phase=False)
2245

2246

2247
def gangof4_plot(
9✔
2248
        *args, omega=None, omega_limits=None, omega_num=None,
2249
        Hz=False, **kwargs):
2250
    """gangof4_plot(response) \
2251
    gangof4_plot(P, C, omega)
2252

2253
    Plot response of "Gang of 4" transfer functions.
2254

2255
    Plots a 2x2 frequency response for the "Gang of 4" sensitivity
2256
    functions [T, PS; CS, S].  Can be called in one of two ways:
2257

2258
        gangof4_plot(response[, ...])
2259
        gangof4_plot(P, C[, ...])
2260

2261
    Parameters
2262
    ----------
2263
    response : FrequencyPlotData
2264
        Gang of 4 frequency response from `gangof4_response`.
2265
    P, C : LTI
2266
        Linear input/output systems (process and control).
2267
    omega : array
2268
        Range of frequencies (list or bounds) in rad/sec.
2269
    omega_limits : array_like of two values
2270
        Set limits for plotted frequency range. If Hz=True the limits are
2271
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2272
        elements is equivalent to providing `omega_limits`. Ignored if
2273
        data is not a list of systems.
2274
    omega_num : int
2275
        Number of samples to use for the frequency range.  Defaults to
2276
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
2277
        not a list of systems.
2278
    Hz : bool, optional
2279
        If True, when computing frequency limits automatically set
2280
        limits to full decades in Hz instead of rad/s.
2281

2282
    Returns
2283
    -------
2284
    cplt : `ControlPlot` object
2285
        Object containing the data that were plotted.  See `ControlPlot`
2286
        for more detailed information.
2287
    cplt.lines : 2x2 array of `matplotlib.lines.Line2D`
2288
        Array containing information on each line in the plot.  The value
2289
        of each array entry is a list of Line2D objects in that subplot.
2290
    cplt.axes : 2D array of `matplotlib.axes.Axes`
2291
        Axes for each subplot.
2292
    cplt.figure : `matplotlib.figure.Figure`
2293
        Figure containing the plot.
2294
    cplt.legend : 2D array of `matplotlib.legend.Legend`
2295
        Legend object(s) contained in the plot.
2296

2297
    """
2298
    if len(args) == 1 and isinstance(args[0], FrequencyResponseData):
9✔
2299
        if any([kw is not None
×
2300
                for kw in [omega, omega_limits, omega_num, Hz]]):
2301
            raise ValueError(
×
2302
                "omega, omega_limits, omega_num, Hz not allowed when "
2303
                "given a Gang of 4 response as first argument")
2304
        return args[0].plot(kwargs)
×
2305
    else:
2306
        if len(args) > 3:
9✔
2307
            raise TypeError(
×
2308
                f"expecting 2 or 3 positional arguments; received {len(args)}")
2309
        omega = omega if len(args) < 3 else args[2]
9✔
2310
        args = args[0:2]
9✔
2311
        return gangof4_response(
9✔
2312
            *args, omega=omega, omega_limits=omega_limits,
2313
            omega_num=omega_num, Hz=Hz).plot(**kwargs)
2314

2315

2316
#
2317
# Singular values plot
2318
#
2319
def singular_values_response(
9✔
2320
        sysdata, omega=None, omega_limits=None, omega_num=None, Hz=False):
2321
    """Singular value response for a system.
2322

2323
    Computes the singular values for a system or list of systems over
2324
    a (optional) frequency range.
2325

2326
    Parameters
2327
    ----------
2328
    sysdata : LTI or list of LTI
2329
        List of linear input/output systems (single system is OK).
2330
    omega : array_like
2331
        List of frequencies in rad/sec to be used for frequency response.
2332
    Hz : bool, optional
2333
        If True, when computing frequency limits automatically set
2334
        limits to full decades in Hz instead of rad/s.
2335

2336
    Returns
2337
    -------
2338
    response : `FrequencyResponseData`
2339
        Frequency response with the number of outputs equal to the
2340
        number of singular values in the response, and a single input.
2341

2342
    Other Parameters
2343
    ----------------
2344
    omega_limits : array_like of two values
2345
        Set limits for plotted frequency range. If Hz=True the limits are
2346
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2347
        elements is equivalent to providing `omega_limits`.
2348
    omega_num : int, optional
2349
        Number of samples to use for the frequency range.  Defaults to
2350
        `config.defaults['freqplot.number_of_samples']`.
2351

2352
    See Also
2353
    --------
2354
    singular_values_plot
2355

2356
    Examples
2357
    --------
2358
    >>> omegas = np.logspace(-4, 1, 1000)
2359
    >>> den = [75, 1]
2360
    >>> G = ct.tf([[[87.8], [-86.4]], [[108.2], [-109.6]]],
2361
    ...           [[den, den], [den, den]])
2362
    >>> response = ct.singular_values_response(G, omega=omegas)
2363

2364
    """
2365
    # Convert the first argument to a list
2366
    syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata]
9✔
2367

2368
    if any([not isinstance(sys, LTI) for sys in syslist]):
9✔
2369
        ValueError("singular values can only be computed for LTI systems")
×
2370

2371
    # Compute the frequency responses for the systems
2372
    responses = frequency_response(
9✔
2373
        syslist, omega=omega, omega_limits=omega_limits,
2374
        omega_num=omega_num, Hz=Hz, squeeze=False)
2375

2376
    # Calculate the singular values for each system in the list
2377
    svd_responses = []
9✔
2378
    for response in responses:
9✔
2379
        # Compute the singular values (permute indices to make things work)
2380
        fresp_permuted = response.frdata.transpose((2, 0, 1))
9✔
2381
        sigma = np.linalg.svd(fresp_permuted, compute_uv=False).transpose()
9✔
2382
        sigma_fresp = sigma.reshape(sigma.shape[0], 1, sigma.shape[1])
9✔
2383

2384
        # Save the singular values as an FRD object
2385
        svd_responses.append(
9✔
2386
            FrequencyResponseData(
2387
                sigma_fresp, response.omega, _return_singvals=True,
2388
                outputs=[f'$\\sigma_{{{k+1}}}$' for k in range(sigma.shape[0])],
2389
                inputs='inputs', dt=response.dt, plot_phase=False,
2390
                sysname=response.sysname, plot_type='svplot',
2391
                title=f"Singular values for {response.sysname}"))
2392

2393
    if isinstance(sysdata, (list, tuple)):
9✔
2394
        return FrequencyResponseList(svd_responses)
9✔
2395
    else:
2396
        return svd_responses[0]
9✔
2397

2398

2399
def singular_values_plot(
9✔
2400
        data, omega=None, *fmt, plot=None, omega_limits=None, omega_num=None,
2401
        ax=None, label=None, title=None, **kwargs):
2402
    """Plot the singular values for a system.
2403

2404
    Plot the singular values as a function of frequency for a system or
2405
    list of systems.  If multiple systems are plotted, each system in the
2406
    list is plotted in a different color.
2407

2408
    Parameters
2409
    ----------
2410
    data : list of `FrequencyResponseData`
2411
        List of `FrequencyResponseData` objects.  For backward
2412
        compatibility, a list of LTI systems can also be given.
2413
    omega : array_like
2414
        List of frequencies in rad/sec over to plot over.
2415
    *fmt : `matplotlib.pyplot.plot` format string, optional
2416
        Passed to `matplotlib` as the format string for all lines in the plot.
2417
        The `omega` parameter must be present (use omega=None if needed).
2418
    dB : bool
2419
        If True, plot result in dB.  Default is False.
2420
    Hz : bool
2421
        If True, plot frequency in Hz (omega must be provided in rad/sec).
2422
        Default value (False) set by `config.defaults['freqplot.Hz']`.
2423
    **kwargs : `matplotlib.pyplot.plot` keyword properties, optional
2424
        Additional keywords passed to `matplotlib` to specify line properties.
2425

2426
    Returns
2427
    -------
2428
    cplt : `ControlPlot` object
2429
        Object containing the data that were plotted.  See `ControlPlot`
2430
        for more detailed information.
2431
    cplt.lines : array of `matplotlib.lines.Line2D`
2432
        Array containing information on each line in the plot.  The size of
2433
        the array matches the number of systems and the value of the array
2434
        is a list of Line2D objects for that system.
2435
    cplt.axes : 2D array of `matplotlib.axes.Axes`
2436
        Axes for each subplot.
2437
    cplt.figure : `matplotlib.figure.Figure`
2438
        Figure containing the plot.
2439
    cplt.legend : 2D array of `matplotlib.legend.Legend`
2440
        Legend object(s) contained in the plot.
2441

2442
    Other Parameters
2443
    ----------------
2444
    ax : `matplotlib.axes.Axes`, optional
2445
        The matplotlib axes to draw the figure on.  If not specified and
2446
        the current figure has a single axes, that axes is used.
2447
        Otherwise, a new figure is created.
2448
    color : matplotlib color spec
2449
        Color to use for singular values (or None for matplotlib default).
2450
    grid : bool
2451
        If True, plot grid lines on gain and phase plots.  Default is
2452
        set by `config.defaults['freqplot.grid']`.
2453
    label : str or array_like of str, optional
2454
        If present, replace automatically generated label(s) with the given
2455
        label(s).  If sysdata is a list, strings should be specified for each
2456
        system.
2457
    legend_loc : int or str, optional
2458
        Include a legend in the given location. Default is 'center right',
2459
        with no legend for a single response.  Use False to suppress legend.
2460
    omega_limits : array_like of two values
2461
        Set limits for plotted frequency range. If Hz=True the limits are
2462
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2463
        elements is equivalent to providing `omega_limits`.
2464
    omega_num : int, optional
2465
        Number of samples to use for the frequency range.  Defaults to
2466
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
2467
        not a list of systems.
2468
    plot : bool, optional
2469
        (legacy) If given, `singular_values_plot` returns the legacy return
2470
        values of magnitude, phase, and frequency.  If False, just return
2471
        the values with no plot.
2472
    rcParams : dict
2473
        Override the default parameters used for generating plots.
2474
        Default is set up `config.defaults['ctrlplot.rcParams']`.
2475
    show_legend : bool, optional
2476
        Force legend to be shown if True or hidden if False.  If
2477
        None, then show legend when there is more than one line on an
2478
        axis or `legend_loc` or `legend_map` has been specified.
2479
    title : str, optional
2480
        Set the title of the plot.  Defaults to plot type and system name(s).
2481
    title_frame : str, optional
2482
        Set the frame of reference used to center the plot title. If set to
2483
        'axes' (default), the horizontal position of the title will
2484
        centered relative to the axes.  If set to 'figure', it will be
2485
        centered with respect to the figure (faster execution).
2486

2487
    See Also
2488
    --------
2489
    singular_values_response
2490

2491
    Notes
2492
    -----
2493
    If `plot` = False, the following legacy values are returned:
2494
       * `mag` : ndarray (or list of ndarray if len(data) > 1))
2495
           Magnitude of the response (deprecated).
2496
       * `phase` : ndarray (or list of ndarray if len(data) > 1))
2497
           Phase in radians of the response (deprecated).
2498
       * `omega` : ndarray (or list of ndarray if len(data) > 1))
2499
           Frequency in rad/sec (deprecated).
2500

2501
    """
2502
    # Keyword processing
2503
    color = kwargs.pop('color', None)
9✔
2504
    dB = config._get_param(
9✔
2505
        'freqplot', 'dB', kwargs, _freqplot_defaults, pop=True)
2506
    Hz = config._get_param(
9✔
2507
        'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True)
2508
    grid = config._get_param(
9✔
2509
        'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True)
2510
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
2511
    title_frame = config._get_param(
9✔
2512
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
2513

2514
    # If argument was a singleton, turn it into a tuple
2515
    data = data if isinstance(data, (list, tuple)) else (data,)
9✔
2516

2517
    # Convert systems into frequency responses
2518
    if any([isinstance(response, (StateSpace, TransferFunction))
9✔
2519
            for response in data]):
2520
        responses = singular_values_response(
9✔
2521
                    data, omega=omega, omega_limits=omega_limits,
2522
                    omega_num=omega_num)
2523
    else:
2524
        # Generate warnings if frequency keywords were given
2525
        if omega_num is not None:
9✔
2526
            warnings.warn("`omega_num` ignored when passed response data")
9✔
2527
        elif omega is not None:
9✔
2528
            warnings.warn("`omega` ignored when passed response data")
9✔
2529

2530
        # Check to make sure omega_limits is sensible
2531
        if omega_limits is not None and \
9✔
2532
           (len(omega_limits) != 2 or omega_limits[1] <= omega_limits[0]):
2533
            raise ValueError(f"invalid limits: {omega_limits=}")
9✔
2534

2535
        responses = data
9✔
2536

2537
    # Process label keyword
2538
    line_labels = _process_line_labels(label, len(data))
9✔
2539

2540
    # Process (legacy) plot keyword
2541
    if plot is not None:
9✔
2542
        warnings.warn(
×
2543
            "`singular_values_plot` return values of sigma, omega is "
2544
            "deprecated; use singular_values_response()", FutureWarning)
2545

2546
    # Warn the user if we got past something that is not real-valued
2547
    if any([not np.allclose(np.imag(response.frdata[:, 0, :]), 0)
9✔
2548
            for response in responses]):
2549
        warnings.warn("data has non-zero imaginary component")
×
2550

2551
    # Extract the data we need for plotting
2552
    sigmas = [np.real(response.frdata[:, 0, :]) for response in responses]
9✔
2553
    omegas = [response.omega for response in responses]
9✔
2554

2555
    # Legacy processing for no plotting case
2556
    if plot is False:
9✔
2557
        if len(data) == 1:
×
2558
            return sigmas[0], omegas[0]
×
2559
        else:
2560
            return sigmas, omegas
×
2561

2562
    fig, ax_sigma = _process_ax_keyword(
9✔
2563
        ax, shape=(1, 1), squeeze=True, rcParams=rcParams)
2564
    ax_sigma.set_label('control-sigma')         # TODO: deprecate?
9✔
2565
    legend_loc, _, show_legend = _process_legend_keywords(
9✔
2566
        kwargs, None, 'center right')
2567

2568
    # Get color offset for first (new) line to be drawn
2569
    color_offset, color_cycle = _get_color_offset(ax_sigma)
9✔
2570

2571
    # Create a list of lines for the output
2572
    out = np.empty(len(data), dtype=object)
9✔
2573

2574
    # Plot the singular values for each response
2575
    for idx_sys, response in enumerate(responses):
9✔
2576
        sigma = sigmas[idx_sys].transpose()     # frequency first for plotting
9✔
2577
        omega = omegas[idx_sys] / (2 * math.pi) if Hz else  omegas[idx_sys]
9✔
2578

2579
        if response.isdtime(strict=True):
9✔
2580
            nyq_freq = (0.5/response.dt) if Hz else (math.pi/response.dt)
9✔
2581
        else:
2582
            nyq_freq = None
9✔
2583

2584
        # Determine the color to use for this response
2585
        current_color = _get_color(
9✔
2586
            color, fmt=fmt, offset=color_offset + idx_sys,
2587
            color_cycle=color_cycle)
2588

2589
        # To avoid conflict with *fmt, only pass color kw if non-None
2590
        color_arg = {} if current_color is None else {'color': current_color}
9✔
2591

2592
        # Decide on the system name
2593
        sysname = response.sysname if response.sysname is not None \
9✔
2594
            else f"Unknown-{idx_sys}"
2595

2596
        # Get the label to use for the line
2597
        label = sysname if line_labels is None else line_labels[idx_sys]
9✔
2598

2599
        # Plot the data
2600
        if dB:
9✔
2601
            out[idx_sys] = ax_sigma.semilogx(
9✔
2602
                omega, 20 * np.log10(sigma), *fmt,
2603
                label=label, **color_arg, **kwargs)
2604
        else:
2605
            out[idx_sys] = ax_sigma.loglog(
9✔
2606
                omega, sigma, label=label, *fmt, **color_arg, **kwargs)
2607

2608
        # Plot the Nyquist frequency
2609
        if nyq_freq is not None:
9✔
2610
            ax_sigma.axvline(
9✔
2611
                nyq_freq, linestyle='--', label='_nyq_freq_' + sysname,
2612
                **color_arg)
2613

2614
    # If specific omega_limits were given, use them
2615
    if omega_limits is not None:
9✔
2616
        ax_sigma.set_xlim(omega_limits)
9✔
2617

2618
    # Add a grid to the plot + labeling
2619
    if grid:
9✔
2620
        ax_sigma.grid(grid, which='both')
9✔
2621

2622
    ax_sigma.set_ylabel(
9✔
2623
        "Singular Values [dB]" if dB else "Singular Values")
2624
    ax_sigma.set_xlabel("Frequency [Hz]" if Hz else "Frequency [rad/sec]")
9✔
2625

2626
    # List of systems that are included in this plot
2627
    lines, labels = _get_line_labels(ax_sigma)
9✔
2628

2629
    # Add legend if there is more than one system plotted
2630
    if show_legend == True or (show_legend != False and len(labels) > 1):
9✔
2631
        with plt.rc_context(rcParams):
9✔
2632
            legend = ax_sigma.legend(lines, labels, loc=legend_loc)
9✔
2633
    else:
2634
        legend = None
9✔
2635

2636
    # Add the title
2637
    if ax is None:
9✔
2638
        if title is None:
9✔
2639
            title = "Singular values for " + ", ".join(labels)
9✔
2640
        _update_plot_title(
9✔
2641
            title, fig=fig, rcParams=rcParams, frame=title_frame,
2642
            use_existing=False)
2643

2644
    # Legacy return processing
2645
    if plot is not None:
9✔
2646
        if len(responses) == 1:
×
2647
            return sigmas[0], omegas[0]
×
2648
        else:
2649
            return sigmas, omegas
×
2650

2651
    return ControlPlot(out, ax_sigma, fig, legend=legend)
9✔
2652

2653
#
2654
# Utility functions
2655
#
2656
# This section of the code contains some utility functions for
2657
# generating frequency domain plots.
2658
#
2659

2660

2661
# Determine the frequency range to be used
2662
def _determine_omega_vector(syslist, omega_in, omega_limits, omega_num,
9✔
2663
                            Hz=None, feature_periphery_decades=None):
2664
    """Determine the frequency range for a frequency-domain plot
2665
    according to a standard logic.
2666

2667
    If `omega_in` and `omega_limits` are both None, then `omega_out` is
2668
    computed on `omega_num` points according to a default logic defined by
2669
    `_default_frequency_range` and tailored for the list of systems
2670
    syslist, and `omega_range_given` is set to False.
2671

2672
    If `omega_in` is None but `omega_limits` is a tuple of 2 elements, then
2673
    `omega_out` is computed with the function `numpy.logspace` on
2674
    `omega_num` points within the interval ``[min, max] = [omega_limits[0],
2675
    omega_limits[1]]``, and `omega_range_given` is set to True.
2676

2677
    If `omega_in` is a tuple of length 2, it is interpreted as a range and
2678
    handled like `omega_limits`.  If `omega_in` is a tuple of length 3, it
2679
    is interpreted a range plus number of points and handled like
2680
    `omega_limits` and `omega_num`.
2681

2682
    If `omega_in` is an array or a list/tuple of length greater than two,
2683
    then `omega_out` is set to `omega_in` (as an array), and
2684
    `omega_range_given` is set to True
2685

2686
    Parameters
2687
    ----------
2688
    syslist : list of LTI
2689
        List of linear input/output systems (single system is OK).
2690
    omega_in : 1D array_like or None
2691
        Frequency range specified by the user.
2692
    omega_limits : 1D array_like or None
2693
        Frequency limits specified by the user.
2694
    omega_num : int
2695
        Number of points to be used for the frequency range (if the
2696
        frequency range is not user-specified).
2697
    Hz : bool, optional
2698
        If True, the limits (first and last value) of the frequencies
2699
        are set to full decades in Hz so it fits plotting with logarithmic
2700
        scale in Hz otherwise in rad/s. Omega is always returned in rad/sec.
2701

2702
    Returns
2703
    -------
2704
    omega_out : 1D array
2705
        Frequency range to be used.
2706
    omega_range_given : bool
2707
        True if the frequency range was specified by the user, either through
2708
        omega_in or through omega_limits. False if both omega_in
2709
        and omega_limits are None.
2710

2711
    """
2712
    # Handle the special case of a range of frequencies
2713
    if omega_in is not None and omega_limits is not None:
9✔
2714
        warnings.warn(
×
2715
            "omega and omega_limits both specified; ignoring limits")
2716
    elif isinstance(omega_in, (list, tuple)) and len(omega_in) == 2:
9✔
2717
        omega_limits = omega_in
9✔
2718
        omega_in = None
9✔
2719

2720
    omega_range_given = True
9✔
2721
    if omega_in is None:
9✔
2722
        if omega_limits is None:
9✔
2723
            omega_range_given = False
9✔
2724
            # Select a default range if none is provided
2725
            omega_out = _default_frequency_range(
9✔
2726
                syslist, number_of_samples=omega_num, Hz=Hz,
2727
                feature_periphery_decades=feature_periphery_decades)
2728
        else:
2729
            omega_limits = np.asarray(omega_limits)
9✔
2730
            if len(omega_limits) != 2:
9✔
2731
                raise ValueError("len(omega_limits) must be 2")
×
2732
            omega_out = np.logspace(np.log10(omega_limits[0]),
9✔
2733
                                    np.log10(omega_limits[1]),
2734
                                    num=omega_num, endpoint=True)
2735
    else:
2736
        omega_out = np.copy(omega_in)
9✔
2737

2738
    return omega_out, omega_range_given
9✔
2739

2740

2741
# Compute reasonable defaults for axes
2742
def _default_frequency_range(syslist, Hz=None, number_of_samples=None,
9✔
2743
                             feature_periphery_decades=None):
2744
    """Compute a default frequency range for frequency domain plots.
2745

2746
    This code looks at the poles and zeros of all of the systems that
2747
    we are plotting and sets the frequency range to be one decade above
2748
    and below the min and max feature frequencies, rounded to the nearest
2749
    integer.  If no features are found, it returns logspace(-1, 1)
2750

2751
    Parameters
2752
    ----------
2753
    syslist : list of LTI
2754
        List of linear input/output systems (single system is OK)
2755
    Hz : bool, optional
2756
        If True, the limits (first and last value) of the frequencies
2757
        are set to full decades in Hz so it fits plotting with logarithmic
2758
        scale in Hz otherwise in rad/s. Omega is always returned in rad/sec.
2759
    number_of_samples : int, optional
2760
        Number of samples to generate.  The default value is read from
2761
        `config.defaults['freqplot.number_of_samples']`.  If None,
2762
        then the default from `numpy.logspace` is used.
2763
    feature_periphery_decades : float, optional
2764
        Defines how many decades shall be included in the frequency range on
2765
        both sides of features (poles, zeros).  The default value is read from
2766
        `config.defaults['freqplot.feature_periphery_decades']`.
2767

2768
    Returns
2769
    -------
2770
    omega : array
2771
        Range of frequencies in rad/sec
2772

2773
    Examples
2774
    --------
2775
    >>> G = ct.ss([[-1, -2], [3, -4]], [[5], [7]], [[6, 8]], [[9]])
2776
    >>> omega = ct._default_frequency_range(G)
2777
    >>> omega.min(), omega.max()
2778
    (0.1, 100.0)
2779

2780
    """
2781
    # Set default values for options
2782
    number_of_samples = config._get_param(
9✔
2783
        'freqplot', 'number_of_samples', number_of_samples)
2784
    feature_periphery_decades = config._get_param(
9✔
2785
        'freqplot', 'feature_periphery_decades', feature_periphery_decades, 1)
2786

2787
    # Find the list of all poles and zeros in the systems
2788
    features = np.array(())
9✔
2789
    freq_interesting = []
9✔
2790

2791
    # detect if single sys passed by checking if it is sequence-like
2792
    if not hasattr(syslist, '__iter__'):
9✔
2793
        syslist = (syslist,)
9✔
2794

2795
    for sys in syslist:
9✔
2796
        # For FRD systems, just use the response frequencies
2797
        if isinstance(sys, FrequencyResponseData):
9✔
2798
            # Add the min and max frequency, minus periphery decades
2799
            # (keeps frequency ranges from artificially expanding)
2800
            features = np.concatenate([features, np.array([
9✔
2801
                np.min(sys.omega) * 10**feature_periphery_decades,
2802
                np.max(sys.omega) / 10**feature_periphery_decades])])
2803
            continue
9✔
2804

2805
        try:
9✔
2806
            # Add new features to the list
2807
            if sys.isctime():
9✔
2808
                features_ = np.concatenate(
9✔
2809
                    (np.abs(sys.poles()), np.abs(sys.zeros())))
2810
                # Get rid of poles and zeros at the origin
2811
                toreplace = np.isclose(features_, 0.0)
9✔
2812
                if np.any(toreplace):
9✔
2813
                    features_ = features_[~toreplace]
9✔
2814
            elif sys.isdtime(strict=True):
9✔
2815
                fn = math.pi / sys.dt
9✔
2816
                # TODO: What distance to the Nyquist frequency is appropriate?
2817
                freq_interesting.append(fn * 0.9)
9✔
2818

2819
                features_ = np.concatenate(
9✔
2820
                    (np.abs(sys.poles()), np.abs(sys.zeros())))
2821
                # Get rid of poles and zeros on the real axis (imag==0)
2822
                # * origin and real < 0
2823
                # * at 1.: would result in omega=0. (logarithmic plot!)
2824
                toreplace = np.isclose(features_.imag, 0.0) & (
9✔
2825
                                    (features_.real <= 0.) |
2826
                                    (np.abs(features_.real - 1.0) < 1.e-10))
2827
                if np.any(toreplace):
9✔
2828
                    features_ = features_[~toreplace]
9✔
2829
                # TODO: improve (mapping pack to continuous time)
2830
                features_ = np.abs(np.log(features_) / (1.j * sys.dt))
9✔
2831
            else:
2832
                # TODO
2833
                raise NotImplementedError(
2834
                    "type of system in not implemented now")
2835
            features = np.concatenate([features, features_])
9✔
2836
        except NotImplementedError:
9✔
2837
            # Don't add any features for anything we don't understand
2838
            pass
9✔
2839

2840
    # Make sure there is at least one point in the range
2841
    if features.shape[0] == 0:
9✔
2842
        features = np.array([1.])
9✔
2843

2844
    if Hz:
9✔
2845
        features /= 2. * math.pi
9✔
2846
    features = np.log10(features)
9✔
2847
    lsp_min = np.rint(np.min(features) - feature_periphery_decades)
9✔
2848
    lsp_max = np.rint(np.max(features) + feature_periphery_decades)
9✔
2849
    if Hz:
9✔
2850
        lsp_min += np.log10(2. * math.pi)
9✔
2851
        lsp_max += np.log10(2. * math.pi)
9✔
2852

2853
    if freq_interesting:
9✔
2854
        lsp_min = min(lsp_min, np.log10(min(freq_interesting)))
9✔
2855
        lsp_max = max(lsp_max, np.log10(max(freq_interesting)))
9✔
2856

2857
    # TODO: Add a check in discrete case to make sure we don't get aliasing
2858
    # (Attention: there is a list of system but only one omega vector)
2859

2860
    # Set the range to be an order of magnitude beyond any features
2861
    if number_of_samples:
9✔
2862
        omega = np.logspace(
9✔
2863
            lsp_min, lsp_max, num=number_of_samples, endpoint=True)
2864
    else:
2865
        omega = np.logspace(lsp_min, lsp_max, endpoint=True)
×
2866
    return omega
9✔
2867

2868

2869
#
2870
# Utility functions to create nice looking labels (KLD 5/23/11)
2871
#
2872

2873
def get_pow1000(num):
9✔
2874
    """Determine exponent for which significance of a number is within the
2875
    range [1, 1000).
2876
    """
2877
    # Based on algorithm from http://www.mail-archive.com/
2878
    # matplotlib-users@lists.sourceforge.net/msg14433.html, accessed 2010/11/7
2879
    # by Jason Heeris 2009/11/18
2880
    from decimal import Decimal
9✔
2881
    from math import floor
9✔
2882
    dnum = Decimal(str(num))
9✔
2883
    if dnum == 0:
9✔
2884
        return 0
9✔
2885
    elif dnum < 0:
9✔
2886
        dnum = -dnum
×
2887
    return int(floor(dnum.log10() / 3))
9✔
2888

2889

2890
def gen_prefix(pow1000):
9✔
2891
    """Return the SI prefix for a power of 1000.
2892
    """
2893
    # Prefixes according to Table 5 of [BIPM 2006] (excluding hecto,
2894
    # deca, deci, and centi).
2895
    if pow1000 < -8 or pow1000 > 8:
9✔
2896
        raise ValueError(
×
2897
            "Value is out of the range covered by the SI prefixes.")
2898
    return ['Y',  # yotta (10^24)
9✔
2899
            'Z',  # zetta (10^21)
2900
            'E',  # exa (10^18)
2901
            'P',  # peta (10^15)
2902
            'T',  # tera (10^12)
2903
            'G',  # giga (10^9)
2904
            'M',  # mega (10^6)
2905
            'k',  # kilo (10^3)
2906
            '',  # (10^0)
2907
            'm',  # milli (10^-3)
2908
            r'$\mu$',  # micro (10^-6)
2909
            'n',  # nano (10^-9)
2910
            'p',  # pico (10^-12)
2911
            'f',  # femto (10^-15)
2912
            'a',  # atto (10^-18)
2913
            'z',  # zepto (10^-21)
2914
            'y'][8 - pow1000]  # yocto (10^-24)
2915

2916

2917
# Function aliases
2918
bode = bode_plot
9✔
2919
nyquist = nyquist_plot
9✔
2920
gangof4 = gangof4_plot
9✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc