• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

deepset-ai / haystack / 15969671615

30 Jun 2025 09:51AM UTC coverage: 90.277% (-0.001%) from 90.278%
15969671615

push

github

web-flow
fix: Fix `_convert_streaming_chunks_to_chat_message` (#9566)

* Fix conversion

* Add reno

* Add unit test

11708 of 12969 relevant lines covered (90.28%)

0.9 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

74.51
haystack/components/generators/utils.py
1
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
2
#
3
# SPDX-License-Identifier: Apache-2.0
4

5
import json
1✔
6
from typing import Dict, List
1✔
7

8
from haystack import logging
1✔
9
from haystack.dataclasses import ChatMessage, StreamingChunk, ToolCall
1✔
10

11
logger = logging.getLogger(__name__)
1✔
12

13

14
def print_streaming_chunk(chunk: StreamingChunk) -> None:
1✔
15
    """
16
    Callback function to handle and display streaming output chunks.
17

18
    This function processes a `StreamingChunk` object by:
19
    - Printing tool call metadata (if any), including function names and arguments, as they arrive.
20
    - Printing tool call results when available.
21
    - Printing the main content (e.g., text tokens) of the chunk as it is received.
22

23
    The function outputs data directly to stdout and flushes output buffers to ensure immediate display during
24
    streaming.
25

26
    :param chunk: A chunk of streaming data containing content and optional metadata, such as tool calls and
27
        tool results.
28
    """
29
    if chunk.start and chunk.index and chunk.index > 0:
1✔
30
        # If this is the start of a new content block but not the first content block, print two new lines
31
        print("\n\n", flush=True, end="")
×
32

33
    ## Tool Call streaming
34
    if chunk.tool_calls:
1✔
35
        # Typically, if there are multiple tool calls in the chunk this means that the tool calls are fully formed and
36
        # not just a delta.
37
        for tool_call in chunk.tool_calls:
×
38
            # If chunk.start is True indicates beginning of a tool call
39
            # Also presence of tool_call.tool_name indicates the start of a tool call too
40
            if chunk.start:
×
41
                # If there is more than one tool call in the chunk, we print two new lines to separate them
42
                # We know there is more than one tool call if the index of the tool call is greater than the index of
43
                # the chunk.
44
                if chunk.index and tool_call.index > chunk.index:
×
45
                    print("\n\n", flush=True, end="")
×
46

47
                print("[TOOL CALL]\nTool: {tool_call.tool_name} \nArguments: ", flush=True, end="")
×
48

49
            # print the tool arguments
50
            if tool_call.arguments:
×
51
                print(tool_call.arguments, flush=True, end="")
×
52

53
    ## Tool Call Result streaming
54
    # Print tool call results if available (from ToolInvoker)
55
    if chunk.tool_call_result:
1✔
56
        # Tool Call Result is fully formed so delta accumulation is not needed
57
        print(f"[TOOL RESULT]\n{chunk.tool_call_result.result}", flush=True, end="")
1✔
58

59
    ## Normal content streaming
60
    # Print the main content of the chunk (from ChatGenerator)
61
    if chunk.content:
1✔
62
        if chunk.start:
×
63
            print("[ASSISTANT]\n", flush=True, end="")
×
64
        print(chunk.content, flush=True, end="")
×
65

66
    # End of LLM assistant message so we add two new lines
67
    # This ensures spacing between multiple LLM messages (e.g. Agent) or multiple Tool Call Results
68
    if chunk.finish_reason is not None:
1✔
69
        print("\n\n", flush=True, end="")
1✔
70

71

72
def _convert_streaming_chunks_to_chat_message(chunks: List[StreamingChunk]) -> ChatMessage:
1✔
73
    """
74
    Connects the streaming chunks into a single ChatMessage.
75

76
    :param chunks: The list of all `StreamingChunk` objects.
77

78
    :returns: The ChatMessage.
79
    """
80
    text = "".join([chunk.content for chunk in chunks])
1✔
81
    tool_calls = []
1✔
82

83
    # Process tool calls if present in any chunk
84
    tool_call_data: Dict[int, Dict[str, str]] = {}  # Track tool calls by index
1✔
85
    for chunk in chunks:
1✔
86
        if chunk.tool_calls:
1✔
87
            for tool_call in chunk.tool_calls:
1✔
88
                # We use the index of the tool_call to track the tool call across chunks since the ID is not always
89
                # provided
90
                if tool_call.index not in tool_call_data:
1✔
91
                    tool_call_data[tool_call.index] = {"id": "", "name": "", "arguments": ""}
1✔
92

93
                # Save the ID if present
94
                if tool_call.id is not None:
1✔
95
                    tool_call_data[tool_call.index]["id"] = tool_call.id
1✔
96

97
                if tool_call.tool_name is not None:
1✔
98
                    tool_call_data[tool_call.index]["name"] += tool_call.tool_name
1✔
99
                if tool_call.arguments is not None:
1✔
100
                    tool_call_data[tool_call.index]["arguments"] += tool_call.arguments
1✔
101

102
    # Convert accumulated tool call data into ToolCall objects
103
    sorted_keys = sorted(tool_call_data.keys())
1✔
104
    for key in sorted_keys:
1✔
105
        tool_call_dict = tool_call_data[key]
1✔
106
        try:
1✔
107
            arguments = json.loads(tool_call_dict["arguments"])
1✔
108
            tool_calls.append(ToolCall(id=tool_call_dict["id"], tool_name=tool_call_dict["name"], arguments=arguments))
1✔
109
        except json.JSONDecodeError:
×
110
            logger.warning(
×
111
                "OpenAI returned a malformed JSON string for tool call arguments. This tool call "
112
                "will be skipped. To always generate a valid JSON, set `tools_strict` to `True`. "
113
                "Tool call ID: {_id}, Tool name: {_name}, Arguments: {_arguments}",
114
                _id=tool_call_dict["id"],
115
                _name=tool_call_dict["name"],
116
                _arguments=tool_call_dict["arguments"],
117
            )
118

119
    # finish_reason can appear in different places so we look for the last one
120
    finish_reasons = [chunk.finish_reason for chunk in chunks if chunk.finish_reason]
1✔
121
    finish_reason = finish_reasons[-1] if finish_reasons else None
1✔
122

123
    meta = {
1✔
124
        "model": chunks[-1].meta.get("model"),
125
        "index": 0,
126
        "finish_reason": finish_reason,
127
        "completion_start_time": chunks[0].meta.get("received_at"),  # first chunk received
128
        "usage": chunks[-1].meta.get("usage"),  # last chunk has the final usage data if available
129
    }
130

131
    return ChatMessage.from_assistant(text=text or None, tool_calls=tool_calls, meta=meta)
1✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc