• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

formalsec / smtml / 352

23 Jun 2025 09:10AM UTC coverage: 55.37% (+0.2%) from 55.168%
352

push

github

filipeom
Update CHANGES.md

959 of 1732 relevant lines covered (55.37%)

11.6 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

32.89
/src/smtml/expr.ml
1
(* SPDX-License-Identifier: MIT *)
2
(* Copyright (C) 2023-2024 formalsec *)
3
(* Written by the Smtml programmers *)
4

5
type t = expr Hc.hash_consed
6

7
and expr =
8
  | Val of Value.t
9
  | Ptr of
10
      { base : Bitvector.t
11
      ; offset : t
12
      }
13
  | Symbol of Symbol.t
14
  | List of t list
15
  | App of Symbol.t * t list
16
  | Unop of Ty.t * Ty.Unop.t * t
17
  | Binop of Ty.t * Ty.Binop.t * t * t
18
  | Triop of Ty.t * Ty.Triop.t * t * t * t
19
  | Relop of Ty.t * Ty.Relop.t * t * t
20
  | Cvtop of Ty.t * Ty.Cvtop.t * t
21
  | Naryop of Ty.t * Ty.Naryop.t * t list
22
  | Extract of t * int * int
23
  | Concat of t * t
24
  | Binder of Binder.t * t list * t
25

26
module Expr = struct
27
  type t = expr
28

29
  let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
30
    if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
4✔
31
    else false
×
32

33
  let equal (e1 : expr) (e2 : expr) : bool =
34
    match (e1, e2) with
499✔
35
    | Val v1, Val v2 -> Value.equal v1 v2
470✔
36
    | Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
4✔
37
      Bitvector.equal b1 b2 && phys_equal o1 o2
4✔
38
    | Symbol s1, Symbol s2 -> Symbol.equal s1 s2
6✔
39
    | List l1, List l2 -> list_eq l1 l2
4✔
40
    | App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
×
41
    | Unop (t1, op1, e1), Unop (t2, op2, e2) ->
1✔
42
      Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
1✔
43
    | Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
12✔
44
      Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
12✔
45
      && phys_equal e3 e4
12✔
46
    | Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
2✔
47
      Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
2✔
48
      && phys_equal e3 e4
2✔
49
    | Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
×
50
      Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
×
51
      && phys_equal e3 e4 && phys_equal e5 e6
×
52
    | Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
×
53
      Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
×
54
    | Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
×
55
      Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
×
56
    | Extract (e1, h1, l1), Extract (e2, h2, l2) ->
×
57
      phys_equal e1 e2 && h1 = h2 && l1 = l2
×
58
    | Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
×
59
    | Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
×
60
      Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
×
61
    | ( ( Val _ | Ptr _ | Symbol _ | List _ | App _ | Unop _ | Binop _ | Triop _
×
62
        | Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _ | Binder _ )
×
63
      , _ ) ->
64
      false
65

66
  let hash (e : expr) : int =
67
    let h x = Hashtbl.hash x in
993✔
68
    match e with
69
    | Val v -> h v
844✔
70
    | Ptr { base; offset } -> h (base, offset.tag)
22✔
71
    | Symbol s -> h s
40✔
72
    | List v -> h v
16✔
73
    | App (x, es) -> h (x, es)
×
74
    | Unop (ty, op, e) -> h (ty, op, e.tag)
7✔
75
    | Cvtop (ty, op, e) -> h (ty, op, e.tag)
6✔
76
    | Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
34✔
77
    | Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
6✔
78
    | Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
×
79
    | Naryop (ty, op, es) -> h (ty, op, es)
×
80
    | Extract (e, hi, lo) -> h (e.tag, hi, lo)
14✔
81
    | Concat (e1, e2) -> h (e1.tag, e2.tag)
4✔
82
    | Binder (b, vars, e) -> h (b, vars, e.tag)
×
83
end
84

85
module Hc = Hc.Make [@inlined hint] (Expr)
86

87
let equal (hte1 : t) (hte2 : t) = phys_equal hte1 hte2 [@@inline]
221✔
88

89
let hash (hte : t) = hte.tag [@@inline]
4✔
90

91
module Key = struct
92
  type nonrec t = t
93

94
  let to_int hte = hash hte
×
95
end
96

97
let[@inline] make e = Hc.hashcons e
746✔
98

99
let[@inline] view (hte : t) = hte.node
526✔
100

101
let[@inline] compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag
×
102

103
let symbol s = make (Symbol s)
23✔
104

105
(** The return type of an expression *)
106
let rec ty (hte : t) : Ty.t =
107
  match view hte with
13✔
108
  | Val x -> Value.type_of x
×
109
  | Ptr _ -> Ty_bitv 32
×
110
  | Symbol x -> Symbol.type_of x
10✔
111
  | List _ -> Ty_list
×
112
  | App (sym, _) -> begin match sym.ty with Ty_none -> Ty_app | ty -> ty end
×
113
  | Unop (ty, _, _) -> ty
×
114
  | Binop (ty, _, _, _) -> ty
×
115
  | Triop (_, Ite, _, hte1, hte2) ->
×
116
    let ty1 = ty hte1 in
117
    let ty2 = ty hte2 in
×
118
    assert (Ty.equal ty1 ty2);
×
119
    ty1
120
  | Triop (ty, _, _, _, _) -> ty
×
121
  | Relop (ty, _, _, _) -> ty
×
122
  | Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
×
123
    match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
1✔
124
  | Cvtop (ty, _, _) -> ty
×
125
  | Naryop (ty, _, _) -> ty
×
126
  | Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
2✔
127
  | Concat (e1, e2) -> (
×
128
    match (ty e1, ty e2) with
×
129
    | Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
×
130
    | t1, t2 ->
×
131
      Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
132
  | Binder (_, _, e) -> ty e
×
133

134
let rec is_symbolic (v : t) : bool =
135
  match view v with
×
136
  | Val _ -> false
×
137
  | Symbol _ -> true
×
138
  | Ptr { offset; _ } -> is_symbolic offset
×
139
  | List vs -> List.exists is_symbolic vs
×
140
  | App (_, vs) -> List.exists is_symbolic vs
×
141
  | Unop (_, _, v) -> is_symbolic v
×
142
  | Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
143
  | Triop (_, _, v1, v2, v3) ->
×
144
    is_symbolic v1 || is_symbolic v2 || is_symbolic v3
×
145
  | Cvtop (_, _, v) -> is_symbolic v
×
146
  | Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
147
  | Naryop (_, _, vs) -> List.exists is_symbolic vs
×
148
  | Extract (e, _, _) -> is_symbolic e
×
149
  | Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
×
150
  | Binder (_, _, e) -> is_symbolic e
×
151

152
let get_symbols (hte : t list) =
153
  let tbl = Hashtbl.create 64 in
×
154
  let rec symbols (hte : t) =
×
155
    match view hte with
×
156
    | Val _ -> ()
×
157
    | Ptr { offset; _ } -> symbols offset
×
158
    | Symbol s -> Hashtbl.replace tbl s ()
×
159
    | List es -> List.iter symbols es
×
160
    | App (_, es) -> List.iter symbols es
×
161
    | Unop (_, _, e1) -> symbols e1
×
162
    | Binop (_, _, e1, e2) ->
×
163
      symbols e1;
164
      symbols e2
×
165
    | Triop (_, _, e1, e2, e3) ->
×
166
      symbols e1;
167
      symbols e2;
×
168
      symbols e3
×
169
    | Relop (_, _, e1, e2) ->
×
170
      symbols e1;
171
      symbols e2
×
172
    | Cvtop (_, _, e) -> symbols e
×
173
    | Naryop (_, _, es) -> List.iter symbols es
×
174
    | Extract (e, _, _) -> symbols e
×
175
    | Concat (e1, e2) ->
×
176
      symbols e1;
177
      symbols e2
×
178
    | Binder (_, vars, e) ->
×
179
      List.iter symbols vars;
180
      symbols e
×
181
  in
182
  List.iter symbols hte;
183
  Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
184

185
module Set = struct
186
  include PatriciaTree.MakeHashconsedSet (Key) ()
187

188
  let hash = to_int
189

190
  let get_symbols (set : t) =
191
    let tbl = Hashtbl.create 64 in
×
192
    let rec symbols hte =
×
193
      match view hte with
×
194
      | Val _ -> ()
×
195
      | Ptr { offset; _ } -> symbols offset
×
196
      | Symbol s -> Hashtbl.replace tbl s ()
×
197
      | List es -> List.iter symbols es
×
198
      | App (_, es) -> List.iter symbols es
×
199
      | Unop (_, _, e1) -> symbols e1
×
200
      | Binop (_, _, e1, e2) ->
×
201
        symbols e1;
202
        symbols e2
×
203
      | Triop (_, _, e1, e2, e3) ->
×
204
        symbols e1;
205
        symbols e2;
×
206
        symbols e3
×
207
      | Relop (_, _, e1, e2) ->
×
208
        symbols e1;
209
        symbols e2
×
210
      | Cvtop (_, _, e) -> symbols e
×
211
      | Naryop (_, _, es) -> List.iter symbols es
×
212
      | Extract (e, _, _) -> symbols e
×
213
      | Concat (e1, e2) ->
×
214
        symbols e1;
215
        symbols e2
×
216
      | Binder (_, vars, e) ->
×
217
        List.iter symbols vars;
218
        symbols e
×
219
    in
220
    iter symbols set;
221
    Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
222
end
223

224
module Pp = struct
225
  let rec pp fmt (hte : t) =
226
    match view hte with
×
227
    | Val v -> Value.pp fmt v
×
228
    | Ptr { base; offset } ->
×
229
      Fmt.pf fmt "(Ptr %a %a)" Bitvector.pp base pp offset
230
    | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
×
231
    | List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
×
232
    | App (s, v) ->
×
233
      Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s
234
        (Fmt.list ~sep:Fmt.comma pp)
×
235
        v
236
    | Unop (ty, op, e) ->
×
237
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
238
    | Binop (ty, op, e1, e2) ->
×
239
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp
240
        e2
241
    | Triop (ty, op, e1, e2, e3) ->
×
242
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1
243
        pp e2 pp e3
244
    | Relop (ty, op, e1, e2) ->
×
245
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp
246
        e2
247
    | Cvtop (ty, op, e) ->
×
248
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
249
    | Naryop (ty, op, es) ->
×
250
      Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
251
        (Fmt.list ~sep:Fmt.comma pp)
×
252
        es
253
    | Extract (e, h, l) ->
×
254
      Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
255
    | Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
×
256
    | Binder (b, vars, e) ->
×
257
      Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b
258
        (Fmt.list ~sep:Fmt.sp pp) vars pp e
×
259

260
  let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
×
261

262
  let pp_smt fmt (es : t list) : unit =
263
    let pp_symbols fmt syms =
×
264
      Fmt.list ~sep:Fmt.semi
×
265
        (fun fmt sym ->
266
          let t = Symbol.type_of sym in
×
267
          Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
×
268
        fmt syms
269
    in
270
    let pp_asserts fmt es =
271
      Fmt.list ~sep:Fmt.semi
×
272
        (fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
×
273
        fmt es
274
    in
275
    let syms = get_symbols es in
276
    if List.length syms > 0 then Fmt.pf fmt "%a@\n" pp_symbols syms;
×
277
    if List.length es > 0 then Fmt.pf fmt "%a@\n" pp_asserts es;
×
278
    Fmt.string fmt "(check-sat)"
×
279
end
280

281
let pp = Pp.pp
282

283
let pp_list = Pp.pp_list
284

285
let pp_smt = Pp.pp_smt
286

287
let to_string e = Fmt.str "%a" pp e
×
288

289
let value (v : Value.t) : t = make (Val v) [@@inline]
657✔
290

291
let ptr base offset = make (Ptr { base = Bitvector.of_int32 base; offset })
7✔
292

293
let list l = make (List l)
5✔
294

295
let app symbol args = make (App (symbol, args))
×
296

297
let[@inline] binder bt vars expr = make (Binder (bt, vars, expr))
×
298

299
let let_in vars body = binder Let_in vars body
×
300

301
let forall vars body = binder Forall vars body
×
302

303
let exists vars body = binder Exists vars body
×
304

305
let raw_unop ty op hte = make (Unop (ty, op, hte)) [@@inline]
4✔
306

307
let normalize_eq_or_ne op (ty', e1, e2) =
308
  let make_relop lhs rhs = Relop (ty', op, lhs, rhs) in
×
309
  let ty1, ty2 = (ty e1, ty e2) in
×
310
  if not (Ty.equal ty1 ty2) then make_relop e1 e2
×
311
  else begin
×
312
    match ty1 with
313
    | Ty_bitv m ->
×
314
      let binop = make (Binop (ty1, Sub, e1, e2)) in
315
      let zero = make (Val (Bitv (Bitvector.make Z.zero m))) in
×
316
      make_relop binop zero
×
317
    | Ty_int ->
×
318
      let binop = make (Binop (ty1, Sub, e1, e2)) in
319
      let zero = make (Val (Int Int.zero)) in
×
320
      make_relop binop zero
×
321
    | Ty_real ->
×
322
      let binop = make (Binop (ty1, Sub, e1, e2)) in
323
      let zero = make (Val (Real 0.)) in
×
324
      make_relop binop zero
×
325
    | _ -> make_relop e1 e2
×
326
  end
327

328
let negate_relop (hte : t) : t =
329
  let e =
×
330
    match view hte with
331
    | Relop (ty, Eq, e1, e2) -> normalize_eq_or_ne Ne (ty, e1, e2)
×
332
    | Relop (ty, Ne, e1, e2) -> normalize_eq_or_ne Eq (ty, e1, e2)
×
333
    | Relop (ty, Lt, e1, e2) -> Relop (ty, Le, e2, e1)
×
334
    | Relop (ty, LtU, e1, e2) -> Relop (ty, LeU, e2, e1)
×
335
    | Relop (ty, Le, e1, e2) -> Relop (ty, Lt, e2, e1)
×
336
    | Relop (ty, LeU, e1, e2) -> Relop (ty, LtU, e2, e1)
×
337
    | Relop (ty, Gt, e1, e2) -> Relop (ty, Le, e1, e2)
×
338
    | Relop (ty, GtU, e1, e2) -> Relop (ty, LeU, e1, e2)
×
339
    | Relop (ty, Ge, e1, e2) -> Relop (ty, Lt, e1, e2)
×
340
    | Relop (ty, GeU, e1, e2) -> Relop (ty, LtU, e1, e2)
×
341
    | _ -> Fmt.failwith "negate_relop: not a relop."
×
342
  in
343
  make e
344

345
let unop ty op hte =
346
  match (op, view hte) with
34✔
347
  | Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> raw_unop ty op hte
×
348
  | _, Val v -> value (Eval.unop ty op v)
23✔
349
  | Not, Unop (_, Not, hte') -> hte'
1✔
350
  | Not, Relop (Ty_fp _, _, _, _) -> raw_unop ty op hte
2✔
351
  | Not, Relop (_, _, _, _) -> negate_relop hte
×
352
  | Neg, Unop (_, Neg, hte') -> hte'
1✔
353
  | Trim, Cvtop (Ty_real, ToString, _) -> hte
×
354
  | Head, List (hd :: _) -> hd
1✔
355
  | Tail, List (_ :: tl) -> make (List tl)
1✔
356
  | Reverse, List es -> make (List (List.rev es))
2✔
357
  | Length, List es -> value (Int (List.length es))
1✔
358
  | _ -> raw_unop ty op hte
2✔
359

360
let raw_binop ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
23✔
361

362
let rec binop ty op hte1 hte2 =
363
  match (op, view hte1, view hte2) with
98✔
364
  | Ty.Binop.(String_in_re | Regexp_range), _, _ -> raw_binop ty op hte1 hte2
×
365
  | op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
68✔
366
  | Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
367
    if Bitvector.equal b1 b2 then binop ty Sub os1 os2
1✔
368
    else raw_binop ty op hte1 hte2
×
369
  | Add, Ptr { base; offset }, _ ->
2✔
370
    let m = Bitvector.numbits base in
371
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte2 })
2✔
372
  | Sub, Ptr { base; offset }, _ ->
1✔
373
    let m = Bitvector.numbits base in
374
    make (Ptr { base; offset = binop (Ty_bitv m) Sub offset hte2 })
1✔
375
  | Rem, Ptr { base; offset }, _ ->
1✔
376
    let m = Bitvector.numbits base in
377
    let rhs = value (Bitv base) in
1✔
378
    let addr = binop (Ty_bitv m) Add rhs offset in
1✔
379
    binop ty Rem addr hte2
1✔
380
  | Add, _, Ptr { base; offset } ->
1✔
381
    let m = Bitvector.numbits base in
382
    make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte1 })
1✔
383
  | Sub, _, Ptr { base; offset } ->
×
384
    let m = Bitvector.numbits base in
385
    let base = value (Bitv base) in
×
386
    binop ty Sub hte1 (binop (Ty_bitv m) Add base offset)
×
387
  | (Add | Or), Val (Bitv bv), _ when Bitvector.eqz bv -> hte2
×
388
  | (And | Div | DivU | Mul | Rem | RemU), Val (Bitv bv), _
×
389
    when Bitvector.eqz bv ->
3✔
390
    hte1
1✔
391
  | (Add | Or), _, Val (Bitv bv) when Bitvector.eqz bv -> hte1
×
392
  | (And | Mul), _, Val (Bitv bv) when Bitvector.eqz bv -> hte2
1✔
393
  | Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
1✔
394
    let v = value (Eval.binop ty Add v1 v2) in
1✔
395
    raw_binop ty Add x v
1✔
396
  | Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
1✔
397
    let v = value (Eval.binop ty Add v1 v2) in
1✔
398
    raw_binop ty Sub x v
1✔
399
  | Mul, Val (Bitv bv), _ when Bitvector.eq_one bv -> hte2
×
400
  | Mul, _, Val (Bitv bv) when Bitvector.eq_one bv -> hte1
×
401
  | Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
1✔
402
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
403
    raw_binop ty Mul x v
1✔
404
  | Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
1✔
405
    let v = value (Eval.binop ty Add v1 v2) in
1✔
406
    raw_binop ty Add v x
1✔
407
  | Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
1✔
408
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
409
    raw_binop ty Mul v x
1✔
410
  | At, List es, Val (Int n) ->
1✔
411
    (* TODO: use another datastructure? *)
412
    begin
413
      match List.nth_opt es n with None -> assert false | Some v -> v
1✔
414
    end
415
  | List_cons, _, List es -> make (List (hte1 :: es))
1✔
416
  | List_append, List _, (List [] | Val (List [])) -> hte1
×
417
  | List_append, (List [] | Val (List [])), List _ -> hte2
×
418
  | List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
1✔
419
  | List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
×
420
  | List_append, List l0, List l1 -> make (List (l0 @ l1))
×
421
  | _ -> raw_binop ty op hte1 hte2
12✔
422

423
let raw_triop ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
×
424

425
let triop ty op e1 e2 e3 =
426
  match (op, view e1, view e2, view e3) with
6✔
427
  | Ty.Triop.Ite, Val True, _, _ -> e2
1✔
428
  | Ite, Val False, _, _ -> e3
1✔
429
  | op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
4✔
430
  | Ite, _, Triop (_, Ite, c2, r1, r2), Triop (_, Ite, _, _, _) ->
×
431
    let else_ = raw_triop ty Ite e1 r2 e3 in
432
    let cond = binop Ty_bool And e1 c2 in
×
433
    raw_triop ty Ite cond r1 else_
×
434
  | _ -> raw_triop ty op e1 e2 e3
×
435

436
let raw_relop ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
4✔
437

438
let rec relop ty op hte1 hte2 =
439
  match (op, view hte1, view hte2) with
80✔
440
  | op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
29✔
441
  | Ty.Relop.Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
×
442
    if Float.is_nan v || Float.is_infinite v then value True
×
443
    else raw_relop ty op hte1 hte2
×
444
  | _, Val (Real v), _ | _, _, Val (Real v) ->
×
445
    if Float.is_nan v || Float.is_infinite v then value False
×
446
    else raw_relop ty op hte1 hte2
×
447
  | Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
×
448
  | Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
×
449
  | Eq, _, Val (App (`Op "symbol", [ Str _ ]))
×
450
  | Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
451
    value False
452
  | Ne, _, Val (App (`Op "symbol", [ Str _ ]))
×
453
  | Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
454
    value True
455
  | ( Eq
×
456
    , Symbol ({ ty = Ty_fp prec1; _ } as s1)
457
    , Symbol ({ ty = Ty_fp prec2; _ } as s2) )
458
    when prec1 = prec2 && Symbol.equal s1 s2 ->
×
459
    raw_unop Ty_bool Not (raw_unop (Ty_fp prec1) Is_nan hte1)
×
460
  | Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
461
    if Bitvector.equal b1 b2 then relop Ty_bool Eq os1 os2 else value False
1✔
462
  | Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
463
    if Bitvector.equal b1 b2 then relop Ty_bool Ne os1 os2 else value True
1✔
464
  | ( (LtU | LeU)
2✔
465
    , Ptr { base = b1; offset = os1 }
466
    , Ptr { base = b2; offset = os2 } ) ->
467
    if Bitvector.equal b1 b2 then relop ty op os1 os2
2✔
468
    else
469
      let b1 = Value.Bitv b1 in
2✔
470
      let b2 = Value.Bitv b2 in
471
      value (if Eval.relop ty op b1 b2 then True else False)
1✔
472
  | ( op
2✔
473
    , Val (Bitv _ as n)
474
    , Ptr { base; offset = { node = Val (Bitv _ as o); _ } } ) ->
475
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
476
    value (if Eval.relop ty op n base then True else False)
1✔
477
  | op, Ptr { base; offset = { node = Val (Bitv _ as o); _ } }, Val (Bitv _ as n)
2✔
478
    ->
479
    let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
480
    value (if Eval.relop ty op base n then True else False)
1✔
481
  | op, List l1, List l2 -> relop_list op l1 l2
×
482
  | Gt, _, _ -> relop ty Lt hte2 hte1
×
483
  | GtU, _, _ -> relop ty LtU hte2 hte1
1✔
484
  | Ge, _, _ -> relop ty Le hte2 hte1
1✔
485
  | GeU, _, _ -> relop ty LeU hte2 hte1
1✔
486
  | _, _, _ -> raw_relop ty op hte1 hte2
4✔
487

488
and relop_list op l1 l2 =
489
  match (op, l1, l2) with
×
490
  | Eq, [], [] -> value True
×
491
  | Eq, _, [] | Eq, [], _ -> value False
×
492
  | Eq, l1, l2 ->
×
493
    if not (List.compare_lengths l1 l2 = 0) then value False
×
494
    else
495
      List.fold_left2
×
496
        (fun acc a b ->
497
          binop Ty_bool And acc
×
498
          @@
499
          match (ty a, ty b) with
×
500
          | Ty_real, Ty_real -> relop Ty_real Eq a b
×
501
          | _ -> relop Ty_bool Eq a b )
×
502
        (value True) l1 l2
×
503
  | Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
×
504
  | (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
505

506
let raw_cvtop ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
3✔
507

508
let rec cvtop theory op hte =
509
  match (op, view hte) with
29✔
510
  | Ty.Cvtop.String_to_re, _ -> raw_cvtop theory op hte
×
511
  | _, Val v -> value (Eval.cvtop theory op v)
24✔
512
  | String_to_float, Cvtop (Ty_real, ToString, real) -> real
×
513
  | Zero_extend n, Ptr { base; offset } ->
1✔
514
    let offset = cvtop theory op offset in
515
    make (Ptr { base = Bitvector.zero_extend n base; offset })
1✔
516
  | WrapI64, Ptr { base; offset } ->
1✔
517
    let offset = cvtop theory op offset in
518
    make (Ptr { base = Bitvector.extract base ~high:31 ~low:0; offset })
1✔
519
  | WrapI64, Cvtop (Ty_bitv 64, Zero_extend 32, hte) ->
×
520
    assert (Ty.equal theory (ty hte) && Ty.equal theory (Ty_bitv 32));
×
521
    hte
522
  | _ -> raw_cvtop theory op hte
3✔
523

524
let raw_naryop ty op es = make (Naryop (ty, op, es)) [@@inline]
×
525

526
let naryop ty op es =
527
  if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
×
528
  then
529
    let vs =
7✔
530
      List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
18✔
531
    in
532
    value (Eval.naryop ty op vs)
7✔
533
  else
534
    match (ty, op, List.map view es) with
×
535
    | ( Ty_str
×
536
      , Concat
537
      , [ Naryop (Ty_str, Concat, l1); Naryop (Ty_str, Concat, l2) ] ) ->
538
      raw_naryop Ty_str Concat (l1 @ l2)
539
    | Ty_str, Concat, [ Naryop (Ty_str, Concat, htes); hte ] ->
×
540
      raw_naryop Ty_str Concat (htes @ [ make hte ])
×
541
    | Ty_str, Concat, [ hte; Naryop (Ty_str, Concat, htes) ] ->
×
542
      raw_naryop Ty_str Concat (make hte :: htes)
×
543
    | _ -> raw_naryop ty op es
×
544

545
let[@inline] raw_extract (hte : t) ~(high : int) ~(low : int) : t =
546
  make (Extract (hte, high, low))
7✔
547

548
let extract (hte : t) ~(high : int) ~(low : int) : t =
549
  match (view hte, high, low) with
12✔
550
  | Val (Bitv bv), high, low ->
3✔
551
    let high = (high * 8) - 1 in
552
    let low = low * 8 in
553
    value (Bitv (Bitvector.extract bv ~high ~low))
3✔
554
  | ( Cvtop
2✔
555
        ( _
556
        , (Zero_extend 24 | Sign_extend 24)
1✔
557
        , ({ node = Symbol { ty = Ty_bitv 8; _ }; _ } as sym) )
558
    , 1
559
    , 0 ) ->
560
    sym
561
  | Concat (_, e), h, l when Ty.size (ty e) = h - l -> e
2✔
562
  | Concat (e, _), 8, 4 when Ty.size (ty e) = 4 -> e
×
563
  | _ ->
5✔
564
    if high - low = Ty.size (ty hte) then hte else raw_extract hte ~high ~low
×
565

566
let raw_concat (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
2✔
567

568
(* TODO: don't rebuild so many values it generates unecessary hc lookups *)
569
let rec concat (msb : t) (lsb : t) : t =
570
  match (view msb, view lsb) with
6✔
571
  | Val (Bitv a), Val (Bitv b) -> value (Bitv (Bitvector.concat a b))
1✔
572
  | Val (Bitv _), Concat (({ node = Val (Bitv _); _ } as b), se) ->
×
573
    raw_concat (concat msb b) se
×
574
  | Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
3✔
575
    if h - l = Ty.size (ty s1) then s1 else raw_extract s1 ~high:h ~low:l
1✔
576
  | Extract (_, _, _), Concat (({ node = Extract (_, _, _); _ } as e2), e3) ->
×
577
    raw_concat (concat msb e2) e3
×
578
  | _ -> raw_concat msb lsb
2✔
579

580
let rec simplify_expr ?(in_relop = false) (hte : t) : t =
4✔
581
  match view hte with
16✔
582
  | Val _ | Symbol _ -> hte
4✔
583
  | Ptr { base; offset } ->
×
584
    let offset = simplify_expr ~in_relop offset in
585
    if not in_relop then make (Ptr { base; offset })
×
586
    else binop (Ty_bitv 32) Add (value (Bitv base)) offset
×
587
  | List es -> make @@ List (List.map (simplify_expr ~in_relop) es)
×
588
  | App (x, es) -> make @@ App (x, List.map (simplify_expr ~in_relop) es)
×
589
  | Unop (ty, op, e) ->
×
590
    let e = simplify_expr ~in_relop e in
591
    unop ty op e
×
592
  | Binop (ty, op, e1, e2) ->
6✔
593
    let e1 = simplify_expr ~in_relop e1 in
594
    let e2 = simplify_expr ~in_relop e2 in
6✔
595
    binop ty op e1 e2
6✔
596
  | Relop (ty, op, e1, e2) ->
×
597
    let e1 = simplify_expr ~in_relop:true e1 in
598
    let e2 = simplify_expr ~in_relop:true e2 in
×
599
    relop ty op e1 e2
×
600
  | Triop (ty, op, c, e1, e2) ->
×
601
    let c = simplify_expr ~in_relop c in
602
    let e1 = simplify_expr ~in_relop e1 in
×
603
    let e2 = simplify_expr ~in_relop e2 in
×
604
    triop ty op c e1 e2
×
605
  | Cvtop (ty, op, e) ->
×
606
    let e = simplify_expr ~in_relop e in
607
    cvtop ty op e
×
608
  | Naryop (ty, op, es) ->
×
609
    let es = List.map (simplify_expr ~in_relop) es in
610
    naryop ty op es
×
611
  | Extract (s, high, low) ->
×
612
    let s = simplify_expr ~in_relop s in
613
    extract s ~high ~low
×
614
  | Concat (e1, e2) ->
×
615
    let msb = simplify_expr ~in_relop e1 in
616
    let lsb = simplify_expr ~in_relop e2 in
×
617
    concat msb lsb
×
618
  | Binder _ ->
×
619
    (* Not simplifying anything atm *)
620
    hte
621

622
module Cache = Hashtbl.Make (struct
623
  type nonrec t = t
624

625
  let hash = hash
626

627
  let equal = equal
628
end)
629

630
let simplify =
631
  (* TODO: it may make sense to share the cache with simplify_expr ? *)
632
  let cache = Cache.create 512 in
633
  fun e ->
3✔
634
    match Cache.find_opt cache e with
2✔
635
    | Some simplified -> simplified
×
636
    | None ->
2✔
637
      let rec loop x =
638
        let x' = simplify_expr x in
4✔
639
        if equal x x' then begin
2✔
640
          Cache.add cache e x';
641
          x'
2✔
642
        end
643
        else loop x'
2✔
644
      in
645
      loop e
646

647
module Bool = struct
648
  open Ty
649

650
  let of_val = function
651
    | Val True -> Some true
×
652
    | Val False -> Some false
×
653
    | _ -> None
×
654

655
  let true_ = value True
3✔
656

657
  let false_ = value False
3✔
658

659
  let to_val b = if b then true_ else false_
×
660

661
  let v b = to_val b [@@inline]
×
662

663
  let not b =
664
    let bexpr = view b in
×
665
    match of_val bexpr with
×
666
    | Some b -> to_val (not b)
×
667
    | None -> (
×
668
      match bexpr with
669
      | Unop (Ty_bool, Not, cond) -> cond
×
670
      | _ -> unop Ty_bool Not b )
×
671

672
  let equal b1 b2 =
673
    match (view b1, view b2) with
×
674
    | Val True, Val True | Val False, Val False -> true_
×
675
    | _ -> relop Ty_bool Eq b1 b2
×
676

677
  let distinct b1 b2 =
678
    match (view b1, view b2) with
×
679
    | Val True, Val False | Val False, Val True -> true_
×
680
    | _ -> relop Ty_bool Ne b1 b2
×
681

682
  let and_ b1 b2 =
683
    match (of_val (view b1), of_val (view b2)) with
×
684
    | Some true, _ -> b2
×
685
    | _, Some true -> b1
×
686
    | Some false, _ | _, Some false -> false_
×
687
    | _ -> binop Ty_bool And b1 b2
×
688

689
  let or_ b1 b2 =
690
    match (of_val (view b1), of_val (view b2)) with
×
691
    | Some false, _ -> b2
×
692
    | _, Some false -> b1
×
693
    | Some true, _ | _, Some true -> true_
×
694
    | _ -> binop Ty_bool Or b1 b2
×
695

696
  let ite c r1 r2 = triop Ty_bool Ite c r1 r2
×
697
end
698

699
module Make (T : sig
700
  type elt
701

702
  val ty : Ty.t
703

704
  val value : elt -> Value.t
705
end) =
706
struct
707
  open Ty
708

709
  let v i = value (T.value i)
×
710

711
  let sym x = symbol Symbol.(x @: T.ty)
×
712

713
  let ( ~- ) e = unop T.ty Neg e
×
714

715
  let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
×
716

717
  let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
×
718

719
  let ( > ) e1 e2 = relop T.ty Gt e1 e2
×
720

721
  let ( >= ) e1 e2 = relop T.ty Ge e1 e2
×
722

723
  let ( < ) e1 e2 = relop T.ty Lt e1 e2
×
724

725
  let ( <= ) e1 e2 = relop T.ty Le e1 e2
×
726
end
727

728
module Bitv = struct
729
  open Ty
730

731
  module I8 = Make (struct
732
    type elt = int
733

734
    let ty = Ty_bitv 8
735

736
    let value i = Value.Bitv (Bitvector.of_int8 i)
×
737
  end)
738

739
  module I32 = Make (struct
740
    type elt = int32
741

742
    let ty = Ty_bitv 32
743

744
    let value i = Value.Bitv (Bitvector.of_int32 i)
×
745
  end)
746

747
  module I64 = Make (struct
748
    type elt = int64
749

750
    let ty = Ty_bitv 64
751

752
    let value i = Value.Bitv (Bitvector.of_int64 i)
×
753
  end)
754
end
755

756
module Fpa = struct
757
  open Ty
758

759
  module F32 = struct
760
    include Make (struct
761
      type elt = float
762

763
      let ty = Ty_fp 32
764

765
      let value f = Value.Num (F32 (Int32.bits_of_float f))
×
766
    end)
767

768
    (* Redeclare equality due to incorrect theory annotation *)
769
    let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
×
770

771
    let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
×
772
  end
773

774
  module F64 = struct
775
    include Make (struct
776
      type elt = float
777

778
      let ty = Ty_fp 64
779

780
      let value f = Value.Num (F64 (Int64.bits_of_float f))
×
781
    end)
782

783
    (* Redeclare equality due to incorrect theory annotation *)
784
    let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
×
785

786
    let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
×
787
  end
788
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc