• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

deepset-ai / haystack / 15703861885

17 Jun 2025 09:44AM UTC coverage: 90.141% (-0.003%) from 90.144%
15703861885

Pull #9525

github

web-flow
Merge 40d810412 into 7dbac5b3c
Pull Request #9525: refactor: Make `_convert_chat_completion_chunk_to_streaming_chunk` a member function of `OpenAIChatGenerator` and small fixes to setting `StreamingChunk.index`

11548 of 12811 relevant lines covered (90.14%)

0.9 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

75.0
haystack/components/generators/utils.py
1
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
2
#
3
# SPDX-License-Identifier: Apache-2.0
4

5
import json
1✔
6
from typing import Dict, List
1✔
7

8
from haystack import logging
1✔
9
from haystack.dataclasses import ChatMessage, StreamingChunk, ToolCall
1✔
10

11
logger = logging.getLogger(__name__)
1✔
12

13

14
def print_streaming_chunk(chunk: StreamingChunk) -> None:
1✔
15
    """
16
    Callback function to handle and display streaming output chunks.
17

18
    This function processes a `StreamingChunk` object by:
19
    - Printing tool call metadata (if any), including function names and arguments, as they arrive.
20
    - Printing tool call results when available.
21
    - Printing the main content (e.g., text tokens) of the chunk as it is received.
22

23
    The function outputs data directly to stdout and flushes output buffers to ensure immediate display during
24
    streaming.
25

26
    :param chunk: A chunk of streaming data containing content and optional metadata, such as tool calls and
27
        tool results.
28
    """
29
    if chunk.start and chunk.index and chunk.index > 0:
1✔
30
        # If this is the start of a new content block but not the first content block, print two new lines
31
        print("\n\n", flush=True, end="")
×
32

33
    ## Tool Call streaming
34
    if chunk.tool_calls:
1✔
35
        # Typically, if there are multiple tool calls in the chunk, typically this means that the tool calls are fully
36
        # formed and not just a delta.
37
        for tool_call in chunk.tool_calls:
×
38
            # If chunk.start is True indicates beginning of a tool call
39
            # Also presence of tool_call.tool_name indicates the start of a tool call too
40
            if chunk.start:
×
41
                print("[TOOL CALL]\n", flush=True, end="")
×
42
                print(f"Tool: {tool_call.tool_name} ", flush=True, end="")
×
43
                print("\nArguments: ", flush=True, end="")
×
44

45
            # print the tool arguments
46
            if tool_call.arguments:
×
47
                print(tool_call.arguments, flush=True, end="")
×
48

49
    ## Tool Call Result streaming
50
    # Print tool call results if available (from ToolInvoker)
51
    if chunk.tool_call_result:
1✔
52
        # Tool Call Result is fully formed so delta accumulation is not needed
53
        print(f"[TOOL RESULT]\n{chunk.tool_call_result.result}", flush=True, end="")
1✔
54

55
    ## Normal content streaming
56
    # Print the main content of the chunk (from ChatGenerator)
57
    if chunk.content:
1✔
58
        if chunk.start:
×
59
            print("[ASSISTANT]\n", flush=True, end="")
×
60
        print(chunk.content, flush=True, end="")
×
61

62
    # End of LLM assistant message so we add two new lines
63
    # This ensures spacing between multiple LLM messages (e.g. Agent) or multiple Tool Call Results
64
    if chunk.meta.get("finish_reason") is not None:
1✔
65
        print("\n\n", flush=True, end="")
1✔
66

67

68
def _convert_streaming_chunks_to_chat_message(chunks: List[StreamingChunk]) -> ChatMessage:
1✔
69
    """
70
    Connects the streaming chunks into a single ChatMessage.
71

72
    :param chunks: The list of all `StreamingChunk` objects.
73

74
    :returns: The ChatMessage.
75
    """
76
    text = "".join([chunk.content for chunk in chunks])
1✔
77
    tool_calls = []
1✔
78

79
    # Process tool calls if present in any chunk
80
    tool_call_data: Dict[int, Dict[str, str]] = {}  # Track tool calls by index
1✔
81
    for chunk in chunks:
1✔
82
        if chunk.tool_calls:
1✔
83
            # We do this to make sure mypy is happy, but we enforce index is not None in the StreamingChunk dataclass if
84
            # tool_call is present
85
            assert chunk.index is not None
1✔
86

87
            for tool_call in chunk.tool_calls:
1✔
88
                # We use the index of the tool_call to track the tool call across chunks since the ID is not always
89
                # provided
90
                if tool_call.index not in tool_call_data:
1✔
91
                    tool_call_data[chunk.index] = {"id": "", "name": "", "arguments": ""}
1✔
92

93
                # Save the ID if present
94
                if tool_call.id is not None:
1✔
95
                    tool_call_data[chunk.index]["id"] = tool_call.id
1✔
96

97
                if tool_call.tool_name is not None:
1✔
98
                    tool_call_data[chunk.index]["name"] += tool_call.tool_name
1✔
99
                if tool_call.arguments is not None:
1✔
100
                    tool_call_data[chunk.index]["arguments"] += tool_call.arguments
1✔
101

102
    # Convert accumulated tool call data into ToolCall objects
103
    sorted_keys = sorted(tool_call_data.keys())
1✔
104
    for key in sorted_keys:
1✔
105
        tool_call = tool_call_data[key]
1✔
106
        try:
1✔
107
            arguments = json.loads(tool_call["arguments"])
1✔
108
            tool_calls.append(ToolCall(id=tool_call["id"], tool_name=tool_call["name"], arguments=arguments))
1✔
109
        except json.JSONDecodeError:
×
110
            logger.warning(
×
111
                "OpenAI returned a malformed JSON string for tool call arguments. This tool call "
112
                "will be skipped. To always generate a valid JSON, set `tools_strict` to `True`. "
113
                "Tool call ID: {_id}, Tool name: {_name}, Arguments: {_arguments}",
114
                _id=tool_call["id"],
115
                _name=tool_call["name"],
116
                _arguments=tool_call["arguments"],
117
            )
118

119
    # finish_reason can appear in different places so we look for the last one
120
    finish_reasons = [
1✔
121
        chunk.meta.get("finish_reason") for chunk in chunks if chunk.meta.get("finish_reason") is not None
122
    ]
123
    finish_reason = finish_reasons[-1] if finish_reasons else None
1✔
124

125
    meta = {
1✔
126
        "model": chunks[-1].meta.get("model"),
127
        "index": 0,
128
        "finish_reason": finish_reason,
129
        "completion_start_time": chunks[0].meta.get("received_at"),  # first chunk received
130
        "usage": chunks[-1].meta.get("usage"),  # last chunk has the final usage data if available
131
    }
132

133
    return ChatMessage.from_assistant(text=text or None, tool_calls=tool_calls, meta=meta)
1✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc