• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

formalsec / smtml / 345

31 May 2025 10:40AM UTC coverage: 55.2% (-0.6%) from 55.751%
345

push

github

filipeom
Don't rewrite types of well-typed symbols

950 of 1721 relevant lines covered (55.2%)

11.52 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

32.08
/src/smtml/expr.ml
1
(* SPDX-License-Identifier: MIT *)
2
(* Copyright (C) 2023-2024 formalsec *)
3
(* Written by the Smtml programmers *)
4

5
type t = expr Hc.hash_consed
6

7
and expr =
8
  | Val of Value.t
9
  | Ptr of
10
      { base : int32
11
      ; offset : t
12
      }
13
  | Symbol of Symbol.t
14
  | List of t list
15
  | App of Symbol.t * t list
16
  | Unop of Ty.t * Ty.Unop.t * t
17
  | Binop of Ty.t * Ty.Binop.t * t * t
18
  | Triop of Ty.t * Ty.Triop.t * t * t * t
19
  | Relop of Ty.t * Ty.Relop.t * t * t
20
  | Cvtop of Ty.t * Ty.Cvtop.t * t
21
  | Naryop of Ty.t * Ty.Naryop.t * t list
22
  | Extract of t * int * int
23
  | Concat of t * t
24
  | Binder of Binder.t * t list * t
25

26
module Expr = struct
27
  type t = expr
28

29
  let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
30
    if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
4✔
31
    else false
×
32

33
  let equal (e1 : expr) (e2 : expr) : bool =
34
    match (e1, e2) with
494✔
35
    | Val v1, Val v2 -> Value.equal v1 v2
468✔
36
    | Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
3✔
37
      Int32.equal b1 b2 && phys_equal o1 o2
3✔
38
    | Symbol s1, Symbol s2 -> Symbol.equal s1 s2
6✔
39
    | List l1, List l2 -> list_eq l1 l2
4✔
40
    | App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
×
41
    | Unop (t1, op1, e1), Unop (t2, op2, e2) ->
×
42
      Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
×
43
    | Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
12✔
44
      Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
12✔
45
      && phys_equal e3 e4
12✔
46
    | Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
1✔
47
      Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
1✔
48
      && phys_equal e3 e4
1✔
49
    | Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
×
50
      Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
×
51
      && phys_equal e3 e4 && phys_equal e5 e6
×
52
    | Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
×
53
      Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
×
54
    | Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
×
55
      Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
×
56
    | Extract (e1, h1, l1), Extract (e2, h2, l2) ->
×
57
      phys_equal e1 e2 && h1 = h2 && l1 = l2
×
58
    | Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
×
59
    | Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
×
60
      Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
×
61
    | ( ( Val _ | Ptr _ | Symbol _ | List _ | App _ | Unop _ | Binop _ | Triop _
×
62
        | Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _ | Binder _ )
×
63
      , _ ) ->
64
      false
65

66
  let hash (e : expr) : int =
67
    let h x = Hashtbl.hash x in
964✔
68
    match e with
69
    | Val v -> h v
834✔
70
    | Ptr { base; offset } -> h (base, offset.tag)
13✔
71
    | Symbol s -> h s
36✔
72
    | List v -> h v
16✔
73
    | App (x, es) -> h (x, es)
×
74
    | Unop (ty, op, e) -> h (ty, op, e.tag)
4✔
75
    | Cvtop (ty, op, e) -> h (ty, op, e.tag)
6✔
76
    | Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
34✔
77
    | Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
3✔
78
    | Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
×
79
    | Naryop (ty, op, es) -> h (ty, op, es)
×
80
    | Extract (e, hi, lo) -> h (e.tag, hi, lo)
14✔
81
    | Concat (e1, e2) -> h (e1.tag, e2.tag)
4✔
82
    | Binder (b, vars, e) -> h (b, vars, e.tag)
×
83
end
84

85
module Hc = Hc.Make [@inlined hint] (Expr)
86

87
let equal (hte1 : t) (hte2 : t) = phys_equal hte1 hte2 [@@inline]
219✔
88

89
let hash (hte : t) = hte.tag [@@inline]
4✔
90

91
module Key = struct
92
  type nonrec t = t
93

94
  let to_int hte = hash hte
×
95
end
96

97
let[@inline] make e = Hc.hashcons e
729✔
98

99
let[@inline] view (hte : t) = hte.node
510✔
100

101
let[@inline] compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag
×
102

103
let symbol s = make (Symbol s)
21✔
104

105
(** The return type of an expression *)
106
let rec ty (hte : t) : Ty.t =
107
  match view hte with
13✔
108
  | Val x -> Value.type_of x
×
109
  | Ptr _ -> Ty_bitv 32
×
110
  | Symbol x -> Symbol.type_of x
10✔
111
  | List _ -> Ty_list
×
112
  | App (sym, _) -> begin match sym.ty with Ty_none -> Ty_app | ty -> ty end
×
113
  | Unop (ty, _, _) -> ty
×
114
  | Binop (ty, _, _, _) -> ty
×
115
  | Triop (_, Ite, _, hte1, hte2) ->
×
116
    let ty1 = ty hte1 in
117
    let ty2 = ty hte2 in
×
118
    assert (Ty.equal ty1 ty2);
×
119
    ty1
120
  | Triop (ty, _, _, _, _) -> ty
×
121
  | Relop (ty, _, _, _) -> ty
×
122
  | Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
×
123
    match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
1✔
124
  | Cvtop (ty, _, _) -> ty
×
125
  | Naryop (ty, _, _) -> ty
×
126
  | Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
2✔
127
  | Concat (e1, e2) -> (
×
128
    match (ty e1, ty e2) with
×
129
    | Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
×
130
    | t1, t2 ->
×
131
      Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
132
  | Binder (_, _, e) -> ty e
×
133

134
let rec is_symbolic (v : t) : bool =
135
  match view v with
×
136
  | Val _ -> false
×
137
  | Symbol _ -> true
×
138
  | Ptr { offset; _ } -> is_symbolic offset
×
139
  | List vs -> List.exists is_symbolic vs
×
140
  | App (_, vs) -> List.exists is_symbolic vs
×
141
  | Unop (_, _, v) -> is_symbolic v
×
142
  | Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
143
  | Triop (_, _, v1, v2, v3) ->
×
144
    is_symbolic v1 || is_symbolic v2 || is_symbolic v3
×
145
  | Cvtop (_, _, v) -> is_symbolic v
×
146
  | Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
147
  | Naryop (_, _, vs) -> List.exists is_symbolic vs
×
148
  | Extract (e, _, _) -> is_symbolic e
×
149
  | Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
×
150
  | Binder (_, _, e) -> is_symbolic e
×
151

152
let get_symbols (hte : t list) =
153
  let tbl = Hashtbl.create 64 in
×
154
  let rec symbols (hte : t) =
×
155
    match view hte with
×
156
    | Val _ -> ()
×
157
    | Ptr { offset; _ } -> symbols offset
×
158
    | Symbol s -> Hashtbl.replace tbl s ()
×
159
    | List es -> List.iter symbols es
×
160
    | App (_, es) -> List.iter symbols es
×
161
    | Unop (_, _, e1) -> symbols e1
×
162
    | Binop (_, _, e1, e2) ->
×
163
      symbols e1;
164
      symbols e2
×
165
    | Triop (_, _, e1, e2, e3) ->
×
166
      symbols e1;
167
      symbols e2;
×
168
      symbols e3
×
169
    | Relop (_, _, e1, e2) ->
×
170
      symbols e1;
171
      symbols e2
×
172
    | Cvtop (_, _, e) -> symbols e
×
173
    | Naryop (_, _, es) -> List.iter symbols es
×
174
    | Extract (e, _, _) -> symbols e
×
175
    | Concat (e1, e2) ->
×
176
      symbols e1;
177
      symbols e2
×
178
    | Binder (_, vars, e) ->
×
179
      List.iter symbols vars;
180
      symbols e
×
181
  in
182
  List.iter symbols hte;
183
  Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
184

185
module Set = struct
186
  include PatriciaTree.MakeHashconsedSet (Key) ()
187

188
  let hash = to_int
189

190
  let get_symbols (set : t) =
191
    let tbl = Hashtbl.create 64 in
×
192
    let rec symbols hte =
×
193
      match view hte with
×
194
      | Val _ -> ()
×
195
      | Ptr { offset; _ } -> symbols offset
×
196
      | Symbol s -> Hashtbl.replace tbl s ()
×
197
      | List es -> List.iter symbols es
×
198
      | App (_, es) -> List.iter symbols es
×
199
      | Unop (_, _, e1) -> symbols e1
×
200
      | Binop (_, _, e1, e2) ->
×
201
        symbols e1;
202
        symbols e2
×
203
      | Triop (_, _, e1, e2, e3) ->
×
204
        symbols e1;
205
        symbols e2;
×
206
        symbols e3
×
207
      | Relop (_, _, e1, e2) ->
×
208
        symbols e1;
209
        symbols e2
×
210
      | Cvtop (_, _, e) -> symbols e
×
211
      | Naryop (_, _, es) -> List.iter symbols es
×
212
      | Extract (e, _, _) -> symbols e
×
213
      | Concat (e1, e2) ->
×
214
        symbols e1;
215
        symbols e2
×
216
      | Binder (_, vars, e) ->
×
217
        List.iter symbols vars;
218
        symbols e
×
219
    in
220
    iter symbols set;
221
    Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
222
end
223

224
module Pp = struct
225
  let rec pp fmt (hte : t) =
226
    match view hte with
×
227
    | Val v -> Value.pp fmt v
×
228
    | Ptr { base; offset } -> Fmt.pf fmt "(Ptr (i32 %ld) %a)" base pp offset
×
229
    | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
×
230
    | List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
×
231
    | App (s, v) ->
×
232
      Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s
233
        (Fmt.list ~sep:Fmt.comma pp)
×
234
        v
235
    | Unop (ty, op, e) ->
×
236
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
237
    | Binop (ty, op, e1, e2) ->
×
238
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp
239
        e2
240
    | Triop (ty, op, e1, e2, e3) ->
×
241
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1
242
        pp e2 pp e3
243
    | Relop (ty, op, e1, e2) ->
×
244
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp
245
        e2
246
    | Cvtop (ty, op, e) ->
×
247
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
248
    | Naryop (ty, op, es) ->
×
249
      Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
250
        (Fmt.list ~sep:Fmt.comma pp)
×
251
        es
252
    | Extract (e, h, l) ->
×
253
      Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
254
    | Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
×
255
    | Binder (b, vars, e) ->
×
256
      Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b
257
        (Fmt.list ~sep:Fmt.sp pp) vars pp e
×
258

259
  let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
×
260

261
  let pp_smt fmt (es : t list) : unit =
262
    let pp_symbols fmt syms =
×
263
      Fmt.list ~sep:Fmt.semi
×
264
        (fun fmt sym ->
265
          let t = Symbol.type_of sym in
×
266
          Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
×
267
        fmt syms
268
    in
269
    let pp_asserts fmt es =
270
      Fmt.list ~sep:Fmt.semi
×
271
        (fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
×
272
        fmt es
273
    in
274
    let syms = get_symbols es in
275
    if List.length syms > 0 then Fmt.pf fmt "%a@\n" pp_symbols syms;
×
276
    if List.length es > 0 then Fmt.pf fmt "%a@\n" pp_asserts es;
×
277
    Fmt.string fmt "(check-sat)"
×
278
end
279

280
let pp = Pp.pp
281

282
let pp_list = Pp.pp_list
283

284
let pp_smt = Pp.pp_smt
285

286
let to_string e = Fmt.str "%a" pp e
×
287

288
let value (v : Value.t) : t = make (Val v) [@@inline]
651✔
289

290
let ptr base offset = make (Ptr { base; offset })
8✔
291

292
let list l = make (List l)
5✔
293

294
let app symbol args = make (App (symbol, args))
×
295

296
let[@inline] binder bt vars expr = make (Binder (bt, vars, expr))
×
297

298
let let_in vars body = binder Let_in vars body
×
299

300
let forall vars body = binder Forall vars body
×
301

302
let exists vars body = binder Exists vars body
×
303

304
let raw_unop ty op hte = make (Unop (ty, op, hte)) [@@inline]
2✔
305

306
let normalize_eq_or_ne op (ty', e1, e2) =
307
  let make_relop lhs rhs = Relop (ty', op, lhs, rhs) in
×
308
  let ty1, ty2 = (ty e1, ty e2) in
×
309
  if not (Ty.equal ty1 ty2) then make_relop e1 e2
×
310
  else begin
×
311
    match ty1 with
312
    | Ty_bitv m ->
×
313
      let binop = make (Binop (ty1, Sub, e1, e2)) in
314
      let zero = make (Val (Bitv (Bitvector.make Z.zero m))) in
×
315
      make_relop binop zero
×
316
    | Ty_int ->
×
317
      let binop = make (Binop (ty1, Sub, e1, e2)) in
318
      let zero = make (Val (Int Int.zero)) in
×
319
      make_relop binop zero
×
320
    | Ty_real ->
×
321
      let binop = make (Binop (ty1, Sub, e1, e2)) in
322
      let zero = make (Val (Real 0.)) in
×
323
      make_relop binop zero
×
324
    | _ -> make_relop e1 e2
×
325
  end
326

327
let negate_relop (hte : t) : t =
328
  let e =
×
329
    match view hte with
330
    | Relop (ty, Eq, e1, e2) -> normalize_eq_or_ne Ne (ty, e1, e2)
×
331
    | Relop (ty, Ne, e1, e2) -> normalize_eq_or_ne Eq (ty, e1, e2)
×
332
    | Relop (ty, Lt, e1, e2) -> Relop (ty, Le, e2, e1)
×
333
    | Relop (ty, LtU, e1, e2) -> Relop (ty, LeU, e2, e1)
×
334
    | Relop (ty, Le, e1, e2) -> Relop (ty, Lt, e2, e1)
×
335
    | Relop (ty, LeU, e1, e2) -> Relop (ty, LtU, e2, e1)
×
336
    | Relop (ty, Gt, e1, e2) -> Relop (ty, Le, e1, e2)
×
337
    | Relop (ty, GtU, e1, e2) -> Relop (ty, LeU, e1, e2)
×
338
    | Relop (ty, Ge, e1, e2) -> Relop (ty, Lt, e1, e2)
×
339
    | Relop (ty, GeU, e1, e2) -> Relop (ty, LtU, e1, e2)
×
340
    | _ -> Fmt.failwith "negate_relop: not a relop."
×
341
  in
342
  make e
343

344
let unop ty op hte =
345
  match (op, view hte) with
32✔
346
  | Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> raw_unop ty op hte
×
347
  | _, Val v -> value (Eval.unop ty op v)
23✔
348
  | Not, Unop (_, Not, hte') -> hte'
1✔
349
  | Not, Relop (_, _, _, _) -> negate_relop hte
×
350
  | Neg, Unop (_, Neg, hte') -> hte'
1✔
351
  | Trim, Cvtop (Ty_real, ToString, _) -> hte
×
352
  | Head, List (hd :: _) -> hd
1✔
353
  | Tail, List (_ :: tl) -> make (List tl)
1✔
354
  | Reverse, List es -> make (List (List.rev es))
2✔
355
  | Length, List es -> value (Int (List.length es))
1✔
356
  | _ -> raw_unop ty op hte
2✔
357

358
let raw_binop ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
23✔
359

360
let rec binop ty op hte1 hte2 =
361
  match (op, view hte1, view hte2) with
96✔
362
  | Ty.Binop.(String_in_re | Regexp_range), _, _ -> raw_binop ty op hte1 hte2
×
363
  | op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
67✔
364
  | Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
365
    if Int32.equal b1 b2 then binop ty Sub os1 os2
1✔
366
    else raw_binop ty op hte1 hte2
×
367
  | Add, Ptr { base; offset }, _ ->
1✔
368
    ptr base (binop (Ty_bitv 32) Add offset hte2)
1✔
369
  | Sub, Ptr { base; offset }, _ ->
1✔
370
    ptr base (binop (Ty_bitv 32) Sub offset hte2)
1✔
371
  | Rem, Ptr { base; offset }, _ ->
1✔
372
    let rhs = value (Bitv (Bitvector.of_int32 base)) in
1✔
373
    let addr = binop (Ty_bitv 32) Add rhs offset in
1✔
374
    binop ty Rem addr hte2
1✔
375
  | Add, _, Ptr { base; offset } ->
1✔
376
    ptr base (binop (Ty_bitv 32) Add offset hte1)
1✔
377
  | Sub, _, Ptr { base; offset } ->
×
378
    let base = value (Bitv (Bitvector.of_int32 base)) in
×
379
    binop ty Sub hte1 (binop (Ty_bitv 32) Add base offset)
×
380
  | (Add | Or), Val (Bitv bv), _ when Bitvector.eqz bv -> hte2
×
381
  | (And | Div | DivU | Mul | Rem | RemU), Val (Bitv bv), _
×
382
    when Bitvector.eqz bv ->
3✔
383
    hte1
1✔
384
  | (Add | Or), _, Val (Bitv bv) when Bitvector.eqz bv -> hte1
×
385
  | (And | Mul), _, Val (Bitv bv) when Bitvector.eqz bv -> hte2
1✔
386
  | Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
1✔
387
    let v = value (Eval.binop ty Add v1 v2) in
1✔
388
    raw_binop ty Add x v
1✔
389
  | Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
1✔
390
    let v = value (Eval.binop ty Add v1 v2) in
1✔
391
    raw_binop ty Sub x v
1✔
392
  | Mul, Val (Bitv bv), _ when Bitvector.eq_one bv -> hte2
×
393
  | Mul, _, Val (Bitv bv) when Bitvector.eq_one bv -> hte1
×
394
  | Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
1✔
395
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
396
    raw_binop ty Mul x v
1✔
397
  | Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
1✔
398
    let v = value (Eval.binop ty Add v1 v2) in
1✔
399
    raw_binop ty Add v x
1✔
400
  | Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
1✔
401
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
402
    raw_binop ty Mul v x
1✔
403
  | At, List es, Val (Int n) ->
1✔
404
    (* TODO: use another datastructure? *)
405
    begin
406
      match List.nth_opt es n with None -> assert false | Some v -> v
1✔
407
    end
408
  | List_cons, _, List es -> make (List (hte1 :: es))
1✔
409
  | List_append, List _, (List [] | Val (List [])) -> hte1
×
410
  | List_append, (List [] | Val (List [])), List _ -> hte2
×
411
  | List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
1✔
412
  | List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
×
413
  | List_append, List l0, List l1 -> make (List (l0 @ l1))
×
414
  | _ -> raw_binop ty op hte1 hte2
12✔
415

416
let raw_triop ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
×
417

418
let triop ty op e1 e2 e3 =
419
  match (op, view e1, view e2, view e3) with
6✔
420
  | Ty.Triop.Ite, Val True, _, _ -> e2
1✔
421
  | Ite, Val False, _, _ -> e3
1✔
422
  | op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
4✔
423
  | Ite, _, Triop (_, Ite, c2, r1, r2), Triop (_, Ite, _, _, _) ->
×
424
    let else_ = raw_triop ty Ite e1 r2 e3 in
425
    let cond = binop Ty_bool And e1 c2 in
×
426
    raw_triop ty Ite cond r1 else_
×
427
  | _ -> raw_triop ty op e1 e2 e3
×
428

429
let raw_relop ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
2✔
430

431
let rec relop ty op hte1 hte2 =
432
  match (op, view hte1, view hte2) with
77✔
433
  | op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
29✔
434
  | Ty.Relop.Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
×
435
    if Float.is_nan v || Float.is_infinite v then value True
×
436
    else raw_relop ty op hte1 hte2
×
437
  | _, Val (Real v), _ | _, _, Val (Real v) ->
×
438
    if Float.is_nan v || Float.is_infinite v then value False
×
439
    else raw_relop ty op hte1 hte2
×
440
  | Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
×
441
  | Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
×
442
  | Eq, _, Val (App (`Op "symbol", [ Str _ ]))
×
443
  | Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
444
    value False
445
  | Ne, _, Val (App (`Op "symbol", [ Str _ ]))
×
446
  | Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
447
    value True
448
  | ( Eq
×
449
    , Symbol ({ ty = Ty_fp prec1; _ } as s1)
450
    , Symbol ({ ty = Ty_fp prec2; _ } as s2) )
451
    when prec1 = prec2 && Symbol.equal s1 s2 ->
×
452
    raw_unop Ty_bool Not (raw_unop (Ty_fp prec1) Is_nan hte1)
×
453
  | Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
454
    if Int32.equal b1 b2 then relop Ty_bool Eq os1 os2 else value False
1✔
455
  | Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
456
    if Int32.equal b1 b2 then relop Ty_bool Ne os1 os2 else value True
1✔
457
  | ( (LtU | LeU)
2✔
458
    , Ptr { base = b1; offset = os1 }
459
    , Ptr { base = b2; offset = os2 } ) ->
460
    if Int32.equal b1 b2 then relop ty op os1 os2
2✔
461
    else
462
      let b1 = Value.Bitv (Bitvector.of_int32 b1) in
2✔
463
      let b2 = Value.Bitv (Bitvector.of_int32 b2) in
2✔
464
      value (if Eval.relop ty op b1 b2 then True else False)
1✔
465
  | ( op
2✔
466
    , Val (Bitv _ as n)
467
    , Ptr { base; offset = { node = Val (Bitv _ as o); _ } } ) ->
468
    let base = Eval.binop (Ty_bitv 32) Add (Bitv (Bitvector.of_int32 base)) o in
2✔
469
    value (if Eval.relop ty op n base then True else False)
1✔
470
  | op, Ptr { base; offset = { node = Val (Bitv _ as o); _ } }, Val (Bitv _ as n)
2✔
471
    ->
472
    let base = Eval.binop (Ty_bitv 32) Add (Bitv (Bitvector.of_int32 base)) o in
2✔
473
    value (if Eval.relop ty op base n then True else False)
1✔
474
  | op, List l1, List l2 -> relop_list op l1 l2
×
475
  | Gt, _, _ -> relop ty Lt hte2 hte1
×
476
  | GtU, _, _ -> relop ty LtU hte2 hte1
1✔
477
  | Ge, _, _ -> relop ty Le hte2 hte1
×
478
  | GeU, _, _ -> relop ty LeU hte2 hte1
1✔
479
  | _, _, _ -> raw_relop ty op hte1 hte2
2✔
480

481
and relop_list op l1 l2 =
482
  match (op, l1, l2) with
×
483
  | Eq, [], [] -> value True
×
484
  | Eq, _, [] | Eq, [], _ -> value False
×
485
  | Eq, l1, l2 ->
×
486
    if not (List.compare_lengths l1 l2 = 0) then value False
×
487
    else
488
      List.fold_left2
×
489
        (fun acc a b ->
490
          binop Ty_bool And acc
×
491
          @@
492
          match (ty a, ty b) with
×
493
          | Ty_real, Ty_real -> relop Ty_real Eq a b
×
494
          | _ -> relop Ty_bool Eq a b )
×
495
        (value True) l1 l2
×
496
  | Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
×
497
  | (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
498

499
let raw_cvtop ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
3✔
500

501
let cvtop ty op hte =
502
  match (op, view hte) with
25✔
503
  | Ty.Cvtop.String_to_re, _ -> raw_cvtop ty op hte
×
504
  | _, Val v -> value (Eval.cvtop ty op v)
22✔
505
  | String_to_float, Cvtop (Ty_real, ToString, real) -> real
×
506
  | _ -> raw_cvtop ty op hte
3✔
507

508
let raw_naryop ty op es = make (Naryop (ty, op, es)) [@@inline]
×
509

510
let naryop ty op es =
511
  if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
×
512
  then
513
    let vs =
7✔
514
      List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
18✔
515
    in
516
    value (Eval.naryop ty op vs)
7✔
517
  else
518
    match (ty, op, List.map view es) with
×
519
    | ( Ty_str
×
520
      , Concat
521
      , [ Naryop (Ty_str, Concat, l1); Naryop (Ty_str, Concat, l2) ] ) ->
522
      raw_naryop Ty_str Concat (l1 @ l2)
523
    | Ty_str, Concat, [ Naryop (Ty_str, Concat, htes); hte ] ->
×
524
      raw_naryop Ty_str Concat (htes @ [ make hte ])
×
525
    | Ty_str, Concat, [ hte; Naryop (Ty_str, Concat, htes) ] ->
×
526
      raw_naryop Ty_str Concat (make hte :: htes)
×
527
    | _ -> raw_naryop ty op es
×
528

529
let[@inline] raw_extract (hte : t) ~(high : int) ~(low : int) : t =
530
  make (Extract (hte, high, low))
7✔
531

532
let extract (hte : t) ~(high : int) ~(low : int) : t =
533
  match (view hte, high, low) with
12✔
534
  | Val (Bitv bv), high, low ->
3✔
535
    let high = (high * 8) - 1 in
536
    let low = low * 8 in
537
    value (Bitv (Bitvector.extract bv ~high ~low))
3✔
538
  | ( Cvtop
2✔
539
        ( _
540
        , (Zero_extend 24 | Sign_extend 24)
1✔
541
        , ({ node = Symbol { ty = Ty_bitv 8; _ }; _ } as sym) )
542
    , 1
543
    , 0 ) ->
544
    sym
545
  | Concat (_, e), h, l when Ty.size (ty e) = h - l -> e
2✔
546
  | Concat (e, _), 8, 4 when Ty.size (ty e) = 4 -> e
×
547
  | _ ->
5✔
548
    if high - low = Ty.size (ty hte) then hte else raw_extract hte ~high ~low
×
549

550
let raw_concat (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
2✔
551

552
(* TODO: don't rebuild so many values it generates unecessary hc lookups *)
553
let rec concat (msb : t) (lsb : t) : t =
554
  match (view msb, view lsb) with
6✔
555
  | Val (Bitv a), Val (Bitv b) -> value (Bitv (Bitvector.concat a b))
1✔
556
  | Val (Bitv _), Concat (({ node = Val (Bitv _); _ } as b), se) ->
×
557
    raw_concat (concat msb b) se
×
558
  | Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
3✔
559
    if h - l = Ty.size (ty s1) then s1 else raw_extract s1 ~high:h ~low:l
1✔
560
  | Extract (_, _, _), Concat (({ node = Extract (_, _, _); _ } as e2), e3) ->
×
561
    raw_concat (concat msb e2) e3
×
562
  | _ -> raw_concat msb lsb
2✔
563

564
let rec simplify_expr ?(in_relop = false) (hte : t) : t =
4✔
565
  match view hte with
16✔
566
  | Val _ | Symbol _ -> hte
4✔
567
  | Ptr { base; offset } ->
×
568
    let offset = simplify_expr ~in_relop offset in
569
    if not in_relop then ptr base offset
×
570
    else binop (Ty_bitv 32) Add (value (Bitv (Bitvector.of_int32 base))) offset
×
571
  | List es -> make @@ List (List.map (simplify_expr ~in_relop) es)
×
572
  | App (x, es) -> make @@ App (x, List.map (simplify_expr ~in_relop) es)
×
573
  | Unop (ty, op, e) ->
×
574
    let e = simplify_expr ~in_relop e in
575
    unop ty op e
×
576
  | Binop (ty, op, e1, e2) ->
6✔
577
    let e1 = simplify_expr ~in_relop e1 in
578
    let e2 = simplify_expr ~in_relop e2 in
6✔
579
    binop ty op e1 e2
6✔
580
  | Relop (ty, op, e1, e2) ->
×
581
    let e1 = simplify_expr ~in_relop:true e1 in
582
    let e2 = simplify_expr ~in_relop:true e2 in
×
583
    relop ty op e1 e2
×
584
  | Triop (ty, op, c, e1, e2) ->
×
585
    let c = simplify_expr ~in_relop c in
586
    let e1 = simplify_expr ~in_relop e1 in
×
587
    let e2 = simplify_expr ~in_relop e2 in
×
588
    triop ty op c e1 e2
×
589
  | Cvtop (ty, op, e) ->
×
590
    let e = simplify_expr ~in_relop e in
591
    cvtop ty op e
×
592
  | Naryop (ty, op, es) ->
×
593
    let es = List.map (simplify_expr ~in_relop) es in
594
    naryop ty op es
×
595
  | Extract (s, high, low) ->
×
596
    let s = simplify_expr ~in_relop s in
597
    extract s ~high ~low
×
598
  | Concat (e1, e2) ->
×
599
    let msb = simplify_expr ~in_relop e1 in
600
    let lsb = simplify_expr ~in_relop e2 in
×
601
    concat msb lsb
×
602
  | Binder _ ->
×
603
    (* Not simplifying anything atm *)
604
    hte
605

606
module Cache = Hashtbl.Make (struct
607
  type nonrec t = t
608

609
  let hash = hash
610

611
  let equal = equal
612
end)
613

614
let simplify =
615
  (* TODO: it may make sense to share the cache with simplify_expr ? *)
616
  let cache = Cache.create 512 in
617
  fun e ->
3✔
618
    match Cache.find_opt cache e with
2✔
619
    | Some simplified -> simplified
×
620
    | None ->
2✔
621
      let rec loop x =
622
        let x' = simplify_expr x in
4✔
623
        if equal x x' then begin
2✔
624
          Cache.add cache e x';
625
          x'
2✔
626
        end
627
        else loop x'
2✔
628
      in
629
      loop e
630

631
module Bool = struct
632
  open Ty
633

634
  let of_val = function
635
    | Val True -> Some true
×
636
    | Val False -> Some false
×
637
    | _ -> None
×
638

639
  let true_ = value True
3✔
640

641
  let false_ = value False
3✔
642

643
  let to_val b = if b then true_ else false_
×
644

645
  let v b = to_val b [@@inline]
×
646

647
  let not b =
648
    let bexpr = view b in
×
649
    match of_val bexpr with
×
650
    | Some b -> to_val (not b)
×
651
    | None -> (
×
652
      match bexpr with
653
      | Unop (Ty_bool, Not, cond) -> cond
×
654
      | _ -> unop Ty_bool Not b )
×
655

656
  let equal b1 b2 =
657
    match (view b1, view b2) with
×
658
    | Val True, Val True | Val False, Val False -> true_
×
659
    | _ -> relop Ty_bool Eq b1 b2
×
660

661
  let distinct b1 b2 =
662
    match (view b1, view b2) with
×
663
    | Val True, Val False | Val False, Val True -> true_
×
664
    | _ -> relop Ty_bool Ne b1 b2
×
665

666
  let and_ b1 b2 =
667
    match (of_val (view b1), of_val (view b2)) with
×
668
    | Some true, _ -> b2
×
669
    | _, Some true -> b1
×
670
    | Some false, _ | _, Some false -> false_
×
671
    | _ -> binop Ty_bool And b1 b2
×
672

673
  let or_ b1 b2 =
674
    match (of_val (view b1), of_val (view b2)) with
×
675
    | Some false, _ -> b2
×
676
    | _, Some false -> b1
×
677
    | Some true, _ | _, Some true -> true_
×
678
    | _ -> binop Ty_bool Or b1 b2
×
679

680
  let ite c r1 r2 = triop Ty_bool Ite c r1 r2
×
681
end
682

683
module Make (T : sig
684
  type elt
685

686
  val ty : Ty.t
687

688
  val value : elt -> Value.t
689
end) =
690
struct
691
  open Ty
692

693
  let v i = value (T.value i)
×
694

695
  let sym x = symbol Symbol.(x @: T.ty)
×
696

697
  let ( ~- ) e = unop T.ty Neg e
×
698

699
  let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
×
700

701
  let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
×
702

703
  let ( > ) e1 e2 = relop T.ty Gt e1 e2
×
704

705
  let ( >= ) e1 e2 = relop T.ty Ge e1 e2
×
706

707
  let ( < ) e1 e2 = relop T.ty Lt e1 e2
×
708

709
  let ( <= ) e1 e2 = relop T.ty Le e1 e2
×
710
end
711

712
module Bitv = struct
713
  open Ty
714

715
  module I8 = Make (struct
716
    type elt = int
717

718
    let ty = Ty_bitv 8
719

720
    let value i = Value.Bitv (Bitvector.of_int8 i)
×
721
  end)
722

723
  module I32 = Make (struct
724
    type elt = int32
725

726
    let ty = Ty_bitv 32
727

728
    let value i = Value.Bitv (Bitvector.of_int32 i)
×
729
  end)
730

731
  module I64 = Make (struct
732
    type elt = int64
733

734
    let ty = Ty_bitv 64
735

736
    let value i = Value.Bitv (Bitvector.of_int64 i)
×
737
  end)
738
end
739

740
module Fpa = struct
741
  open Ty
742

743
  module F32 = struct
744
    include Make (struct
745
      type elt = float
746

747
      let ty = Ty_fp 32
748

749
      let value f = Value.Num (F32 (Int32.bits_of_float f))
×
750
    end)
751

752
    (* Redeclare equality due to incorrect theory annotation *)
753
    let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
×
754

755
    let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
×
756
  end
757

758
  module F64 = struct
759
    include Make (struct
760
      type elt = float
761

762
      let ty = Ty_fp 64
763

764
      let value f = Value.Num (F64 (Int64.bits_of_float f))
×
765
    end)
766

767
    (* Redeclare equality due to incorrect theory annotation *)
768
    let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
×
769

770
    let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
×
771
  end
772
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc