• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

formalsec / smtml / 321

03 May 2025 06:14PM UTC coverage: 42.428% (-7.8%) from 50.195%
321

push

github

filipeom
Don't install z3 in deploy CI

720 of 1697 relevant lines covered (42.43%)

7.49 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

29.07
/src/smtml/expr.ml
1
(* SPDX-License-Identifier: MIT *)
2
(* Copyright (C) 2023-2024 formalsec *)
3
(* Written by the Smtml programmers *)
4

5
type t = expr Hc.hash_consed
6

7
and expr =
8
  | Val of Value.t
9
  | Ptr of
10
      { base : int32
11
      ; offset : t
12
      }
13
  | Symbol of Symbol.t
14
  | List of t list
15
  | App of Symbol.t * t list
16
  | Unop of Ty.t * Ty.Unop.t * t
17
  | Binop of Ty.t * Ty.Binop.t * t * t
18
  | Triop of Ty.t * Ty.Triop.t * t * t * t
19
  | Relop of Ty.t * Ty.Relop.t * t * t
20
  | Cvtop of Ty.t * Ty.Cvtop.t * t
21
  | Naryop of Ty.t * Ty.Naryop.t * t list
22
  | Extract of t * int * int
23
  | Concat of t * t
24
  | Binder of Binder.t * t list * t
25

26
module Expr = struct
27
  type t = expr
28

29
  let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
30
    if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
4✔
31
    else false
×
32

33
  let equal (e1 : expr) (e2 : expr) : bool =
34
    match (e1, e2) with
578✔
35
    | Val v1, Val v2 -> Value.equal v1 v2
545✔
36
    | Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
4✔
37
      Int32.equal b1 b2 && phys_equal o1 o2
4✔
38
    | Symbol s1, Symbol s2 -> Symbol.equal s1 s2
11✔
39
    | List l1, List l2 -> list_eq l1 l2
4✔
40
    | App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
×
41
    | Unop (t1, op1, e1), Unop (t2, op2, e2) ->
×
42
      Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
×
43
    | Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
12✔
44
      Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
12✔
45
      && phys_equal e3 e4
12✔
46
    | Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
1✔
47
      Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
1✔
48
      && phys_equal e3 e4
1✔
49
    | Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
×
50
      Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
×
51
      && phys_equal e3 e4 && phys_equal e5 e6
×
52
    | Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
×
53
      Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
×
54
    | Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
×
55
      Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
×
56
    | Extract (e1, h1, l1), Extract (e2, h2, l2) ->
1✔
57
      phys_equal e1 e2 && h1 = h2 && l1 = l2
1✔
58
    | Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
×
59
    | Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
×
60
      Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
×
61
    | ( ( Val _ | Ptr _ | Symbol _ | List _ | App _ | Unop _ | Binop _ | Triop _
×
62
        | Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _ | Binder _ )
×
63
      , _ ) ->
64
      false
65

66
  let hash (e : expr) : int =
67
    let h x = Hashtbl.hash x in
838✔
68
    match e with
69
    | Val v -> h v
723✔
70
    | Ptr { base; offset } -> h (base, offset.tag)
12✔
71
    | Symbol s -> h s
23✔
72
    | List v -> h v
16✔
73
    | App (x, es) -> h (x, es)
×
74
    | Unop (ty, op, e) -> h (ty, op, e.tag)
4✔
75
    | Cvtop (ty, op, e) -> h (ty, op, e.tag)
2✔
76
    | Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
34✔
77
    | Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
3✔
78
    | Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
×
79
    | Naryop (ty, op, es) -> h (ty, op, es)
×
80
    | Extract (e, hi, lo) -> h (e.tag, hi, lo)
15✔
81
    | Concat (e1, e2) -> h (e1.tag, e2.tag)
6✔
82
    | Binder (b, vars, e) -> h (b, vars, e.tag)
×
83
end
84

85
module Hc = Hc.Make [@inlined hint] (Expr)
86

87
let equal (hte1 : t) (hte2 : t) = phys_equal hte1 hte2 [@@inline]
214✔
88

89
let hash (hte : t) = hte.tag [@@inline]
6✔
90

91
module Key = struct
92
  type nonrec t = t
93

94
  let to_int hte = hash hte
×
95
end
96

97
let[@inline] make e = Hc.hashcons e
705✔
98

99
let[@inline] view (hte : t) = hte.node
487✔
100

101
let[@inline] compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag
×
102

103
let symbol s = make (Symbol s)
17✔
104

105
let is_num (e : t) = match view e with Val (Num _) -> true | _ -> false
×
106

107
(** The return type of an expression *)
108
let rec ty (hte : t) : Ty.t =
109
  match view hte with
5✔
110
  | Val x -> Value.type_of x
×
111
  | Ptr _ -> Ty_bitv 32
×
112
  | Symbol x -> Symbol.type_of x
2✔
113
  | List _ -> Ty_list
×
114
  | App _ -> Ty_app
×
115
  | Unop (ty, _, _) -> ty
×
116
  | Binop (ty, _, _, _) -> ty
×
117
  | Triop (_, Ite, _, hte1, hte2) ->
×
118
    let ty1 = ty hte1 in
119
    let ty2 = ty hte2 in
×
120
    assert (Ty.equal ty1 ty2);
×
121
    ty1
122
  | Triop (ty, _, _, _, _) -> ty
×
123
  | Relop (ty, _, _, _) -> ty
×
124
  | Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
×
125
    match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
1✔
126
  | Cvtop (ty, _, _) -> ty
×
127
  | Naryop (ty, _, _) -> ty
×
128
  | Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
2✔
129
  | Concat (e1, e2) -> (
×
130
    match (ty e1, ty e2) with
×
131
    | Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
×
132
    | t1, t2 ->
×
133
      Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
134
  | Binder (_, _, e) -> ty e
×
135

136
let rec is_symbolic (v : t) : bool =
137
  match view v with
×
138
  | Val _ -> false
×
139
  | Symbol _ -> true
×
140
  | Ptr { offset; _ } -> is_symbolic offset
×
141
  | List vs -> List.exists is_symbolic vs
×
142
  | App (_, vs) -> List.exists is_symbolic vs
×
143
  | Unop (_, _, v) -> is_symbolic v
×
144
  | Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
145
  | Triop (_, _, v1, v2, v3) ->
×
146
    is_symbolic v1 || is_symbolic v2 || is_symbolic v3
×
147
  | Cvtop (_, _, v) -> is_symbolic v
×
148
  | Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
149
  | Naryop (_, _, vs) -> List.exists is_symbolic vs
×
150
  | Extract (e, _, _) -> is_symbolic e
×
151
  | Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
×
152
  | Binder (_, _, e) -> is_symbolic e
×
153

154
let get_symbols (hte : t list) =
155
  let tbl = Hashtbl.create 64 in
×
156
  let rec symbols (hte : t) =
×
157
    match view hte with
×
158
    | Val _ -> ()
×
159
    | Ptr { offset; _ } -> symbols offset
×
160
    | Symbol s -> Hashtbl.replace tbl s ()
×
161
    | List es -> List.iter symbols es
×
162
    | App (_, es) -> List.iter symbols es
×
163
    | Unop (_, _, e1) -> symbols e1
×
164
    | Binop (_, _, e1, e2) ->
×
165
      symbols e1;
166
      symbols e2
×
167
    | Triop (_, _, e1, e2, e3) ->
×
168
      symbols e1;
169
      symbols e2;
×
170
      symbols e3
×
171
    | Relop (_, _, e1, e2) ->
×
172
      symbols e1;
173
      symbols e2
×
174
    | Cvtop (_, _, e) -> symbols e
×
175
    | Naryop (_, _, es) -> List.iter symbols es
×
176
    | Extract (e, _, _) -> symbols e
×
177
    | Concat (e1, e2) ->
×
178
      symbols e1;
179
      symbols e2
×
180
    | Binder (_, vars, e) ->
×
181
      List.iter symbols vars;
182
      symbols e
×
183
  in
184
  List.iter symbols hte;
185
  Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
186

187
let negate_relop (hte : t) : (t, string) Result.t =
188
  let e =
×
189
    match view hte with
190
    | Relop (ty, Eq, e1, e2) -> Ok (Relop (ty, Ne, e1, e2))
×
191
    | Relop (ty, Ne, e1, e2) -> Ok (Relop (ty, Eq, e1, e2))
×
192
    | Relop (ty, Lt, e1, e2) -> Ok (Relop (ty, Ge, e1, e2))
×
193
    | Relop (ty, LtU, e1, e2) -> Ok (Relop (ty, GeU, e1, e2))
×
194
    | Relop (ty, Le, e1, e2) -> Ok (Relop (ty, Gt, e1, e2))
×
195
    | Relop (ty, LeU, e1, e2) -> Ok (Relop (ty, GtU, e1, e2))
×
196
    | Relop (ty, Gt, e1, e2) -> Ok (Relop (ty, Le, e1, e2))
×
197
    | Relop (ty, GtU, e1, e2) -> Ok (Relop (ty, LeU, e1, e2))
×
198
    | Relop (ty, Ge, e1, e2) -> Ok (Relop (ty, Lt, e1, e2))
×
199
    | Relop (ty, GeU, e1, e2) -> Ok (Relop (ty, LtU, e1, e2))
×
200
    | _ -> Error "negate_relop: not a relop."
×
201
  in
202
  Result.map make e
203

204
module Set = struct
205
  include PatriciaTree.MakeHashconsedSet (Key) ()
206

207
  let hash = to_int
208

209
  let get_symbols (set : t) =
210
    let tbl = Hashtbl.create 64 in
×
211
    let rec symbols hte =
×
212
      match view hte with
×
213
      | Val _ -> ()
×
214
      | Ptr { offset; _ } -> symbols offset
×
215
      | Symbol s -> Hashtbl.replace tbl s ()
×
216
      | List es -> List.iter symbols es
×
217
      | App (_, es) -> List.iter symbols es
×
218
      | Unop (_, _, e1) -> symbols e1
×
219
      | Binop (_, _, e1, e2) ->
×
220
        symbols e1;
221
        symbols e2
×
222
      | Triop (_, _, e1, e2, e3) ->
×
223
        symbols e1;
224
        symbols e2;
×
225
        symbols e3
×
226
      | Relop (_, _, e1, e2) ->
×
227
        symbols e1;
228
        symbols e2
×
229
      | Cvtop (_, _, e) -> symbols e
×
230
      | Naryop (_, _, es) -> List.iter symbols es
×
231
      | Extract (e, _, _) -> symbols e
×
232
      | Concat (e1, e2) ->
×
233
        symbols e1;
234
        symbols e2
×
235
      | Binder (_, vars, e) ->
×
236
        List.iter symbols vars;
237
        symbols e
×
238
    in
239
    iter symbols set;
240
    Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
241
end
242

243
module Pp = struct
244
  let rec pp fmt (hte : t) =
245
    match view hte with
×
246
    | Val v -> Value.pp fmt v
×
247
    | Ptr { base; offset } -> Fmt.pf fmt "(Ptr (i32 %ld) %a)" base pp offset
×
248
    | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
×
249
    | List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
×
250
    | App (s, v) ->
×
251
      Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s
252
        (Fmt.list ~sep:Fmt.comma pp)
×
253
        v
254
    | Unop (ty, op, e) ->
×
255
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
256
    | Binop (ty, op, e1, e2) ->
×
257
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp
258
        e2
259
    | Triop (ty, op, e1, e2, e3) ->
×
260
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1
261
        pp e2 pp e3
262
    | Relop (ty, op, e1, e2) ->
×
263
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp
264
        e2
265
    | Cvtop (ty, op, e) ->
×
266
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
267
    | Naryop (ty, op, es) ->
×
268
      Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
269
        (Fmt.list ~sep:Fmt.comma pp)
×
270
        es
271
    | Extract (e, h, l) ->
×
272
      Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
273
    | Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
×
274
    | Binder (b, vars, e) ->
×
275
      Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b
276
        (Fmt.list ~sep:Fmt.sp pp) vars pp e
×
277

278
  let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
×
279

280
  let pp_smt fmt (es : t list) : unit =
281
    let pp_symbols fmt syms =
×
282
      Fmt.list ~sep:Fmt.semi
×
283
        (fun fmt sym ->
284
          let t = Symbol.type_of sym in
×
285
          Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
×
286
        fmt syms
287
    in
288
    let pp_asserts fmt es =
289
      Fmt.list ~sep:Fmt.semi
×
290
        (fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
×
291
        fmt es
292
    in
293
    let syms = get_symbols es in
294
    if List.length syms > 0 then Fmt.pf fmt "%a@\n" pp_symbols syms;
×
295
    if List.length es > 0 then Fmt.pf fmt "%a@\n" pp_asserts es;
×
296
    Fmt.string fmt "(check-sat)"
×
297
end
298

299
let pp = Pp.pp
300

301
let pp_list = Pp.pp_list
302

303
let pp_smt = Pp.pp_smt
304

305
let to_string e = Fmt.str "%a" pp e
×
306

307
let value (v : Value.t) : t = make (Val v) [@@inline]
631✔
308

309
let ptr base offset = make (Ptr { base; offset })
8✔
310

311
let app symbol args = make (App (symbol, args))
×
312

313
let[@inline] binder bt vars expr = make (Binder (bt, vars, expr))
×
314

315
let let_in vars body = binder Let_in vars body
×
316

317
let forall vars body = binder Forall vars body
×
318

319
let exists vars body = binder Exists vars body
×
320

321
let unop' ty op hte = make (Unop (ty, op, hte)) [@@inline]
2✔
322

323
let unop ty op hte =
324
  match (op, view hte) with
32✔
325
  | Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> unop' ty op hte
×
326
  | _, Val v -> value (Eval.unop ty op v)
23✔
327
  | Not, Unop (_, Not, hte') -> hte'
1✔
328
  | Neg, Unop (_, Neg, hte') -> hte'
1✔
329
  | Trim, Cvtop (Ty_real, ToString, _) -> hte
×
330
  | Head, List (hd :: _) -> hd
1✔
331
  | Tail, List (_ :: tl) -> make (List tl)
1✔
332
  | Reverse, List es -> make (List (List.rev es))
2✔
333
  | Length, List es -> value (Int (List.length es))
1✔
334
  | _ -> unop' ty op hte
2✔
335

336
let binop' ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
23✔
337

338
let rec binop ty op hte1 hte2 =
339
  match (op, view hte1, view hte2) with
96✔
340
  | Ty.Binop.(String_in_re | Regexp_range), _, _ -> binop' ty op hte1 hte2
×
341
  | op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
67✔
342
  | Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
343
    if Int32.equal b1 b2 then binop ty Sub os1 os2 else binop' ty op hte1 hte2
×
344
  | Add, Ptr { base; offset }, _ ->
1✔
345
    ptr base (binop (Ty_bitv 32) Add offset hte2)
1✔
346
  | Sub, Ptr { base; offset }, _ ->
1✔
347
    ptr base (binop (Ty_bitv 32) Sub offset hte2)
1✔
348
  | Rem, Ptr { base; offset }, _ ->
1✔
349
    let rhs = value (Num (I32 base)) in
350
    let addr = binop (Ty_bitv 32) Add rhs offset in
1✔
351
    binop ty Rem addr hte2
1✔
352
  | Add, _, Ptr { base; offset } ->
1✔
353
    ptr base (binop (Ty_bitv 32) Add offset hte1)
1✔
354
  | Sub, _, Ptr { base; offset } ->
×
355
    binop ty Sub hte1 (binop (Ty_bitv 32) Add (value (Num (I32 base))) offset)
×
356
  | (Add | Or), Val (Num (I32 0l)), _ -> hte2
×
357
  | (And | Div | DivU | Mul | Rem | RemU), Val (Num (I32 0l)), _ -> hte1
×
358
  | (Add | Or), _, Val (Num (I32 0l)) -> hte1
×
359
  | (And | Mul), _, Val (Num (I32 0l)) -> hte2
×
360
  | Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
1✔
361
    let v = value (Eval.binop ty Add v1 v2) in
1✔
362
    binop' ty Add x v
1✔
363
  | Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
1✔
364
    let v = value (Eval.binop ty Add v1 v2) in
1✔
365
    binop' ty Sub x v
1✔
366
  | Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
1✔
367
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
368
    binop' ty Mul x v
1✔
369
  | Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
1✔
370
    let v = value (Eval.binop ty Add v1 v2) in
1✔
371
    binop' ty Add v x
1✔
372
  | Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
1✔
373
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
374
    binop' ty Mul v x
1✔
375
  | At, List es, Val (Int n) ->
1✔
376
    (* TODO: use another datastructure? *)
377
    begin
378
      match List.nth_opt es n with None -> assert false | Some v -> v
1✔
379
    end
380
  | List_cons, _, List es -> make (List (hte1 :: es))
1✔
381
  | List_append, List _, (List [] | Val (List [])) -> hte1
×
382
  | List_append, (List [] | Val (List [])), List _ -> hte2
×
383
  | List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
1✔
384
  | List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
×
385
  | List_append, List l0, List l1 -> make (List (l0 @ l1))
×
386
  | _ -> binop' ty op hte1 hte2
12✔
387

388
let triop' ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
×
389

390
let triop ty op e1 e2 e3 =
391
  match (op, view e1, view e2, view e3) with
6✔
392
  | Ty.Triop.Ite, Val True, _, _ -> e2
1✔
393
  | Ite, Val False, _, _ -> e3
1✔
394
  | op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
4✔
395
  | Ite, _, Triop (_, Ite, c2, r1, r2), Triop (_, Ite, _, _, _) ->
×
396
    let else_ = triop' ty Ite e1 r2 e3 in
397
    let cond = binop Ty_bool And e1 c2 in
×
398
    triop' ty Ite cond r1 else_
×
399
  | _ -> triop' ty op e1 e2 e3
×
400

401
let relop' ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
2✔
402

403
let rec relop ty op hte1 hte2 =
404
  match (op, view hte1, view hte2) with
75✔
405
  | op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
29✔
406
  | Ty.Relop.Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
×
407
    if Float.is_nan v || Float.is_infinite v then value True
×
408
    else relop' ty op hte1 hte2
×
409
  | _, Val (Real v), _ | _, _, Val (Real v) ->
×
410
    if Float.is_nan v || Float.is_infinite v then value False
×
411
    else relop' ty op hte1 hte2
×
412
  | Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
×
413
  | Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
×
414
  | Eq, _, Val (App (`Op "symbol", [ Str _ ]))
×
415
  | Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
416
    value False
417
  | Ne, _, Val (App (`Op "symbol", [ Str _ ]))
×
418
  | Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
419
    value True
420
  | Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
421
    if Int32.equal b1 b2 then relop Ty_bool Eq os1 os2 else value False
1✔
422
  | Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
423
    if Int32.equal b1 b2 then relop Ty_bool Ne os1 os2 else value True
1✔
424
  | ( (LtU | LeU | GtU | GeU)
1✔
425
    , Ptr { base = b1; offset = os1 }
426
    , Ptr { base = b2; offset = os2 } ) ->
427
    if Int32.equal b1 b2 then relop ty op os1 os2
2✔
428
    else
429
      value
2✔
430
        (if Eval.relop ty op (Num (I32 b1)) (Num (I32 b2)) then True else False)
1✔
431
  | op, Val (Num _ as n), Ptr { base; offset = { node = Val (Num _ as o); _ } }
2✔
432
    ->
433
    let base = Eval.binop (Ty_bitv 32) Add (Num (I32 base)) o in
434
    value (if Eval.relop ty op n base then True else False)
1✔
435
  | op, Ptr { base; offset = { node = Val (Num _ as o); _ } }, Val (Num _ as n)
2✔
436
    ->
437
    let base = Eval.binop (Ty_bitv 32) Add (Num (I32 base)) o in
438
    value (if Eval.relop ty op base n then True else False)
1✔
439
  | op, List l1, List l2 -> relop_list op l1 l2
×
440
  | _, _, _ -> relop' ty op hte1 hte2
2✔
441

442
and relop_list op l1 l2 =
443
  match (op, l1, l2) with
×
444
  | Eq, [], [] -> value True
×
445
  | Eq, _, [] | Eq, [], _ -> value False
×
446
  | Eq, l1, l2 ->
×
447
    if not (List.compare_lengths l1 l2 = 0) then value False
×
448
    else
449
      List.fold_left2
×
450
        (fun acc a b ->
451
          binop Ty_bool And acc
×
452
          @@
453
          match (ty a, ty b) with
×
454
          | Ty_real, Ty_real -> relop Ty_real Eq a b
×
455
          | _ -> relop Ty_bool Eq a b )
×
456
        (value True) l1 l2
×
457
  | Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
×
458
  | (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
459

460
let cvtop' ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
1✔
461

462
let cvtop ty op hte =
463
  match (op, view hte) with
21✔
464
  | Ty.Cvtop.String_to_re, _ -> cvtop' ty op hte
×
465
  | _, Val v -> value (Eval.cvtop ty op v)
20✔
466
  | String_to_float, Cvtop (Ty_real, ToString, real) -> real
×
467
  | _ -> cvtop' ty op hte
1✔
468

469
let naryop' ty op es = make (Naryop (ty, op, es)) [@@inline]
×
470

471
let naryop ty op es =
472
  if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
×
473
  then
474
    let vs =
7✔
475
      List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
18✔
476
    in
477
    value (Eval.naryop ty op vs)
7✔
478
  else
479
    match (ty, op, List.map view es) with
×
480
    | ( Ty_str
×
481
      , Concat
482
      , [ Naryop (Ty_str, Concat, l1); Naryop (Ty_str, Concat, l2) ] ) ->
483
      naryop' Ty_str Concat (l1 @ l2)
484
    | Ty_str, Concat, [ Naryop (Ty_str, Concat, htes); hte ] ->
×
485
      naryop' Ty_str Concat (htes @ [ make hte ])
×
486
    | Ty_str, Concat, [ hte; Naryop (Ty_str, Concat, htes) ] ->
×
487
      naryop' Ty_str Concat (make hte :: htes)
×
488
    | _ -> naryop' ty op es
×
489

490
let nland64 (x : int64) (n : int) =
491
  let rec loop x' n' acc =
×
492
    if n' = 0 then Int64.logand x' acc
×
493
    else loop x' (n' - 1) Int64.(logor (shift_left acc 8) 0xffL)
×
494
  in
495
  loop x n 0L
496

497
let nland32 (x : int32) (n : int) =
498
  let rec loop x' n' acc =
×
499
    if n' = 0 then Int32.logand x' acc
×
500
    else loop x' (n' - 1) Int32.(logor (shift_left acc 8) 0xffl)
×
501
  in
502
  loop x n 0l
503

504
let extract' (hte : t) ~(high : int) ~(low : int) : t =
505
  make (Extract (hte, high, low))
8✔
506
[@@inline]
507

508
let extract (hte : t) ~(high : int) ~(low : int) : t =
509
  match (view hte, high, low) with
2✔
510
  | Val (Num (I64 x)), high, low ->
×
511
    let x' = nland64 (Int64.shift_right x (low * 8)) (high - low) in
×
512
    value (Num (I64 x'))
×
513
  | Concat (_, e), 4, 0 when Ty.size (ty e) = 4 -> e
×
514
  | Concat (e, _), 8, 4 when Ty.size (ty e) = 4 -> e
×
515
  | _ -> if high - low = Ty.size (ty hte) then hte else extract' hte ~high ~low
1✔
516

517
let extract2 (hte : t) (pos : int) : t =
518
  match view hte with
×
519
  | Val (Num (I32 i)) ->
×
520
    let i' = Int32.(to_int @@ logand 0xffl @@ shift_right i (pos * 8)) in
×
521
    value (Num (I8 i'))
522
  | Val (Num (I64 i)) ->
×
523
    let i' = Int64.(to_int @@ logand 0xffL @@ shift_right i (pos * 8)) in
×
524
    value (Num (I8 i'))
525
  | Cvtop
×
526
      ( _
527
      , (Zero_extend 24 | Sign_extend 24)
×
528
      , ({ node = Symbol { ty = Ty_bitv 8; _ }; _ } as sym) ) ->
529
    sym
530
  | _ -> make (Extract (hte, pos + 1, pos))
×
531

532
let concat' (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
3✔
533

534
let concat (msb : t) (lsb : t) : t =
535
  match (view msb, view lsb) with
3✔
536
  | ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
×
537
    , Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1) ) ->
538
    let d1 = h1 - l1 in
539
    let d2 = h2 - l2 in
540
    let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
×
541
    let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
×
542
    let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
×
543
    extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0
×
544
  | ( Extract ({ node = Val (Num (I32 x2)); _ }, h2, l2)
×
545
    , Extract ({ node = Val (Num (I32 x1)); _ }, h1, l1) ) ->
546
    let d1 = h1 - l1 in
547
    let d2 = h2 - l2 in
548
    let x1' = nland32 (Int32.shift_right x1 (l1 * 8)) d1 in
×
549
    let x2' = nland32 (Int32.shift_right x2 (l2 * 8)) d2 in
×
550
    let x = Int32.(logor (shift_left x2' (d1 * 8)) x1') in
×
551
    extract' (value (Num (I32 x))) ~high:(d1 + d2) ~low:0
×
552
  | Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
3✔
553
    extract' s1 ~high:h ~low:l
3✔
554
  | ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
×
555
    , Concat
556
        ({ node = Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1); _ }, se) )
557
    when not (is_num se) ->
×
558
    let d1 = h1 - l1 in
×
559
    let d2 = h2 - l2 in
560
    let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
×
561
    let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
×
562
    let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
×
563
    concat' (extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0) se
×
564
  | _ -> concat' msb lsb
×
565

566
(* TODO: don't rebuild so many values it generates unecessary hc lookups *)
567
let merge_extracts (e1, h, m1) (e2, m2, l) =
568
  let ty = ty e1 in
×
569
  if m1 = m2 && equal e1 e2 then
×
570
    if h - l = Ty.size ty then e1 else make (Extract (e1, h, l))
×
571
  else make (Concat (make (Extract (e1, h, m1)), make (Extract (e2, m2, l))))
×
572

573
let concat3 ~msb ~lsb offset =
574
  assert (offset > 0 && offset <= 8);
×
575
  match (view msb, view lsb) with
×
576
  | Val (Num (I8 i1)), Val (Num (I8 i2)) ->
×
577
    value (Num (I32 Int32.(logor (shift_left (of_int i1) 8) (of_int i2))))
×
578
  | Val (Num (I8 i1)), Val (Num (I32 i2)) ->
×
579
    let offset = offset * 8 in
580
    if offset < 32 then
581
      value (Num (I32 Int32.(logor (shift_left (of_int i1) offset) i2)))
×
582
    else
583
      let i1' = Int64.of_int i1 in
×
584
      let i2' = Int64.of_int32 i2 in
×
585
      value (Num (I64 Int64.(logor (shift_left i1' offset) i2')))
×
586
  | Val (Num (I8 i1)), Val (Num (I64 i2)) ->
×
587
    let offset = offset * 8 in
588
    value (Num (I64 Int64.(logor (shift_left (of_int i1) offset) i2)))
×
589
  | Extract (e1, h, m1), Extract (e2, m2, l) ->
×
590
    merge_extracts (e1, h, m1) (e2, m2, l)
591
  | Extract (e1, h, m1), Concat ({ node = Extract (e2, m2, l); _ }, e3) ->
×
592
    make (Concat (merge_extracts (e1, h, m1) (e2, m2, l), e3))
×
593
  | _ -> make (Concat (msb, lsb))
×
594

595
let rec simplify_expr ?(rm_extract = true) (hte : t) : t =
19✔
596
  match view hte with
25✔
597
  | Val _ | Symbol _ -> hte
5✔
598
  | Ptr { base; offset } -> ptr base (simplify_expr offset)
×
599
  | List es -> make @@ List (List.map simplify_expr es)
×
600
  | App (x, es) -> make @@ App (x, List.map simplify_expr es)
×
601
  | Unop (ty, op, e) ->
×
602
    let e = simplify_expr e in
603
    unop ty op e
×
604
  | Binop (ty, op, e1, e2) ->
6✔
605
    let e1 = simplify_expr e1 in
606
    let e2 = simplify_expr e2 in
6✔
607
    binop ty op e1 e2
6✔
608
  | Relop (ty, op, e1, e2) ->
×
609
    let e1 = simplify_expr e1 in
610
    let e2 = simplify_expr e2 in
×
611
    relop ty op e1 e2
×
612
  | Triop (ty, op, c, e1, e2) ->
×
613
    let c = simplify_expr c in
614
    let e1 = simplify_expr e1 in
×
615
    let e2 = simplify_expr e2 in
×
616
    triop ty op c e1 e2
×
617
  | Cvtop (ty, op, e) ->
×
618
    let e = simplify_expr e in
619
    cvtop ty op e
×
620
  | Naryop (ty, op, es) ->
×
621
    let es = List.map (simplify_expr ~rm_extract:false) es in
622
    naryop ty op es
×
623
  | Extract (s, high, low) ->
5✔
624
    if not rm_extract then hte else extract s ~high ~low
1✔
625
  | Concat (e1, e2) ->
3✔
626
    let msb = simplify_expr ~rm_extract:false e1 in
627
    let lsb = simplify_expr ~rm_extract:false e2 in
3✔
628
    concat msb lsb
3✔
629
  | Binder _ ->
×
630
    (* Not simplifying anything atm *)
631
    hte
632

633
module Cache = Hashtbl.Make (struct
634
  type nonrec t = t
635

636
  let hash = hash
637

638
  let equal = equal
639
end)
640

641
let simplify =
642
  (* TODO: it may make sense to share the cache with simplify_expr ? *)
643
  let cache = Cache.create 512 in
644
  fun e ->
1✔
645
    match Cache.find_opt cache e with
3✔
646
    | Some simplified -> simplified
×
647
    | None ->
3✔
648
      let rec loop x =
649
        let x' = simplify_expr x in
7✔
650
        if equal x x' then begin
3✔
651
          Cache.add cache e x';
652
          x'
3✔
653
        end
654
        else loop x'
4✔
655
      in
656
      loop e
657

658
module Bool = struct
659
  open Ty
660

661
  let of_val = function
662
    | Val True -> Some true
×
663
    | Val False -> Some false
×
664
    | _ -> None
×
665

666
  let true_ = value True
1✔
667

668
  let false_ = value False
1✔
669

670
  let to_val b = if b then true_ else false_
×
671

672
  let v b = to_val b [@@inline]
×
673

674
  let not b =
675
    let bexpr = view b in
×
676
    match of_val bexpr with
×
677
    | Some b -> to_val (not b)
×
678
    | None -> (
×
679
      match bexpr with
680
      | Unop (Ty_bool, Not, cond) -> cond
×
681
      | _ -> unop Ty_bool Not b )
×
682

683
  let equal b1 b2 =
684
    match (view b1, view b2) with
×
685
    | Val True, Val True | Val False, Val False -> true_
×
686
    | _ -> relop Ty_bool Eq b1 b2
×
687

688
  let distinct b1 b2 =
689
    match (view b1, view b2) with
×
690
    | Val True, Val False | Val False, Val True -> true_
×
691
    | _ -> relop Ty_bool Ne b1 b2
×
692

693
  let and_ b1 b2 =
694
    match (of_val (view b1), of_val (view b2)) with
×
695
    | Some true, _ -> b2
×
696
    | _, Some true -> b1
×
697
    | Some false, _ | _, Some false -> false_
×
698
    | _ -> binop Ty_bool And b1 b2
×
699

700
  let or_ b1 b2 =
701
    match (of_val (view b1), of_val (view b2)) with
×
702
    | Some false, _ -> b2
×
703
    | _, Some false -> b1
×
704
    | Some true, _ | _, Some true -> true_
×
705
    | _ -> binop Ty_bool Or b1 b2
×
706

707
  let ite c r1 r2 = triop Ty_bool Ite c r1 r2
×
708
end
709

710
module Make (T : sig
711
  type elt
712

713
  val ty : Ty.t
714

715
  val num : elt -> Num.t
716
end) =
717
struct
718
  open Ty
719

720
  let v i = value (Num (T.num i))
×
721

722
  let sym x = symbol Symbol.(x @: T.ty)
×
723

724
  let ( ~- ) e = unop T.ty Neg e
×
725

726
  let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
×
727

728
  let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
×
729

730
  let ( > ) e1 e2 = relop T.ty Gt e1 e2
×
731

732
  let ( >= ) e1 e2 = relop T.ty Ge e1 e2
×
733

734
  let ( < ) e1 e2 = relop T.ty Lt e1 e2
×
735

736
  let ( <= ) e1 e2 = relop T.ty Le e1 e2
×
737
end
738

739
module Bitv = struct
740
  open Ty
741

742
  module I8 = Make (struct
743
    type elt = int
744

745
    let ty = Ty_bitv 8
746

747
    let num i = Num.I8 i
×
748
  end)
749

750
  module I32 = Make (struct
751
    type elt = int32
752

753
    let ty = Ty_bitv 32
754

755
    let num i = Num.I32 i
×
756
  end)
757

758
  module I64 = Make (struct
759
    type elt = int64
760

761
    let ty = Ty_bitv 64
762

763
    let num i = Num.I64 i
×
764
  end)
765
end
766

767
module Fpa = struct
768
  open Ty
769

770
  module F32 = struct
771
    include Make (struct
772
      type elt = float
773

774
      let ty = Ty_fp 32
775

776
      let num f = Num.F32 (Int32.bits_of_float f)
×
777
    end)
778

779
    (* Redeclare equality due to incorrect theory annotation *)
780
    let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
×
781

782
    let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
×
783
  end
784

785
  module F64 = struct
786
    include Make (struct
787
      type elt = float
788

789
      let ty = Ty_fp 64
790

791
      let num f = Num.F64 (Int64.bits_of_float f)
×
792
    end)
793

794
    (* Redeclare equality due to incorrect theory annotation *)
795
    let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
×
796

797
    let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
×
798
  end
799
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc