• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

RimuQMC / Rimu.jl / 14700598494

28 Apr 2025 04:59AM UTC coverage: 94.692% (-0.09%) from 94.777%
14700598494

push

github

web-flow
Complex Hamiltonians and Walkers (#313)

Adds the ability to do FCIQMC with complex-valued Hamiltonians, and
complex walkers.

---------

Co-authored-by: Joachim Brand <joachim.brand@gmail.com>

40 of 43 new or added lines in 9 files covered. (93.02%)

6 existing lines in 5 files now uncovered.

6940 of 7329 relevant lines covered (94.69%)

11470700.48 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

97.13
/src/BitStringAddresses/bitstring.jl
1
"""
2
    num_chunks(::Val{B})
3

4
Determine the number and type of chunks needed to store `B` bits.
5
"""
6
function num_chunks(::Val{B}) where {B}
28,976,637✔
7
    if B ≤ 0
28,976,636✔
8
        throw(ArgumentError("`B` must be positive!"))
2✔
9
    elseif B ≤ 8
28,976,634✔
10
        return 1, UInt8
71,986✔
11
    elseif B ≤ 16
28,904,644✔
12
        return 1, UInt16
25,243,548✔
13
    elseif B ≤ 32
3,661,100✔
14
        return 1, UInt32
1,330,985✔
15
    else
16
        return (B - 1) ÷ 64 + 1, UInt64
2,330,116✔
17
    end
18
end
19

20
"""
21
    check_bitstring_typeparams(::Val{B}, ::Val{N})
22

23
Check if number of bits `B` is consistent with number of chunks `N`. Throw an error if not.
24
"""
25
function check_bitstring_typeparams(::Val{B}, ::Val{N}, ::Type{UInt64}) where {B,N}
1,625,561✔
26
    if B > N * 64
1,625,561✔
27
        error("$B bits do not fit into $N 64-bit chunks")
×
28
    elseif B ≤ (N - 1) * 64
1,625,561✔
29
        error("$B bits fit into $(N - 1) 64-bit chunks, but $N chunks were provided")
×
30
    end
31
end
32
function check_bitstring_typeparams(::Val{B}, ::Val{1}, ::Type{T}) where {B,T}
635,665,084✔
33
    if B > sizeof(T) * 8
635,999,415✔
34
        error("$B bits do not fit into a $(sizeof(T) * 8)-bit chunk")
×
35
    end
36
end
37
function check_bitstring_typeparams(::Val{B}, ::Val{1}, ::Type{UInt64}) where {B}
4,482,842✔
38
    if B > 64
4,482,842✔
39
        error("$B bits do not fit into a 64-bit chunk")
×
40
    end
41
end
42
function check_bitstring_typeparams(::Val{B}, ::Val{N}, ::Type{T}) where {B,N,T}
×
43
    error("Only `UInt64` is supported for multi-bit chunks")
×
44
end
45

46
"""
47
    BitString{B,N,T<:Unsigned}
48

49
Type for storing bitstrings of static size. Holds `B` bits in `N` chunks, where each chunk is
50
of type `T`.
51

52
`N` is chosen automatically to accommodate `B` bits as efficiently as possible.
53

54
# Constructors
55

56
* `BitString{B,N,T}(::SVector{N,T})`: unsafe constructor. Does not check for ghost bits.
57

58
* `BitString{B,N,T}(i::T)`: as above, but sets `i` as the rightmost chunk.
59

60
* `BitString{B}(::Integer)`: Convert integer to `BitString`. Integer is truncated to the
61
  correct number of bits.
62

63
"""
64
struct BitString{B,N,T<:Unsigned}
65
    chunks::SVector{N,T}
66

67
    # This constructor is only to be used internally. It doesn't check for ghost bits.
68
    function BitString{B,N,T}(s::SVector{N,T}) where {B,N,T}
59,728,427✔
69
        check_bitstring_typeparams(Val(B), Val(N), T)
59,728,429✔
70
        return new{B,N,T}(s)
59,728,434✔
71
    end
72
    function BitString{B,N,T}(i::T) where {B,N,T<:Unsigned}
581,695,387✔
73
        check_bitstring_typeparams(Val(B), Val(N), T)
581,784,003✔
74
        return new{B,N,T}(setindex(zero(SVector{N,UInt64}), i, N))
582,404,004✔
75
    end
76
end
77

78
###
79
### Basic properties.
80
###
81
"""
82
    num_chunks(::Type{<:BitString})
83
    num_chunks(s::BitString)
84

85
Number of chunks in bitstring. Equivalent to `length(chunks(s))`.
86
"""
87
num_chunks(::Type{<:BitString{<:Any,N}}) where {N} = N
116,155,027✔
88

89
"""
90
    chunk_type(::Type{<:BitString})
91
    chunk_type(s::BitString)
92

93
Type of unsigned integer used to store the chunks.
94
"""
95
chunk_type(::Type{<:BitString{<:Any,<:Any,T}}) where {T} = T
531,634✔
96

97
"""
98
    num_bits(::Type{<:BitString})
99
    num_bits(s::BitString)
100

101
Total number of bits stored in bitstring.
102
"""
103
num_bits(::Type{<:BitString{B}}) where {B} = B
316,365✔
104

105
"""
106
    top_chunk_bits(::Type{<:BitString})
107
    top_chunk_bits(s::BitString)
108

109
Number of bits stored in top chunk. Equivalent to `chunk_bits(s, 1)`.
110
"""
111
function top_chunk_bits(::Type{<:BitString{B}}) where B
47,336,790✔
112
    return B % 64 == 0 ? 64 : B % 64
47,336,790✔
113
end
114

115
for f in (:num_chunks, :chunk_type, :num_bits, :top_chunk_bits)
116
    @eval $f(s::BitString) = $f(typeof(s))
72,230,700✔
117
end
118

119
"""
120
    chunks(s::BitString)
121

122
`SVector` that stores the chunks of `s`.
123
"""
124
chunks(s::BitString) = s.chunks
49,700,473✔
125

126
"""
127
    chunks_bits(::Type{<:BitString}, i)
128
    chunks_bits(s, i)
129

130
Number of bits in the `i`-th chunk of `s`.
131
"""
132
chunk_bits(s, i) = chunk_bits(typeof(s), i)
31,468,696✔
133
chunk_bits(::Type{<:BitString{B,1}}, _) where {B} = B
28,714,604✔
134
function chunk_bits(::Type{S}, i) where {S<:BitString}
46,808,698✔
135
    return ifelse(i == 1, top_chunk_bits(S), 64)
46,808,698✔
136
end
137

138
function ghost_bit_mask(::Type{S}) where S<:BitString
527,809✔
139
    T = chunk_type(S)
527,809✔
140
    unused_bits = sizeof(T) * 8 - top_chunk_bits(S)
527,809✔
141
    return ~zero(T) >>> unused_bits
527,809✔
142
end
143

144
"""
145
    remove_ghost_bits(s::BitString)
146

147
Remove set bits outside data field if any are present.
148

149
See also: [`has_ghost_bits`](@ref).
150
"""
151
function remove_ghost_bits(s::S) where {S<:BitString}
424,190✔
152
    mask = ghost_bit_mask(S)
424,190✔
153
    return S(setindex(s.chunks, s.chunks[1] & mask, 1))
424,190✔
154
end
155

156
@inline function remove_ghost_bits(s::S) where {S<:BitString{<:Any,1}}
100,102✔
157
    mask = ghost_bit_mask(S)
100,102✔
158
    return S(chunks(s) .& mask)
100,102✔
159
end
160

161
"""
162
    has_ghost_bits(s::BitString)
163

164
Check for bits outside data field.
165

166
See also: [`remove_ghost_bits`](@ref).
167
"""
168
function has_ghost_bits(s::S) where {S<:BitString}
40✔
169
    top = first(chunks(s))
40✔
170
    mask = ~zero(UInt64) << top_chunk_bits(S)
40✔
171
    return top & mask > 0
40✔
172
end
173

174
###
175
### Alternative/useful constructors. These are not super efficient, but they are safe.
176
###
177
function BitString{B}(i::Union{Int128,Int64,Int32,Int16,Int8}) where {B}
261,934✔
178
    return remove_ghost_bits(BitString{B}(unsigned(i)))
261,934✔
179
end
180
function BitString{B}(i::Union{UInt64,UInt32,UInt16,UInt8}) where {B}
261,949✔
181
    N, T = num_chunks(Val(B))
261,949✔
182
    s = setindex(zero(SVector{N,T}), T(i), N)
261,949✔
183
    return remove_ghost_bits(BitString{B,N,T}(s))
261,949✔
184
end
185
function BitString{B}(i::UInt128) where {B}
19✔
186
    N, T = num_chunks(Val(B))
19✔
187
    left = i >>> 0x40 % T # left will only be used if T == UInt64 and N > 1
19✔
188
    right = i  % T
19✔
189
    s = ntuple(Val(N)) do i
19✔
190
        i == N ? right : i == N - 1 ? left : zero(T)
39✔
191
    end
192
    return remove_ghost_bits(BitString{B,N,T}(SVector{N,T}(s)))
19✔
193
end
194
function BitString{B}(i::BigInt) where {B}
12✔
195
    N, T = num_chunks(Val(B))
12✔
196
    s = zero(SVector{N,T})
12✔
197
    j = N
12✔
198
    while i ≠ 0
35✔
199
        chunk = i & typemax(T) % T
46✔
200
        i >>>= 64 # Can use 64 here, as only 1-chunk addresses can be smaller
23✔
201
        s = setindex(s, chunk, j)
23✔
202
        j -= 1
23✔
203
    end
23✔
204
    return remove_ghost_bits(BitString{B,N,T}(s))
12✔
205
end
206

207
function Base.zero(S::Type{<:BitString{B}}) where {B}
28,714,630✔
208
    N, T = num_chunks(Val(B))
28,714,631✔
209
    BitString{B,N,T}(zero(SVector{N,T}))
28,714,630✔
210
end
211
Base.zero(s::BitString) = zero(typeof(s))
28,714,616✔
212

213
function Base.show(io::IO, s::BitString{B,N}) where {B,N}
6✔
214
    str = join(map(i -> repr(i)[3:end], s.chunks), '_')
20✔
215

216
    print(io, "BitString{$B}(big\"0x", str, "\")")
6✔
217
end
218
Base.bitstring(s::BitString{B}) where {B} = join(bitstring.(s.chunks))[(end - B + 1):end]
×
219

220
###
221
### Operations on BitStrings
222
###
223
for op in (:⊻, :&, :|)
224
    @eval (Base.$op)(l::S, r::S) where S<:BitString = S($op.(l.chunks, r.chunks))
465,598✔
225
end
226
Base.:~(s::S) where S<:BitString = remove_ghost_bits(S(.~(s.chunks)))
42✔
227

228
Base.count_ones(s::BitString) = sum(count_ones, s.chunks)
461,841✔
229
Base.count_zeros(s::BitString) = num_bits(s) - count_ones(s)
23✔
230

231
function _trailing(f, s::BitString)
28,714,681✔
232
    result = 0
28,714,678✔
233
    i = 0
28,714,682✔
234
    # Idea: if all whole chunk is the same digit, you have to look at the next one.
235
    # This gets compiled away if N=1
236
    for i in num_chunks(s):-1:1
28,714,682✔
237
        r = f(s.chunks[i])
28,714,687✔
238
        result += r
28,714,684✔
239
        r == chunk_bits(s, i) || break
28,714,686✔
UNCOV
240
    end
×
241
    # If top chunk occupies the whole integer, result will always be smaller or equal to B.
242
    if f ≢ trailing_ones && top_chunk_bits(s) ≠ 64
28,714,685✔
243
        return min(num_bits(s), result)
23✔
244
    else
245
        return result
28,714,662✔
246
    end
247
end
248

249
function _leading(f, s::BitString)
83✔
250
    N = sizeof(chunk_type(s)) * 8
83✔
251
    # First chunk is a special case - we have to ignore the empty space before the string.
252
    result = min(f(s.chunks[1] << (N - top_chunk_bits(s))), top_chunk_bits(s))
83✔
253

254
    # This gets compiled away if N=1
255
    if num_chunks(s) > 1 && result == top_chunk_bits(s)
83✔
256
        for i in 2:num_chunks(s)
14✔
257
            r = f(s.chunks[i])
14✔
258
            result += r
14✔
259
            r == 64 || break
14✔
260
        end
×
261
    end
262
    return result
83✔
263
end
264

265
Base.trailing_ones(s::BitString) = _trailing(trailing_ones, s)
28,714,652✔
266
Base.trailing_zeros(s::BitString) = _trailing(trailing_zeros, s)
23✔
267
Base.leading_ones(s::BitString) = _leading(leading_ones, s)
60✔
268
Base.leading_zeros(s::BitString) = _leading(leading_zeros, s)
23✔
269

270
@generated function _right_shift(s::S, k) where {S<:BitString}
143✔
271
    N = num_chunks(S)
20✔
272
    quote
20✔
273
        $(Expr(:meta, :inline))
135✔
274
        # equivalent to d, r = divrem(k, 64)
275
        d = k >>> 0x6
135✔
276
        r = k & 63
135✔
277
        ri = 64 - r
135✔
278
        mask = ~zero(UInt64) >>> ri # 2^r-1 # 0b0...01...1 with `r` 1s
135✔
279
        c = chunks(s)
135✔
280

281
        @nif $(N + 1) l -> (d < l) l -> (
143✔
282
            S(SVector((@ntuple l - 1 k -> zero(UInt64))... ,c[1] >>> r,
283
                      (@ntuple $N-l q -> (c[q + 1] >>> r | ((c[q] & mask) << ri)))...
284
                      ))
285
        ) l -> (
286
            return zero(S)
287
        )
288
    end
289
end
290

291
function _left_shift(s::S, k) where {S<:BitString}
3,517✔
292
    result = zeros(MVector{num_chunks(S),UInt64})
3,517✔
293
    # d, r = divrem(k, 64)
294
    d = k >>> 0x6
3,517✔
295
    r = k & 63
3,517✔
296

297
    shift = s.chunks .<< (r % UInt64)
3,517✔
298
    carry = s.chunks .>>> ((64 - r) % UInt64)
3,517✔
299

300
    for i in d + 1:length(result)
3,518✔
301
        @inbounds result[i - d] = shift[i] | get(carry, i + 1, zero(UInt64))
13,111✔
302
    end
22,706✔
303
    # This bit removes ghost bits.
304
    result[1] &= ghost_bit_mask(S)
3,517✔
305
    return S(SVector(result))
3,517✔
306
end
307

308
Base.:>>(s::BitString, k) = k ≥ 0 ? _right_shift(s, k) : _left_shift(s, -k)
126✔
309
Base.:<<(s::BitString, k) = k > 0 ? _left_shift(s, k) : _right_shift(s, -k)
3,532✔
310
Base.:>>>(s::BitString, k) = s >> k
28,714,611✔
311

312
# remove ghost bits must be applied to both because k might be negative.
313
Base.:>>(s::S, k) where S<:BitString{<:Any,1} = remove_ghost_bits(S(s.chunks .>> k))
28✔
314
Base.:>>(s::S, k::Unsigned) where S<:BitString{<:Any,1} = S(s.chunks .>> k)
28,714,581✔
315
Base.:<<(s::S, k) where S<:BitString{<:Any,1} = remove_ghost_bits(S(s.chunks .<< k))
296✔
316

317
function Base.isless(s1::B, s2::B) where {B<:BitString}
208,798✔
318
    for i in 1:num_chunks(B)
208,798✔
319
        if chunks(s1)[i] ≠ chunks(s2)[i]
208,798✔
320
            return chunks(s1)[i] < chunks(s2)[i]
203,379✔
321
        end
322
    end
5,419✔
323
    return false
5,419✔
324
end
325
Base.isodd(s::BitString) = isodd(chunks(s)[end])
50✔
326
Base.iseven(s::BitString) = iseven(chunks(s)[end])
×
327

328
# For compatibility. Changing any of the hashes will slightly change results and make the
329
# tests fail.
330
Base.hash(b::BitString{<:Any,1}, h::UInt) = hash(b.chunks[1], h)
875,112,847✔
331
Base.hash(b::BitString, h::UInt) = hash(b.chunks.data, h)
×
332

333
"""
334
    partial_left_shift(bs::BitString, i, j)
335

336
Shift a part of the bitstring left by one place with boundaries `i < j`.
337
In a `BoseFS` bitstring, it moves a particle at offset `i` to the position at
338
offset `j`.
339

340
See also: [`excitation`](@ref), [`partial_right_shift`](@ref).
341
"""
342
function partial_left_shift(chunk::T, i, j) where {T<:Unsigned}
274,487,838✔
343
    # Mask of one spanning from i to j
344
    mask = (T(1) << T(j - i + 1) - T(1)) << T(i)
274,595,561✔
345
    # Shift the part of the string that needs to be shifted, ensure a one is added at the end
346
    # swap shift to move in other direction
347
    #println(bitstring(mask))
348
    shifted_part = ((chunk & mask) << 0x1) & mask
274,591,190✔
349
    # Leave the rest intact
350
    intact_part = chunk & ~mask
274,649,113✔
351

352
    return shifted_part | intact_part | T(1) << T(i)
274,683,901✔
353
end
354

355
"""
356
    partial_right_shift(bs::BitString, i, j)
357

358
Shift a part of the bitstring right by one place with boundaries `i < j`.
359
In a `BoseFS` bitstring, it moves a particle at offset `j` to the position at
360
offset `i`.
361

362
See also: [`partial_left_shift`](@ref), [`excitation`](@ref).
363
"""
364
function partial_right_shift(chunk::T, i, j) where {T<:Unsigned}
276,816,076✔
365
    # Mask of one spanning from i to j
366
    mask = (T(1) << T(j - i + 1) - T(1)) << T(i)
276,825,724✔
367
    # Shift the part of the string that needs to be shifted, ensure a one is added at the end
368
    # swap shift to move in other direction
369
    shifted_part = ((chunk & mask) >> 0x1) & mask
276,823,270✔
370
    # Leave the rest intact
371
    intact_part = chunk & ~mask
276,922,302✔
372
    #println(lpad("↑" * " "^j, length(bitstring(chunk))))
373

374
    return shifted_part | intact_part | T(1) << T(j)
276,935,564✔
375
end
376

377
function partial_left_shift(bs::S, i, j) where {S<:BitString{<:Any,1}}
274,028,748✔
378
    return S(partial_left_shift(bs.chunks[1], i, j))
274,012,613✔
379
end
380

381
function partial_right_shift(bs::S, i, j) where {S<:BitString{<:Any,1}}
276,403,591✔
382
    return S(partial_right_shift(bs.chunks[1], i, j))
276,430,292✔
383
end
384

385
function partial_left_shift(bs::S, i, j) where {N,S<:BitString{<:Any,N}}
229,619✔
386
    result = MVector(bs.chunks)
229,619✔
387
    lo_idx = N - (i >>> 0x6)
229,619✔
388
    hi_idx = N - (j >>> 0x6)
229,619✔
389
    lo_off = i & 63
229,619✔
390
    hi_off = j & 63
229,619✔
391
    @inbounds if hi_idx == lo_idx
229,619✔
392
        result[hi_idx] = partial_left_shift(result[hi_idx], lo_off, hi_off)
70,969✔
393
    else
394
        # Top part first.
395
        chunk = result[hi_idx]
158,650✔
396
        chunk = partial_left_shift(chunk, 0, hi_off)
158,650✔
397
        # Carry bit.
398
        chunk &= -UInt(1) << 0x1
158,650✔
399
        chunk |= result[hi_idx + 1] >> 63
158,650✔
400
        result[hi_idx] = chunk
158,650✔
401

402
        idx = hi_idx + 1
158,650✔
403
        while idx < lo_idx
272,541✔
404
            chunk = result[idx]
113,891✔
405
            chunk <<= 0x1
113,891✔
406
            chunk |= result[idx + 1] >> 63
113,891✔
407
            result[idx] = chunk
113,891✔
408
            idx += 1
113,891✔
409
        end
113,891✔
410

411
        # Bottom part.
412
        chunk = result[lo_idx]
158,650✔
413
        chunk = partial_left_shift(chunk, lo_off, 64)
158,650✔
414
        result[lo_idx] = chunk
158,650✔
415
    end
416
    return S(SVector(result))
229,619✔
417
end
418

419
function partial_right_shift(bs::S, i, j) where {N,S<:BitString{<:Any,N}}
199,685✔
420
    result = MVector(bs.chunks)
199,685✔
421
    lo_idx = N - (i >>> 0x6)
199,685✔
422
    hi_idx = N - (j >>> 0x6)
199,685✔
423
    lo_off = i & 63
199,685✔
424
    hi_off = j & 63
199,685✔
425
    @inbounds if hi_idx == lo_idx
199,685✔
426
        result[hi_idx] = partial_right_shift(result[hi_idx], lo_off, hi_off)
68,605✔
427
    else
428
        # Bottom first
429
        chunk = result[lo_idx]
131,080✔
430
        chunk = partial_right_shift(chunk, lo_off, 64)
131,080✔
431
        # Carry bit.
432
        chunk &= -UInt(1) >> 0x1
131,080✔
433
        chunk |= result[lo_idx - 1] << 63
131,080✔
434
        result[lo_idx] = chunk
131,080✔
435

436
        idx = lo_idx - 1
131,080✔
437
        while idx > hi_idx
206,031✔
438
            chunk = result[idx]
74,951✔
439
            chunk >>= 0x1
74,951✔
440
            chunk |= result[idx - 1] << 63
74,951✔
441
            result[idx] = chunk
74,951✔
442
            idx -= 1
74,951✔
443
        end
74,951✔
444

445
        # Top part.
446
        chunk = result[hi_idx]
131,080✔
447
        chunk = partial_right_shift(chunk, 0, hi_off)
131,080✔
448
        result[hi_idx] = chunk
131,080✔
449
    end
450
    return S(SVector(result))
199,685✔
451
end
452

453
function Base.bitreverse(bs::BitString{B,1,T}) where {B,T}
3,164✔
454
    return typeof(bs)(SVector(bitreverse(bs.chunks[1]) >> T(sizeof(T) * 8 - B)))
3,164✔
455
end
456
function Base.bitreverse(bs::BitString{B,N}) where {B,N}
40✔
457
    return typeof(bs)(bitreverse.(reverse(bs.chunks))) >> (64 * N - B)
40✔
458
end
459
Base.reverse(bs::BitString) = bitreverse(bs)
3,204✔
460

461
###
462
### Bose interface
463
###
464
function from_bose_onr(::Type{S}, onr) where {T,S<:BitString{<:Any,1,T}}
42,602✔
465
    result = zero(T)
42,602✔
466
    for i in length(onr):-1:1
42,603✔
467
        curr_occnum = T(onr[i])
600,878✔
468
        result <<= curr_occnum + T(1)
600,878✔
469
        result |= one(T) << curr_occnum - T(1)
600,878✔
470
    end
1,159,154✔
471
    return S(SVector(result))
42,602✔
472
end
473
function from_bose_onr(::Type{S}, onr) where {K,S<:BitString{<:Any,K}}
207,060✔
474
    result = zeros(MVector{K,UInt64})
207,060✔
475
    offset = 0
207,060✔
476
    bits_left = chunk_bits(S, K)
207,060✔
477
    i = 1
207,060✔
478
    j = K
207,060✔
479
    while true
14,779,258✔
480
        # Write number to result
481
        curr_occnum = onr[i]
14,779,258✔
482
        while curr_occnum > 0
36,264,109✔
483
            x = min(curr_occnum, bits_left)
11,060,006✔
484
            mask = (one(UInt64) << x - 1) << offset
10,745,276✔
485
            @inbounds result[j] |= mask
10,745,276✔
486
            bits_left -= x
10,745,276✔
487
            offset += x
10,745,276✔
488
            curr_occnum -= x
11,060,006✔
489

490
            if bits_left == 0
10,745,276✔
491
                j -= 1
627,373✔
492
                offset = 0
627,373✔
493
                bits_left = chunk_bits(S, j)
627,373✔
494
            end
495
        end
10,745,276✔
496
        offset += 1
14,779,258✔
497
        bits_left -= 1
14,779,258✔
498

499
        if bits_left == 0
14,779,258✔
500
            j -= 1
232,949✔
501
            offset = 0
232,949✔
502
            bits_left = chunk_bits(S, j)
232,949✔
503
        end
504
        i += 1
14,779,258✔
505
        i > length(onr) && break
14,779,258✔
506
    end
14,572,198✔
507
    return S(SVector(result))
207,060✔
508
end
509

510
# Version specialized for single-chunk addresses.
511
@inline function to_bose_onr(bs::BitString{<:Any,1}, ::Val{M}) where {M}
6,048,926✔
512
    result = zeros(MVector{M,Int32})
6,048,926✔
513
    for mode in 1:M
6,048,926✔
514
        bosons = Int32(trailing_ones(bs))
28,714,555✔
515
        @inbounds result[mode] = bosons
28,714,571✔
516
        bs >>>= (bosons + 1) % UInt
28,714,570✔
517
        iszero(bs) && break
28,714,569✔
518
    end
22,665,651✔
519
    return SVector(result)
6,048,926✔
520
end
521
# Version specialized for multi-chunk addresses. This is quite a bit faster for large
522
# addresses.
523
@inline function to_bose_onr(bs::BitString{<:Any,K}, ::Val{M}) where {K,M}
304,680✔
524
    B = num_bits(bs)
304,680✔
525
    result = zeros(MVector{M,Int32})
304,680✔
526
    mode = 1
304,680✔
527
    i = K
304,680✔
528
    while true
1,409,563✔
529
        chunk = chunks(bs)[i]
1,409,563✔
530
        bits_left = chunk_bits(bs, i)
1,409,563✔
531
        while !iszero(chunk)
22,359,334✔
532
            bosons = trailing_ones(chunk)
20,949,771✔
533
            @inbounds result[mode] += unsafe_trunc(Int32, bosons)
20,949,771✔
534
            chunk >>>= bosons % UInt
20,949,771✔
535
            empty_modes = trailing_zeros(chunk)
20,949,771✔
536
            mode += empty_modes
20,949,771✔
537
            chunk >>>= empty_modes % UInt
20,949,771✔
538
            bits_left -= bosons + empty_modes
20,949,771✔
539
        end
20,949,771✔
540
        i == 1 && break
1,409,563✔
541
        i -= 1
1,104,883✔
542
        mode += bits_left
1,104,883✔
543
    end
1,104,883✔
544
    return SVector(result)
304,680✔
545
end
546

547
# Fix offsets that changed after performing a move.
548
@inline function _fix_offset(pair, index::BoseFSIndex)
486,911,885✔
549
    fst, snd = pair[1], pair[2]
487,411,556✔
550
    if fst.offset < snd.offset
487,693,451✔
551
        return @set index.offset += fst.offset < index.offset ≤ snd.offset
178,928,233✔
552
    else
553
        return @set index.offset -= fst.offset > index.offset > snd.offset
309,914,971✔
554
    end
555
end
556
_fix_offset(pair) = Base.Fix1(_fix_offset, pair)
243,896,205✔
557

558
# Move a single particle
559
function bose_move_particle(bs::BitString, from, to)
547,550,388✔
560
    if to == from
547,063,881✔
561
        return bs
19,928✔
562
    elseif to < from
548,260,594✔
563
        return partial_left_shift(bs, to, from)
274,212,851✔
564
    else
565
        return partial_right_shift(bs, from, to - 1)
276,566,724✔
566
    end
567
end
568

569
# Move multiple particles. This does not care about values, so it performs moves in an
570
# arbitrary order (from left to right in pairs).
571
@inline function bose_move_particles(bs::BitString, (c,)::NTuple{1}, (d,)::NTuple{1})
307,233,574✔
572
    return bose_move_particle(bs, d.offset, c.offset)
612,906,866✔
573
end
574
@inline function bose_move_particles(bs::BitString, (c, cs...), (d, ds...))
243,960,764✔
575
    bs = bose_move_particle(bs, d.offset, c.offset)
486,140,081✔
576
    fix = _fix_offset(c => d)
243,953,863✔
577
    bs = bose_move_particles(bs, map(fix, cs), map(fix, ds))
485,142,126✔
578
    return bs
244,133,111✔
579
end
580

581
function bose_excitation(
306,656,345✔
582
    bs::BitString, creations::NTuple{N}, destructions::NTuple{N}
583
) where N
584
    # We start by computing the value. This is where the check if the move is even legal
585
    # is done.
586
    creations_rev = reverse(creations)
306,878,212✔
587
    value = bose_excitation_value(creations_rev, reverse(destructions))
306,925,236✔
588
    if iszero(value)
307,361,565✔
589
        return bs, 0.0
245,055✔
590
    else
591
        # Now that we know the value and that the move is legal, we can apply the moves
592
        # without worrying about doing something weird.
593
        return bose_move_particles(bs, creations_rev, destructions), √value
307,065,148✔
594
    end
595
end
596

597
function bose_num_occupied_modes(bs::BitString{<:Any,1})
13,393,423✔
598
    chunk = bs.chunks[1]
13,393,577✔
599
    result = 0
13,393,265✔
600
    while true
47,005,012✔
601
        chunk >>= (trailing_zeros(chunk) % UInt)
47,008,982✔
602
        chunk >>= (trailing_ones(chunk) % UInt)
47,012,879✔
603
        result += 1
47,014,462✔
604
        iszero(chunk) && break
47,016,859✔
605
    end
33,637,147✔
606
    return result
13,399,093✔
607
end
608
function bose_num_occupied_modes(bs::BitString)
94✔
609
    # This version is faster than using the occupied_mode iterator
610
    result = 0
94✔
611
    K = num_chunks(bs)
94✔
612
    last_mask = UInt64(1) << 63 # = 0b100000...
94✔
613
    prev_top_bit = false
94✔
614
    for i in K:-1:1
94✔
615
        chunk = chunks(bs)[i]
404✔
616
        # This part handles modes that span across chunk boundaries.
617
        # If the previous top bit and the current bottom bit are both 1, we have to subtract
618
        # 1 from the result or the mode will be counted twice.
619
        result -= (chunk & prev_top_bit) % Int
404✔
620
        prev_top_bit = (chunk & last_mask) > 0
404✔
621
        while !iszero(chunk)
5,743✔
622
            chunk >>>= trailing_zeros(chunk)
5,339✔
623
            chunk >>>= trailing_ones(chunk)
5,339✔
624
            result += 1
5,339✔
625
        end
5,339✔
626
    end
714✔
627
    return result
94✔
628
end
629

630
# Iterator stuff. Alias for type added here to make the following code less verbose.
631
const DenseBoseOccupiedModes{K} = BoseOccupiedModes{N,M,BitString{B,K,T}} where {N,M,B,T}
632

633
Base.length(bom::DenseBoseOccupiedModes) = bose_num_occupied_modes(bom.storage)
37✔
634

635
# Single chunk versions are simpler.
636
@inline function Base.iterate(bom::DenseBoseOccupiedModes{1})
470,452,553✔
637
    chunk = bom.storage.chunks[1]
470,548,979✔
638
    empty_modes = trailing_zeros(chunk)
470,508,796✔
639
    return iterate(
938,507,680✔
640
        bom, (chunk >> (empty_modes % UInt), empty_modes, 1 + empty_modes)
641
    )
642
end
643
@inline function Base.iterate(bom::DenseBoseOccupiedModes{1}, (chunk, bit, mode))
561,816,013✔
644
    if iszero(chunk)
561,786,805✔
645
        return nothing
158,625,680✔
646
    else
647
        bosons = trailing_ones(chunk)
482,727,570✔
648
        chunk >>>= (bosons % UInt)
482,640,780✔
649
        empty_modes = trailing_zeros(chunk)
483,144,273✔
650
        chunk >>>= (empty_modes % UInt)
483,106,662✔
651
        next_bit = bit + bosons + empty_modes
483,476,208✔
652
        next_mode = mode + empty_modes
483,036,632✔
653
        return BoseFSIndex(bosons, mode, bit), (chunk, next_bit, next_mode)
483,140,867✔
654
    end
655
end
656

657
# Multi-chunk version
658
@inline function Base.iterate(bom::DenseBoseOccupiedModes)
1,344,450✔
659
    bitstring = bom.storage
1,344,450✔
660
    i = num_chunks(bitstring)
1,344,450✔
661
    chunk = chunks(bitstring)[i]
1,344,450✔
662
    bits_left = chunk_bits(bitstring, i)
1,344,450✔
663
    mode = 1
1,344,450✔
664
    return iterate(bom, (i, chunk, bits_left, mode))
1,344,450✔
665
end
666
@inline function Base.iterate(bom::DenseBoseOccupiedModes, (i, chunk, bits_left, mode))
41,036,888✔
667
    i < 1 && return nothing
41,036,888✔
668
    bitstring = bom.storage
41,036,810✔
669
    S = typeof(bitstring)
41,036,810✔
670
    bit_position = 0
41,036,810✔
671

672
    # Remove and count trailing zeros.
673
    empty_modes = min(trailing_zeros(chunk), bits_left)
41,036,810✔
674
    chunk >>>= empty_modes % UInt
41,036,810✔
675
    bits_left -= empty_modes
41,036,810✔
676
    mode += empty_modes
41,036,810✔
677
    while bits_left < 1
42,003,872✔
678
        i -= 1
970,414✔
679
        i < 1 && return nothing
970,414✔
680
        @inbounds chunk = chunks(bitstring)[i]
967,062✔
681
        bits_left = chunk_bits(S, i)
967,062✔
682
        empty_modes = min(bits_left, trailing_zeros(chunk))
967,062✔
683
        mode += empty_modes
967,062✔
684
        bits_left -= empty_modes
967,062✔
685
        chunk >>>= empty_modes % UInt
967,062✔
686
    end
967,062✔
687

688
    bit_position = chunk_bits(S, i) - bits_left + 64 * (num_chunks(bitstring) - i)
41,033,458✔
689

690
    # Remove and count trailing ones.
691
    result = 0
41,033,458✔
692
    bosons = trailing_ones(chunk)
41,033,458✔
693
    bits_left -= bosons
41,033,458✔
694
    chunk >>>= bosons % UInt
41,033,458✔
695
    result += bosons
41,033,458✔
696
    while bits_left < 1
42,020,161✔
697
        i -= 1
1,038,665✔
698
        i < 1 && break
1,038,665✔
699
        @inbounds chunk = chunks(bitstring)[i]
986,703✔
700
        bits_left = chunk_bits(S, i)
986,703✔
701

702
        bosons = trailing_ones(chunk)
986,703✔
703
        bits_left -= bosons
986,703✔
704
        result += bosons
986,703✔
705
        chunk >>>= bosons % UInt
986,703✔
706
    end
986,703✔
707
    return BoseFSIndex(result, mode, bit_position), (i, chunk, bits_left, mode)
41,033,458✔
708
end
709

710
###
711
### FermiFS interface
712
###
713
function from_fermi_onr(::Type{S}, onr) where {M,C,T,S<:BitString{M,C,T}}
23,906✔
714
    result = zero(SVector{C,T})
23,906✔
715
    for mode in 1:M
23,906✔
716
        iszero(onr[mode]) && continue
1,899,525✔
717
        minus_j, offset = fldmod(mode - 1, 64)
1,359,722✔
718
        j = C - minus_j
1,359,722✔
719
        new = result[j] | T(1) << T(offset)
1,359,722✔
720
        result = setindex(result, new, j)
1,359,722✔
721
    end
3,775,144✔
722
    return S(result)
23,906✔
723
end
724

725
function _is_occupied(bs::BitString{M,1,T}, mode) where {M,T}
18,343,538✔
726
    @boundscheck 1 ≤ mode ≤ M || throw(BoundsError(bs, mode))
18,343,586✔
727
    return bs.chunks[1] & (T(1) << (mode - 1) % T) > 0
18,343,859✔
728
end
729
function _is_occupied(bs::BitString{M}, mode) where {M}
491,520✔
730
    @boundscheck 1 ≤ mode ≤ M || throw(BoundsError(bs, mode))
491,520✔
731
    j, i = fldmod1(mode, 64)
491,520✔
732
    return bs.chunks[end + 1 - j] & (UInt(1) << UInt(i - 1)) > 0
491,520✔
733
end
734

735
fermi_find_mode(bs::BitString, i) = FermiFSIndex(Int(_is_occupied(bs, i)), i, i-1)
18,834,303✔
736
function fermi_find_mode(bs::BitString, is::Tuple)
1,875,675✔
737
    return map(i -> FermiFSIndex(fermi_find_mode(bs, i)), is)
5,626,944✔
738
end
739

740
"""
741
    _flip_and_count(bs::BitString, k)
742

743
Count the number of ones before the `k`-th mode, flip the `k`th bit. Return the new
744
bitstring, the count, and the value of the bit after the flip.
745
"""
746
@inline function _flip_and_count(bs::BitString{<:Any,1,T}, k::Unsigned) where {T}
33,613,041✔
747
    chunk = bs.chunks[1]
33,613,736✔
748
    # highlights the k-th bit
749
    kmask = one(T) << k
33,615,093✔
750

751
    count = count_ones((kmask - 0x1) & chunk)
33,615,702✔
752
    chunk = chunk ⊻ kmask
33,615,944✔
753
    val = chunk & kmask > 0
33,617,058✔
754
    return typeof(bs)(chunk), count, val
33,617,529✔
755
end
756
@inline function _flip_and_count(bs::BitString, k::Unsigned)
337,156✔
757
    j, i = fldmod(k % Int, UInt(64))
337,156✔
758
    j = length(bs.chunks) - j
337,156✔
759
    chunk = bs.chunks[j]
337,156✔
760

761
    kmask = one(UInt64) << i
337,156✔
762

763
    count = count_ones((kmask - 0x1) & chunk)
337,156✔
764
    chunk = chunk ⊻ kmask
337,156✔
765
    val = chunk & kmask > 0
337,156✔
766

767
    for k in j + 1:num_chunks(bs)
449,118✔
768
        count += count_ones(bs.chunks[k])
355,500✔
769
    end
485,806✔
770
    return typeof(bs)(setindex(bs.chunks, chunk, j)), count, val
337,156✔
771
end
772

773
function fermi_excitation(
15,104,238✔
774
    bs::BitString, creations::NTuple{N}, destructions::NTuple{N}
775
) where {N}
776
    orig_bs = bs
15,104,313✔
777
    count = 0
15,104,347✔
778
    for i in N:-1:1
15,104,613✔
779
        d = destructions[i].mode
17,288,664✔
780
        bs, x, val = _flip_and_count(bs, UInt(d - 0x1))
17,379,137✔
781
        val && return orig_bs, 0.0
17,289,885✔
782
        count += x
16,994,121✔
783
    end
19,178,001✔
784
    for i in N:-1:1
14,810,251✔
785
        c = creations[i].mode
16,669,442✔
786
        bs, x, val = _flip_and_count(bs, UInt(c - 0x1))
16,709,701✔
787
        !val && return orig_bs, 0.0
16,670,587✔
788
        count += x
13,429,879✔
789
    end
15,288,748✔
790

791
    return bs, ifelse(iseven(count), 1.0, -1.0)
11,571,089✔
792
end
793

794
function Base.iterate(o::FermiOccupiedModes{<:Any,<:BitString})
122,994✔
795
    c = 0
122,994✔
796
    chunk = o.storage.chunks[end]
122,994✔
797
    while iszero(chunk)
122,994✔
798
        c += 1
×
799
        chunk = o.storage.chunks[end - c]
×
800
    end
×
801
    zeros = trailing_zeros(chunk % Int)
122,994✔
802
    return iterate(o, (chunk >> (zeros % UInt64), c * 64 + zeros, c))
122,994✔
803
end
804
function Base.iterate(o::FermiOccupiedModes{<:Any,<:BitString}, st)
22,261,306✔
805
    chunk, index, c = st
22,261,306✔
806
    while iszero(chunk)
22,630,280✔
807
        c += 1
491,968✔
808
        c == num_chunks(o.storage) && return nothing
491,968✔
809
        chunk = o.storage.chunks[end - c]
368,974✔
810
        index = c * 64
368,974✔
811
    end
368,974✔
812
    zeros = trailing_zeros(chunk % Int)
22,138,312✔
813
    index += zeros
22,138,312✔
814
    chunk >>= zeros
22,138,312✔
815
    return FermiFSIndex(1, index + 1, index), (chunk >> 1, index + 1, c)
22,138,312✔
816
end
817

818
function Base.iterate(o::FermiOccupiedModes{<:Any,<:BitString{<:Any,1,T}}) where {T}
9,808,690✔
819
    chunk = o.storage.chunks[end]
9,808,821✔
820
    zeros = trailing_zeros(chunk % Int)
9,809,080✔
821
    return iterate(o, (chunk >> (zeros % T), zeros))
19,614,345✔
822
end
823
function Base.iterate(o::FermiOccupiedModes{<:Any,<:BitString{<:Any,1,T}}, st) where {T}
24,092,050✔
824
    chunk, index = st
24,091,991✔
825
    iszero(chunk) && return nothing
24,092,774✔
826
    chunk >>= 0x1
23,518,906✔
827
    index += 1
23,519,280✔
828
    zeros = trailing_zeros(chunk % Int)
23,520,529✔
829
    return FermiFSIndex(1, index, index - 1), (chunk >> (zeros % T), index + zeros)
23,521,274✔
830
end
831

832
# Default implementation uses iterating over occupied modes.
833
function LinearAlgebra.dot(
461,789✔
834
    occ_a::FermiOccupiedModes{<:Any,S}, occ_b::FermiOccupiedModes{<:Any,S}
835
) where {S<:BitString}
836
    return count_ones(occ_a.storage & occ_b.storage)
461,795✔
837
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc