• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

randombit / botan / 13579810322

28 Feb 2025 02:06AM UTC coverage: 91.693% (-0.005%) from 91.698%
13579810322

Pull #4724

github

web-flow
Merge 068727df0 into 0e7c06384
Pull Request #4724: Cleanups and deprecations for key agreement

95849 of 104533 relevant lines covered (91.69%)

11440327.08 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

99.44
/src/tests/test_utils_bitvector.cpp
1
/*
2
 * (C) 2023-2024 Jack Lloyd
3
 * (C) 2023-2024 René Meusel, Rohde & Schwarz Cybersecurity
4
 *
5
 * Botan is released under the Simplified BSD License (see license.txt)
6
 */
7

8
#include "tests.h"
9

10
#include <botan/internal/fmt.h>
11

12
#if defined(BOTAN_HAS_BITVECTOR)
13
   #include <botan/internal/bitvector.h>
14
#endif
15

16
#include <algorithm>
17
#include <numeric>
18

19
namespace Botan_Tests {
20

21
#if defined(BOTAN_HAS_BITVECTOR)
22

23
namespace {
24

25
/// Returns a random number in the range [min, max)
26
size_t rand_in_range(Botan::RandomNumberGenerator& rng, size_t min, size_t max) {
101✔
27
   if(min == max) {
101✔
28
      return min;
29
   }
30

31
   size_t val = Botan::load_le<size_t>(rng.random_array<sizeof(size_t)>());
101✔
32
   return min + (val % (max - min));
101✔
33
}
34

35
/// Returns @p n integers smaller than @p upper_bound in random order
36
std::vector<size_t> rand_indices(Botan::RandomNumberGenerator& rng, size_t n, size_t upper_bound) {
3✔
37
   auto shuffle = [&](std::vector<size_t>& v) {
6✔
38
      // Fisher-Yates shuffle
39
      if(v.size() < 2) {
3✔
40
         return;
41
      }
42
      for(size_t i = 0; i < v.size() - 1; ++i) {
98✔
43
         auto j = rand_in_range(rng, i, v.size());
95✔
44
         std::swap(v[i], v[j]);
95✔
45
      }
46
   };
3✔
47

48
   std::vector<size_t> indices(upper_bound);
3✔
49
   std::iota(indices.begin(), indices.end(), 0);
3✔
50
   shuffle(indices);
3✔
51
   indices.resize(n);
3✔
52
   return indices;
3✔
53
}
×
54

55
/// Create an empty bitvector of random size and chose a random number of points of interests
56
std::pair<Botan::bitvector, std::set<size_t>> rnd_bitvector_with_rnd_pois(Botan::RandomNumberGenerator& rng) {
3✔
57
   Botan::bitvector bv(rand_in_range(rng, 0, 65));
3✔
58
   size_t no_poi = rand_in_range(rng, 0, bv.size());
3✔
59
   auto points_of_interest = rand_indices(rng, no_poi, bv.size());
3✔
60

61
   return {bv, {points_of_interest.begin(), points_of_interest.end()}};
6✔
62
}
6✔
63

64
template <size_t mod>
65
auto pattern_generator(size_t offset = 0) {
79✔
66
   return [i = offset]() mutable -> bool {
5,209✔
67
      const bool result = (i % mod) != 0;
5,209✔
68
      ++i;
5,209✔
69
      return result;
70
   };
71
}
72

73
std::vector<Test::Result> test_bitvector_bitwise_accessors(Botan::RandomNumberGenerator& rng) {
1✔
74
   return {
1✔
75
      CHECK("default constructed bitvector",
76
            [](auto& result) {
1✔
77
               Botan::bitvector bv;
1✔
78
               result.confirm("default constructed bitvector is empty", bv.empty());
2✔
79
               result.test_eq("default constructed bitvector has zero size", bv.size(), size_t(0));
2✔
80
            }),
1✔
81

82
      CHECK("preallocated construction of bitvector",
83
            [](auto& result) {
1✔
84
               Botan::bitvector bv(10);
1✔
85
               result.confirm("allocated bitvector is not empty", !bv.empty());
2✔
86
               result.test_eq("allocated bitvector has allocated size", bv.size(), size_t(10));
1✔
87
               for(size_t i = 0; i < 10; ++i) {
11✔
88
                  result.confirm("bit not set yet", !bv.at(i));
20✔
89
               }
90
            }),
1✔
91

92
      CHECK("setting bits",
93
            [&](auto& result) {
1✔
94
               auto [bv, ones] = rnd_bitvector_with_rnd_pois(rng);
1✔
95

96
               for(size_t i : ones) {
1✔
97
                  if(rng.next_byte() % 2 == 0) {
×
98
                     bv.set(i);
×
99
                  } else {
100
                     bv.at(i) = true;
×
101
                  }
102
               }
103
               for(size_t i = 0; i < bv.size(); ++i) {
6✔
104
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == ones.contains(i));
15✔
105
               }
106
            }),
1✔
107

108
      CHECK("unsetting bits",
109
            [&](auto& result) {
1✔
110
               auto [bv, zeros] = rnd_bitvector_with_rnd_pois(rng);
1✔
111
               for(auto b : bv) {
60✔
112
                  b.set();
58✔
113
               }
114

115
               for(size_t i : zeros) {
52✔
116
                  if(rng.next_byte() % 2 == 0) {
51✔
117
                     bv.unset(i);
24✔
118
                  } else {
119
                     bv.at(i) = false;
27✔
120
                  }
121
               }
122
               for(size_t i = 0; i < bv.size(); ++i) {
59✔
123
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == !zeros.contains(i));
174✔
124
               }
125
            }),
1✔
126

127
      CHECK("flipping bits",
128
            [&](auto& result) {
1✔
129
               auto [bv, ones] = rnd_bitvector_with_rnd_pois(rng);
1✔
130

131
               for(size_t i = 0; i < bv.size(); ++i) {
36✔
132
                  if(std::find(ones.begin(), ones.end(), i) == ones.end()) {
70✔
133
                     bv.set(i);
30✔
134
                  }
135
                  bv.flip(i);
35✔
136
               }
137
               for(size_t i = 0; i < bv.size(); ++i) {
36✔
138
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == ones.contains(i));
105✔
139
               }
140
            }),
1✔
141

142
      CHECK("accessors validate offsets",
143
            [](auto& result) {
1✔
144
               Botan::bitvector bv(10);
1✔
145
               result.template test_throws<Botan::Invalid_Argument>(
2✔
146
                  ".at() const out of range", [&] { const_cast<const decltype(bv)&>(bv).at(10); });
2✔
147
               result.template test_throws<Botan::Invalid_Argument>(".at() out of range", [&] { bv.at(10); });
3✔
148
               result.template test_throws<Botan::Invalid_Argument>(".set() out of range", [&] { bv.set(10); });
3✔
149
               result.template test_throws<Botan::Invalid_Argument>(".unset() out of range", [&] { bv.unset(10); });
3✔
150
               result.template test_throws<Botan::Invalid_Argument>(".flip() out of range", [&] { bv.flip(10); });
4✔
151
            }),
1✔
152

153
      CHECK("multiblock handling",
154
            [](auto& result) {
1✔
155
               Botan::bitvector bv(128);
1✔
156
               result.test_eq("has more than 64 bits", bv.size(), 128);
2✔
157
               bv.set(1).set(63).set(64).set(127);
1✔
158
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
159
                  bool expected = (i == 1 || i == 63 || i == 64 || i == 127);
128✔
160
                  result.test_eq(Botan::fmt("bit {} in expected state", i), bv.at(i), expected);
256✔
161
               }
162
            }),
1✔
163

164
      CHECK("subscript operator",
165
            [](auto& result) {
1✔
166
               Botan::bitvector bv(128);
1✔
167
               bv[0].set();
1✔
168
               bv[1] = true;
1✔
169
               bv[2].flip();
1✔
170
               bv[64] = true;
1✔
171
               bv[80] = true;
1✔
172
               result.confirm("bit 0", bv[0]);
2✔
173
               result.confirm("bit 1", bv[1]);
2✔
174
               result.confirm("bit 2", bv[2]);
2✔
175
               result.confirm("bit 3", !bv[3]);
2✔
176
               result.confirm("bit 64", bv[64]);
2✔
177
               result.confirm("bit 80", bv[80]);
2✔
178
            }),
1✔
179

180
      CHECK("subscript operator does not validate offsets",
181
            [](auto& result) {
1✔
182
               Botan::bitvector bv(10);
1✔
183
               result.template test_throws<Botan::Invalid_Argument>(".at() out of range", [&] { bv.at(10); });
3✔
184
               // Technically the next line is undefined behaviour.
185
               // Though, the current implementation detail won't
186
               // cause issues, which might change!
187
               result.test_no_throw("subscript out of range", [&] { bv[10]; });
3✔
188
            }),
1✔
189

190
      CHECK("bitwise assignment modifiers",
191
            [](auto& result) {
1✔
192
               Botan::bitvector bv(4);
1✔
193

194
               result.require("precondition", !bv[0] && !bv[1]);
2✔
195
               bv[0] &= 1;  // NOLINT(*-use-bool-literals)
1✔
196
               result.confirm("bv[0] still 0", !bv[0]);
2✔
197
               bv[0].set();
1✔
198
               bv[0] &= 1;  // NOLINT(*-use-bool-literals)
1✔
199
               result.confirm("bv[0] still 1", bv[0]);
2✔
200
               bv[0] &= false;
1✔
201
               result.confirm("bv[0] now 0 again", !bv[0]);
2✔
202
               bv[0] &= !bv[1];
1✔
203
               result.confirm("bv[0] still 0 once more", !bv[0]);
2✔
204

205
               result.require("precondition 2", !bv[1] && !bv[2]);
2✔
206
               bv[1] |= 1;  // NOLINT(modernize-use-bool-literals)
1✔
207
               result.confirm("bv[1] is now 1", bv[1]);
2✔
208
               bv[1] |= 0;  // NOLINT(modernize-use-bool-literals)
1✔
209
               result.confirm("bv[1] is still 1", bv[1]);
2✔
210
               bv[1].unset();
1✔
211
               bv[1] |= false;
1✔
212
               result.confirm("bv[1] is 0", !bv[1]);
2✔
213
               bv[1] |= !bv[2];
1✔
214
               result.confirm("bv[1] is 1 again", bv[1]);
2✔
215

216
               result.require("precondition 3", !bv[2] && !bv[3]);
2✔
217
               bv[2] ^= 0;  // NOLINT(modernize-use-bool-literals)
1✔
218
               result.confirm("bv[2] is still 0", !bv[2]);
2✔
219
               bv[2] ^= true;
1✔
220
               result.confirm("bv[2] is now 1", bv[2]);
2✔
221
               bv[2] ^= !bv[3];
1✔
222
               result.confirm("bv[2] is 0 again", !bv[2]);
2✔
223
            }),
1✔
224
   };
11✔
225
}
1✔
226

227
std::vector<Test::Result> test_bitvector_capacity(Botan::RandomNumberGenerator&) {
1✔
228
   return {
1✔
229
      CHECK("default constructed bitvector",
230
            [](auto& result) {
1✔
231
               Botan::bitvector bv;
1✔
232
               result.confirm("empty", bv.empty());
2✔
233
               result.test_eq("no size", bv.size(), size_t(0));
2✔
234
               result.test_eq("no capacity", bv.capacity(), size_t(0));
2✔
235
            }),
1✔
236

237
      CHECK("allocated bitvector has capacity",
238
            [](auto& result) {
1✔
239
               Botan::bitvector bv(1);
1✔
240
               result.confirm("empty", !bv.empty());
2✔
241
               result.test_eq("small size", bv.size(), size_t(1));
2✔
242
               result.test_gte("a little capacity", bv.capacity(), size_t(8));
2✔
243
            }),
1✔
244

245
      CHECK("reserved bitvector has capacity",
246
            [](auto& result) {
1✔
247
               Botan::bitvector bv;
1✔
248
               result.test_eq("no size", bv.size(), size_t(0));
2✔
249
               result.test_eq("no capacity", bv.capacity(), size_t(0));
2✔
250

251
               bv.reserve(64);
1✔
252
               result.test_eq("no size", bv.size(), size_t(0));
2✔
253
               result.test_gte("no capacity", bv.capacity(), size_t(64));
2✔
254

255
               bv.reserve(128);
1✔
256
               result.test_eq("no size", bv.size(), size_t(0));
2✔
257
               result.test_gte("no capacity", bv.capacity(), size_t(128));
2✔
258
            }),
1✔
259

260
      CHECK("push_back() extends bitvector",
261
            [](Test::Result& result) {
1✔
262
               Botan::bitvector bv;
1✔
263
               result.confirm("empty", bv.empty());
2✔
264
               result.test_eq("no size", bv.size(), size_t(0));
1✔
265

266
               bv.push_back(true);
1✔
267
               bv.push_back(false);
1✔
268
               bv.push_back(true);
1✔
269
               bv.push_back(false);
1✔
270

271
               result.confirm("not empty", !bv.empty());
2✔
272
               result.test_eq("some size", bv.size(), size_t(4));
1✔
273
               result.test_gte("capacity is typically bigger than size", bv.capacity(), size_t(8));
1✔
274

275
               result.confirm("bit 0", bv.at(0));
2✔
276
               result.confirm("bit 1", !bv.at(1));
2✔
277
               result.confirm("bit 2", bv.at(2));
2✔
278
               result.confirm("bit 3", !bv.at(3));
2✔
279

280
               result.test_throws("bit 4 is not yet allocated", [&] { bv.at(4); });
4✔
281
            }),
1✔
282

283
      CHECK("pop_back() shortens bitvector",
284
            [](Test::Result& result) {
1✔
285
               Botan::bitvector bv;
1✔
286
               bv.push_back(true);
1✔
287
               bv.push_back(false);
1✔
288
               bv.push_back(true);
1✔
289
               bv.push_back(false);
1✔
290
               result.confirm("last is false", !bv.back());
2✔
291

292
               bv.pop_back();
1✔
293
               result.test_eq("size() == 3", bv.size(), 3);
1✔
294
               result.confirm("last is true", bv.back());
2✔
295

296
               bv.pop_back();
1✔
297
               result.test_eq("size() == 2", bv.size(), 2);
1✔
298
               result.confirm("last is false", !bv.back());
2✔
299

300
               bv.pop_back();
1✔
301
               result.test_eq("size() == 1", bv.size(), 1);
1✔
302
               result.confirm("last is true", bv.back());
2✔
303
               result.confirm("first is true", bv.front());
2✔
304

305
               bv.pop_back();
1✔
306
               result.confirm("empty", bv.empty());
2✔
307

308
               result.test_throws("bit 4 is not yet allocated", [&] { bv.at(4); });
4✔
309
            }),
1✔
310

311
      CHECK("resize()",
312
            [](auto& result) {
1✔
313
               Botan::bitvector bv(10);
1✔
314
               bv[0] = true;
1✔
315
               bv[5] = true;
1✔
316
               bv[9] = true;
1✔
317

318
               bv.resize(8);
1✔
319
               result.test_eq("size is reduced", bv.size(), size_t(8));
1✔
320

321
               for(size_t i = 0; i < bv.size(); ++i) {
9✔
322
                  const bool expected = (i == 0 || i == 5);
8✔
323
                  result.test_eq(Botan::fmt("{} is as expected", i), bv[i], expected);
16✔
324
               }
325

326
               bv.resize(0);
1✔
327
               result.confirm("resize(0) empties buffer", bv.empty());
2✔
328

329
               bv.resize(8);
1✔
330
               result.confirm("0 is false", !bv[0]);
2✔
331
               result.confirm("5 is false", !bv[5]);
2✔
332
            }),
1✔
333
   };
7✔
334
}
1✔
335

336
std::vector<Test::Result> test_bitvector_subvector(Botan::RandomNumberGenerator&) {
1✔
337
   auto make_bitpattern = [&]<typename T>(T& bitvector, size_t pattern_offset = 0) {
21✔
338
      auto next = pattern_generator<3>(pattern_offset);
20✔
339

340
      if constexpr(std::unsigned_integral<T>) {
341
         for(size_t i = 0; i < sizeof(T) * 8; ++i) {
316✔
342
            bitvector |= static_cast<T>(next()) << i;
304✔
343
         }
344
      } else {
345
         for(auto& i : bitvector) {
1,616✔
346
            i = next();
800✔
347
         }
348
      }
349
   };
8✔
350

351
   auto bitpattern_at = [&]<std::unsigned_integral T>(T /* ignored */, size_t pattern_offset) -> T {
13✔
352
      T bitvector = 0;
12✔
353
      make_bitpattern(bitvector, pattern_offset);
24✔
354
      return bitvector;
355
   };
1✔
356

357
   auto check_bitpattern = [&](auto& result, auto& bitvector, size_t offset = 0) {
44✔
358
      using bv_t = std::remove_cvref_t<decltype(bitvector)>;
359
      auto next = pattern_generator<3>(offset);
43✔
360

361
      if constexpr(std::unsigned_integral<bv_t>) {
362
         for(size_t i = 0; i < sizeof(bv_t) * 8; ++i) {
496✔
363
            result.confirm(Botan::fmt("{} is as expected", i), (bitvector & (bv_t(1) << i)) != 0, next());
960✔
364
         }
365
      } else {
366
         for(size_t i = 0; i < bitvector.size(); ++i) {
2,056✔
367
            result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], next());
4,058✔
368
         }
369
      }
370
   };
43✔
371

372
   auto check_bitpattern_with_zero_region = [&](auto& result, auto& bitvector, std::pair<size_t, size_t> zero_region) {
13✔
373
      auto next = pattern_generator<3>();
12✔
374
      for(size_t i = 0; i < bitvector.size(); ++i) {
1,212✔
375
         const bool i_in_range = (zero_region.first <= i && i < zero_region.second);
1,200✔
376
         const bool expected = next();
1,200✔
377
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], !i_in_range && expected);
2,400✔
378
      }
379
   };
12✔
380

381
   return {
1✔
382
      CHECK("range errors are caught",
383
            [&](auto& result) {
1✔
384
               Botan::bitvector bv(100);
1✔
385
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(0, 101); });
3✔
386
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(90, 11); });
3✔
387
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(100, 1); });
3✔
388
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(101, 0); });
4✔
389
            }),
1✔
390

391
      CHECK("empty copy is allowed",
392
            [&](auto& result) {
1✔
393
               Botan::bitvector bv1(100);
1✔
394
               auto bv2 = bv1.subvector(0, 0);
1✔
395
               result.test_eq("empty at 0", bv2.size(), size_t(0));
1✔
396
               auto bv3 = bv1.subvector(10, 0);
1✔
397
               result.test_eq("empty at 10", bv3.size(), size_t(0));
1✔
398
               auto bv4 = bv1.subvector(100, 0);
1✔
399
               result.test_eq("empty at 100", bv3.size(), size_t(0));
2✔
400
            }),
2✔
401

402
      CHECK("byte-aligned copy",
403
            [&](auto& result) {
1✔
404
               Botan::bitvector bv1(100);
1✔
405
               make_bitpattern(bv1);
1✔
406

407
               auto bv2 = bv1.subvector(16, 58);
1✔
408
               result.test_eq("size is as requested", bv2.size(), size_t(58));
1✔
409
               check_bitpattern(result, bv2, 16);
1✔
410

411
               auto bv3 = bv1.subvector(32);  // copy until the end
1✔
412
               result.test_eq("size is as expected", bv3.size(), size_t(68));
1✔
413
               check_bitpattern(result, bv3, 32);
1✔
414
            }),
3✔
415

416
      CHECK("byte-aligned 2",
417
            [&](auto& result) {
1✔
418
               Botan::bitvector bv1(100);
1✔
419
               make_bitpattern(bv1);
1✔
420

421
               auto bv2 = bv1.subvector(8, 91);
1✔
422
               result.test_eq("size is as expected", bv2.size(), size_t(91));
1✔
423
               check_bitpattern(result, bv2, 8);
1✔
424

425
               auto bv3 = bv1.subvector(16, 58);
1✔
426
               result.test_eq("size is as requested", bv3.size(), size_t(58));
1✔
427
               check_bitpattern(result, bv3, 16);
1✔
428

429
               auto bv4 = bv1.subvector(24);  // copy until the end
1✔
430
               result.test_eq("size is as expected", bv4.size(), size_t(100 - 24));
1✔
431
               check_bitpattern(result, bv4, 24);
1✔
432

433
               auto bv5 = bv1.subvector(32);  // copy until the end
1✔
434
               result.test_eq("size is as expected", bv5.size(), size_t(100 - 32));
1✔
435
               check_bitpattern(result, bv5, 32);
1✔
436

437
               auto bv6 = bv1.subvector(48, 51);  // copy until the end
1✔
438
               result.test_eq("size is as expected", bv6.size(), size_t(51));
1✔
439
               check_bitpattern(result, bv6, 48);
1✔
440
            }),
6✔
441

442
      CHECK("byte-aligned copy must zero-out unused bits",
443
            [&](auto& result) {
1✔
444
               Botan::bitvector bv1(100);
1✔
445
               make_bitpattern(bv1);
1✔
446

447
               auto bv2 = bv1.subvector(16, 17);
1✔
448
               result.test_eq("size is as requested", bv2.size(), size_t(17));
1✔
449
               check_bitpattern(result, bv2, 16);
1✔
450

451
               bv2.resize(32);
1✔
452
               for(size_t i = 17; i < bv2.size(); ++i) {
16✔
453
                  result.confirm("tail is zero", !bv2[i]);
30✔
454
               }
455
            }),
2✔
456

457
      CHECK("unaligned copy",
458
            [&](auto& result) {
1✔
459
               Botan::bitvector bv1(100);
1✔
460
               make_bitpattern(bv1);
1✔
461

462
               auto bv2 = bv1.subvector(19, 69);
1✔
463
               result.test_eq("size is as requested", bv2.size(), size_t(69));
1✔
464
               check_bitpattern(result, bv2, 19);
1✔
465

466
               auto bv3 = bv1.subvector(21);  // copy until the end
1✔
467
               result.test_eq("size is as expected", bv3.size(), size_t(79));
1✔
468
               check_bitpattern(result, bv3, 21);
1✔
469

470
               auto bv4 = bv1.subvector(1, 16);
1✔
471
               result.test_eq("size is as expected", bv4.size(), size_t(16));
1✔
472
               check_bitpattern(result, bv4, 1);
1✔
473

474
               auto bv5 = bv1.subvector(1, 32);
1✔
475
               result.test_eq("size is as expected", bv5.size(), size_t(32));
1✔
476
               check_bitpattern(result, bv5, 1);
1✔
477

478
               auto bv6 = bv5.subvector(1, 12);
1✔
479
               result.test_eq("size is as expected", bv6.size(), size_t(12));
1✔
480
               check_bitpattern(result, bv6, 1 + 1);
1✔
481

482
               auto bv7 = bv1.subvector(17, 67);
1✔
483
               result.test_eq("size is as expected", bv7.size(), size_t(67));
1✔
484
               check_bitpattern(result, bv7, 17);
1✔
485

486
               auto bv8 = bv1.subvector(33);  // copy until the end
1✔
487
               result.test_eq("size is as expected", bv8.size(), size_t(67));
1✔
488
               check_bitpattern(result, bv8, 33);
1✔
489
            }),
8✔
490

491
      CHECK("byte-aligned unsigned integer subvector",
492
            [&](auto& result) {
1✔
493
               Botan::bitvector bv1(100);
1✔
494
               make_bitpattern(bv1);
1✔
495

496
               const auto u8_0 = bv1.subvector<uint8_t>(0);
1✔
497
               const auto u8_32 = bv1.subvector<uint8_t>(32);
1✔
498
               check_bitpattern(result, u8_0, 0);
1✔
499
               check_bitpattern(result, u8_32, 32);
1✔
500

501
               const auto u16_0 = bv1.subvector<uint16_t>(0);
1✔
502
               const auto u16_56 = bv1.subvector<uint16_t>(56);
1✔
503
               check_bitpattern(result, u16_0, 0);
1✔
504
               check_bitpattern(result, u16_56, 56);
1✔
505

506
               const auto u32_0 = bv1.subvector<uint32_t>(0);
1✔
507
               const auto u32_48 = bv1.subvector<uint32_t>(48);
1✔
508
               check_bitpattern(result, u32_0, 0);
1✔
509
               check_bitpattern(result, u32_48, 48);
1✔
510

511
               const auto u64_0 = bv1.subvector<uint64_t>(0);
1✔
512
               const auto u64_32 = bv1.subvector<uint64_t>(32);
1✔
513
               check_bitpattern(result, u64_0, 0);
1✔
514
               check_bitpattern(result, u64_32, 32);
1✔
515

516
               result.test_throws("out of range (uint8_t)", [&] { bv1.subvector<uint8_t>(93); });
3✔
517
               result.test_throws("out of range (uint16_t)", [&] { bv1.subvector<uint16_t>(85); });
3✔
518
               result.test_throws("out of range (uint32_t)", [&] { bv1.subvector<uint32_t>(69); });
3✔
519
               result.test_throws("out of range (uint64_t)", [&] { bv1.subvector<uint64_t>(37); });
4✔
520
            }),
1✔
521

522
      CHECK("unaligned unsigned integer subvector",
523
            [&](Test::Result& result) {
1✔
524
               Botan::bitvector bv1(100);
1✔
525
               make_bitpattern(bv1);
1✔
526

527
               const auto u8_3 = bv1.subvector<uint8_t>(3);
1✔
528
               const auto u8_92 = bv1.subvector<uint8_t>(92);
1✔
529
               check_bitpattern(result, u8_3, 3);
1✔
530
               check_bitpattern(result, u8_92, 92);
1✔
531

532
               const auto u16_7 = bv1.subvector<uint16_t>(7);
1✔
533
               const auto u16_84 = bv1.subvector<uint16_t>(84);
1✔
534
               check_bitpattern(result, u16_7, 7);
1✔
535
               check_bitpattern(result, u16_84, 84);
1✔
536

537
               const auto u32_11 = bv1.subvector<uint32_t>(11);
1✔
538
               const auto u32_68 = bv1.subvector<uint32_t>(68);
1✔
539
               check_bitpattern(result, u32_11, 11);
1✔
540
               check_bitpattern(result, u32_68, 68);
1✔
541

542
               const auto u64_21 = bv1.subvector<uint64_t>(21);
1✔
543
               const auto u64_36 = bv1.subvector<uint64_t>(36);
1✔
544
               check_bitpattern(result, u64_21, 21);
1✔
545
               check_bitpattern(result, u64_36, 36);
1✔
546
            }),
1✔
547

548
      CHECK("byte-aligned unsigned integer subvector replacement",
549
            [&](auto& result) {
1✔
550
               Botan::bitvector bv1(100);
1✔
551
               make_bitpattern(bv1);
1✔
552

553
               bv1.subvector_replace(0, uint8_t(0));
1✔
554
               check_bitpattern_with_zero_region(result, bv1, {0, 8});
1✔
555
               bv1.subvector_replace(0, bitpattern_at(uint8_t(0), 0));
2✔
556
               check_bitpattern(result, bv1);
1✔
557

558
               bv1.subvector_replace(32, uint8_t(0));
1✔
559
               check_bitpattern_with_zero_region(result, bv1, {32, 32 + 8});
1✔
560
               bv1.subvector_replace(32, bitpattern_at(uint8_t(0), 32));
2✔
561
               check_bitpattern(result, bv1);
1✔
562

563
               bv1.subvector_replace(56, uint16_t(0));
1✔
564
               check_bitpattern_with_zero_region(result, bv1, {56, 56 + 16});
1✔
565
               bv1.subvector_replace(56, bitpattern_at(uint16_t(0), 56));
2✔
566
               check_bitpattern(result, bv1);
1✔
567

568
               bv1.subvector_replace(48, uint32_t(0));
1✔
569
               check_bitpattern_with_zero_region(result, bv1, {48, 48 + 32});
1✔
570
               bv1.subvector_replace(48, bitpattern_at(uint32_t(0), 48));
2✔
571
               check_bitpattern(result, bv1);
1✔
572

573
               bv1.subvector_replace(16, uint64_t(0));
1✔
574
               check_bitpattern_with_zero_region(result, bv1, {16, 16 + 64});
1✔
575
               bv1.subvector_replace(16, bitpattern_at(uint64_t(0), 16));
2✔
576
               check_bitpattern(result, bv1);
1✔
577

578
               result.test_throws("out of range (uint8_t)", [&] { bv1.subvector_replace<uint8_t>(93, 42); });
3✔
579
               result.test_throws("out of range (uint16_t)", [&] { bv1.subvector_replace<uint16_t>(85, 42); });
3✔
580
               result.test_throws("out of range (uint32_t)", [&] { bv1.subvector_replace<uint32_t>(69, 42); });
3✔
581
               result.test_throws("out of range (uint64_t)", [&] { bv1.subvector_replace<uint64_t>(37, 42); });
4✔
582
            }),
1✔
583

584
      CHECK("unaligned unsigned integer subvector replacement",
585
            [&](auto& result) {
1✔
586
               Botan::bitvector bv1(100);
1✔
587
               make_bitpattern(bv1);
1✔
588

589
               bv1.subvector_replace(3, uint8_t(0));
1✔
590
               check_bitpattern_with_zero_region(result, bv1, {3, 3 + 8});
1✔
591
               bv1.subvector_replace(3, bitpattern_at(uint8_t(0), 3));
2✔
592
               check_bitpattern(result, bv1);
1✔
593

594
               bv1.subvector_replace(92, uint8_t(0));
1✔
595
               check_bitpattern_with_zero_region(result, bv1, {92, 92 + 8});
1✔
596
               bv1.subvector_replace(92, bitpattern_at(uint8_t(0), 92));
2✔
597
               check_bitpattern(result, bv1);
1✔
598

599
               bv1.subvector_replace(7, uint16_t(0));
1✔
600
               check_bitpattern_with_zero_region(result, bv1, {7, 7 + 16});
1✔
601
               bv1.subvector_replace(7, bitpattern_at(uint16_t(0), 7));
2✔
602
               check_bitpattern(result, bv1);
1✔
603

604
               bv1.subvector_replace(84, uint16_t(0));
1✔
605
               check_bitpattern_with_zero_region(result, bv1, {84, 84 + 16});
1✔
606
               bv1.subvector_replace(84, bitpattern_at(uint16_t(0), 84));
2✔
607
               check_bitpattern(result, bv1);
1✔
608

609
               bv1.subvector_replace(11, uint32_t(0));
1✔
610
               check_bitpattern_with_zero_region(result, bv1, {11, 11 + 32});
1✔
611
               bv1.subvector_replace(11, bitpattern_at(uint32_t(0), 11));
2✔
612
               check_bitpattern(result, bv1);
1✔
613

614
               bv1.subvector_replace(68, uint32_t(0));
1✔
615
               check_bitpattern_with_zero_region(result, bv1, {68, 68 + 32});
1✔
616
               bv1.subvector_replace(68, bitpattern_at(uint32_t(0), 68));
2✔
617
               check_bitpattern(result, bv1);
1✔
618

619
               bv1.subvector_replace(21, uint64_t(0));
1✔
620
               check_bitpattern_with_zero_region(result, bv1, {21, 21 + 64});
1✔
621
               bv1.subvector_replace(21, bitpattern_at(uint64_t(0), 21));
2✔
622
               check_bitpattern(result, bv1);
1✔
623
            }),
1✔
624
   };
11✔
625
}
1✔
626

627
std::vector<Test::Result> test_bitvector_global_modifiers_and_predicates(Botan::RandomNumberGenerator&) {
1✔
628
   auto make_bitpattern = [](auto& bitvector) {
3✔
629
      auto next = pattern_generator<5>();
2✔
630
      for(auto& i : bitvector) {
400✔
631
         i = next();
198✔
632
      }
633
   };
2✔
634

635
   auto check_bitpattern = [](auto& result, auto& bitvector) {
2✔
636
      auto next = pattern_generator<5>();
1✔
637
      for(size_t i = 0; i < bitvector.size(); ++i) {
100✔
638
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], next());
198✔
639
      }
640
   };
1✔
641

642
   auto check_flipped_bitpattern = [](auto& result, auto& bitvector) {
2✔
643
      auto next = pattern_generator<5>();
1✔
644
      for(size_t i = 0; i < bitvector.size(); ++i) {
100✔
645
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], !next());
198✔
646
      }
647
   };
1✔
648

649
   return {
1✔
650
      CHECK("one bit",
651
            [](auto& result) {
1✔
652
               Botan::bitvector bv;
1✔
653
               bv.push_back(true);
1✔
654

655
               bv.flip();
1✔
656
               result.confirm("bit is flipped", !bv[0]);
2✔
657

658
               // check that unused bits aren't flipped
659
               bv.resize(8);
1✔
660
               for(size_t i = 0; i < bv.size(); ++i) {
9✔
661
                  result.confirm("all bits are false", !bv[i]);
16✔
662
               }
663
               bv.resize(1);
1✔
664

665
               bv.flip();
1✔
666
               result.confirm("bit is flipped again", bv[0]);
2✔
667
            }),
1✔
668

669
      CHECK("bits in many blocks",
670
            [&](auto& result) {
1✔
671
               Botan::bitvector bv(99);
1✔
672

673
               make_bitpattern(bv);
1✔
674
               bv.flip();
1✔
675
               check_flipped_bitpattern(result, bv);
1✔
676

677
               bv = ~bv;
2✔
678
               check_bitpattern(result, bv);
1✔
679

680
               bv.resize(112);
1✔
681
               for(size_t i = 99; i < bv.size(); ++i) {
14✔
682
                  result.confirm("just-allocated bit is not set", !bv[i]);
26✔
683
               }
684
            }),
1✔
685

686
      CHECK("set and unset",
687
            [&](auto& result) {
1✔
688
               Botan::bitvector bv(99);
1✔
689

690
               make_bitpattern(bv);
1✔
691
               bv.set();
1✔
692
               bv.resize(128);
1✔
693
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
694
                  const bool expected = (i < 99);
128✔
695
                  result.test_eq("only set bits are set", bv[i], expected);
256✔
696
               }
697

698
               bv.unset();
1✔
699
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
700
                  result.confirm("bit is not set", !bv[i]);
256✔
701
               }
702
            }),
1✔
703

704
      CHECK("any, none and all",
705
            [&](auto& result) {
1✔
706
               Botan::bitvector bv(99);
1✔
707

708
               result.confirm("default construction yields all-zero", bv.none_vartime());
2✔
709
               result.confirm("default construction yields all-zero 2", !bv.any_vartime());
2✔
710
               result.confirm("default construction yields all-zero 3", !bv.all_vartime());
2✔
711
               result.confirm("default construction yields all-zero 4", bv.none());
2✔
712
               result.confirm("default construction yields all-zero 5", !bv.any());
2✔
713
               result.confirm("default construction yields all-zero 6", !bv.all());
2✔
714

715
               bv.set(42);
1✔
716
               result.confirm("setting a bit means there's a bit set", !bv.none_vartime());
2✔
717
               result.confirm("setting a bit means there's a bit set 2", bv.any_vartime());
2✔
718
               result.confirm("setting a bit means there's not all bits set", !bv.all_vartime());
2✔
719
               result.confirm("setting a bit means there's a bit set 3", !bv.none());
2✔
720
               result.confirm("setting a bit means there's a bit set 4", bv.any());
2✔
721
               result.confirm("setting a bit means there's not all bits set 2", !bv.all());
2✔
722

723
               bv.set();
1✔
724
               result.confirm("setting all bits means there's a bit set", !bv.none_vartime());
2✔
725
               result.confirm("setting all bits means there's a bit set 2", bv.any_vartime());
2✔
726
               result.confirm("setting all bits means all bits are set", bv.all_vartime());
2✔
727
               result.confirm("setting all bits means there's a bit set 3", !bv.none());
2✔
728
               result.confirm("setting all bits means there's a bit set 4", bv.any());
2✔
729
               result.confirm("setting all bits means all bits are set 2", bv.all());
2✔
730

731
               bv.unset(97);
1✔
732
               result.confirm("a single 0 at the end means that there's a bit set", !bv.none_vartime());
2✔
733
               result.confirm("a single 0 at the end means that there are bits set", bv.any_vartime());
2✔
734
               result.confirm("a single 0 at the end means that there are not all bits set", !bv.all_vartime());
2✔
735
               result.confirm("a single 0 at the end means that there's a bit set 2", !bv.none());
2✔
736
               result.confirm("a single 0 at the end means that there are bits set 2", bv.any());
2✔
737
               result.confirm("a single 0 at the end means that there are not all bits set 2", !bv.all());
2✔
738

739
               bv.unset();
1✔
740
               result.confirm("unsetting all bits means there's no bit set", bv.none_vartime());
2✔
741
               result.confirm("unsetting all bits means there's no bit set 2", !bv.any_vartime());
2✔
742
               result.confirm("unsetting all bits means there's not all bits set", !bv.all_vartime());
2✔
743
               result.confirm("unsetting all bits means there's no bit set 3", bv.none());
2✔
744
               result.confirm("unsetting all bits means there's no bit set 4", !bv.any());
2✔
745
               result.confirm("unsetting all bits means there's not all bits set 2", !bv.all());
2✔
746
            }),
1✔
747

748
      CHECK("hamming weight oddness",
749
            [](auto& result) {
1✔
750
               const auto evn = Botan::hex_decode("FE3410CB0278E4D26602");
1✔
751
               const auto odd = Botan::hex_decode("BB2418C2B4F288921203");
1✔
752

753
               result.confirm("odd hamming", Botan::bitvector(odd).has_odd_hamming_weight().as_bool());
3✔
754
               result.confirm("even hamming", !Botan::bitvector(evn).has_odd_hamming_weight().as_bool());
3✔
755
            }),
2✔
756

757
      CHECK("hamming weight",
758
            [](auto& result) {
1✔
759
               auto naive_count = [](auto& v) {
5✔
760
                  size_t weight = 0;
5✔
761
                  for(const auto& bit : v) {
440✔
762
                     weight += bit.template as<size_t>();
430✔
763
                  }
764
                  return weight;
5✔
765
               };
766

767
               // the last three bits of this bitvector are set, then there's a gap
768
               auto bv = Botan::bitvector(Botan::hex_decode("FE3410CB0278E4D26602E0"));
2✔
769
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(37));
1✔
770
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
771

772
               bv.pop_back();
1✔
773
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(36));
1✔
774
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
775

776
               bv.pop_back();
1✔
777
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(35));
1✔
778
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
779

780
               bv.pop_back();
1✔
781
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(34));
1✔
782
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
783

784
               bv.pop_back();
1✔
785
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(34));
1✔
786
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
787
            }),
1✔
788
   };
7✔
789
}
1✔
790

791
std::vector<Test::Result> test_bitvector_binary_operators(Botan::RandomNumberGenerator&) {
1✔
792
   auto check_set = [](auto& result, auto bits, std::vector<size_t> set_bits) {
13✔
793
      for(size_t i = 0; i < bits.size(); ++i) {
252✔
794
         const auto should_be_set = std::find(set_bits.begin(), set_bits.end(), i) != set_bits.end();
240✔
795
         result.test_eq(Botan::fmt("{} should {}be set", i, (!should_be_set ? "not " : "")), bits[i], should_be_set);
661✔
796
      }
797
   };
12✔
798

799
   auto is_secure_allocator = []<template <typename> typename AllocatorT>(auto& result,
7✔
800
                                                                          const Botan::bitvector_base<AllocatorT>&) {
801
      result.confirm("allocator is Botan::secure_allocator<>",
12✔
802
                     std::same_as<Botan::secure_allocator<uint8_t>, AllocatorT<uint8_t>>);
803
   };
6✔
804

805
   auto is_standard_allocator = []<template <typename> typename AllocatorT>(auto& result,
4✔
806
                                                                            const Botan::bitvector_base<AllocatorT>&) {
807
      result.confirm("allocator is std::allocator<>", std::same_as<std::allocator<uint8_t>, AllocatorT<uint8_t>>);
6✔
808
   };
3✔
809

810
   return {
1✔
811
      CHECK("bitwise_equals",
812
            [&](auto& result) {
1✔
813
               Botan::bitvector lhs(20);
1✔
814
               lhs.set(0).set(4).set(15).set(16).set(19);
1✔
815
               Botan::bitvector rhs(20);
1✔
816
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
817

818
               result.test_eq("Not equal bitvectors", lhs.equals_vartime(rhs), false);
1✔
819
               result.test_eq("Not equal bitvectors 2", lhs.equals(rhs), false);
2✔
820

821
               lhs.unset().set(13);
1✔
822
               rhs.unset().set(13);
1✔
823

824
               result.test_eq("equal bitvectors", lhs.equals_vartime(rhs), true);
1✔
825
               result.test_eq("equal bitvectors 2", lhs.equals(rhs), true);
2✔
826
            }),
2✔
827

828
      CHECK("bitwise OR",
829
            [&](auto& result) {
1✔
830
               Botan::bitvector lhs(20);
1✔
831
               lhs.set(0).set(4).set(15).set(16).set(19);
1✔
832
               Botan::bitvector rhs(20);
1✔
833
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
834
               Botan::bitvector unary(20);
1✔
835
               unary.set(8);
1✔
836

837
               Botan::bitvector res = lhs | rhs;
1✔
838
               check_set(result, res, {0, 1, 4, 15, 16, 17, 18, 19});
4✔
839

840
               res |= unary;
1✔
841
               check_set(result, res, {0, 1, 4, 8, 15, 16, 17, 18, 19});
3✔
842

843
               is_standard_allocator(result, res);
1✔
844
            }),
4✔
845

846
      CHECK("bitwise AND",
847
            [&](auto& result) {
1✔
848
               Botan::bitvector lhs(20);
1✔
849
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
850
               Botan::bitvector rhs(20);
1✔
851
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
852
               Botan::bitvector unary(20);
1✔
853
               unary.set(8).set(16);
1✔
854

855
               Botan::bitvector res = lhs & rhs;
1✔
856
               check_set(result, res, {4, 16, 18});
4✔
857

858
               res &= unary;
1✔
859
               check_set(result, res, {16});
3✔
860

861
               is_standard_allocator(result, res);
1✔
862
            }),
4✔
863

864
      CHECK("bitwise XOR",
865
            [&](auto& result) {
1✔
866
               Botan::bitvector lhs(20);
1✔
867
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
868
               Botan::bitvector rhs(20);
1✔
869
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
870
               Botan::bitvector unary(20);
1✔
871
               unary.set(8).set(16);
1✔
872

873
               Botan::bitvector res = lhs ^ rhs;
1✔
874
               check_set(result, res, {0, 1, 15, 17});
4✔
875

876
               res ^= unary;
1✔
877
               check_set(result, res, {0, 1, 8, 15, 16, 17});
3✔
878

879
               is_standard_allocator(result, res);
1✔
880
            }),
4✔
881

882
      CHECK("bitwise operators with heterogeneous allocators",
883
            [&](auto& result) {
1✔
884
               Botan::bitvector lhs(20);
1✔
885
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
886
               Botan::secure_bitvector rhs(20);
1✔
887
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
888
               Botan::bitvector unary(20);
1✔
889
               unary.set(8).set(16);
1✔
890

891
               auto res1 = lhs | rhs;
1✔
892
               is_secure_allocator(result, res1);
1✔
893
               check_set(result, res1, {0, 1, 4, 15, 16, 17, 18, 20});
3✔
894

895
               auto res2 = rhs | lhs;
1✔
896
               is_secure_allocator(result, res2);
1✔
897
               check_set(result, res2, {0, 1, 4, 15, 16, 17, 18, 20});
3✔
898

899
               auto res3 = lhs & rhs;
1✔
900
               is_secure_allocator(result, res3);
1✔
901
               check_set(result, res3, {4, 16, 18});
3✔
902

903
               auto res4 = rhs & lhs;
1✔
904
               is_secure_allocator(result, res4);
1✔
905
               check_set(result, res4, {4, 16, 18});
3✔
906

907
               auto res5 = lhs ^ rhs;
1✔
908
               is_secure_allocator(result, res5);
1✔
909
               check_set(result, res5, {0, 1, 15, 17});
3✔
910

911
               auto res6 = rhs ^ lhs;
1✔
912
               is_secure_allocator(result, res6);
1✔
913
               check_set(result, res6, {0, 1, 15, 17});
4✔
914
            }),
8✔
915
   };
6✔
916
}
1✔
917

918
std::vector<Test::Result> test_bitvector_serialization(Botan::RandomNumberGenerator&) {
1✔
919
   constexpr uint8_t outlen = 64;
1✔
920
   const auto bytearray = [] {
1✔
921
      std::array<uint8_t, outlen> out;
922
      for(uint8_t i = 0; i < outlen; ++i) {
923
         out[i] = i;
924
      }
925
      return out;
926
   }();
927

928
   auto validate_bytewise = [](auto& result, const auto& bv, std::span<const uint8_t> bytes) {
3✔
929
      for(size_t i = 0; i < bytes.size(); ++i) {
129✔
930
         const uint8_t b = (static_cast<uint8_t>(bv[0 + i * 8]) << 0) | (static_cast<uint8_t>(bv[1 + i * 8]) << 1) |
127✔
931
                           (static_cast<uint8_t>(bv[2 + i * 8]) << 2) | (static_cast<uint8_t>(bv[3 + i * 8]) << 3) |
127✔
932
                           (static_cast<uint8_t>(bv[4 + i * 8]) << 4) | (static_cast<uint8_t>(bv[5 + i * 8]) << 5) |
127✔
933
                           (static_cast<uint8_t>(bv[6 + i * 8]) << 6) | (static_cast<uint8_t>(bv[7 + i * 8]) << 7);
127✔
934

935
         result.test_eq(Botan::fmt("byte {} is as expected", i), static_cast<size_t>(b), static_cast<size_t>(bytes[i]));
254✔
936
      }
937
   };
2✔
938

939
   return {
1✔
940
      CHECK("empty byte-array",
941
            [](auto& result) {
1✔
942
               std::vector<uint8_t> bytes;
1✔
943
               result.require("empty buffer", bytes.empty());
2✔
944

945
               Botan::bitvector bv(bytes);
1✔
946
               result.confirm("empty bit vector", bv.empty());
2✔
947

948
               auto rendered = bv.to_bytes();
1✔
949
               result.confirm("empty bit vector renders an empty buffer", rendered.empty());
2✔
950
            }),
1✔
951

952
      CHECK("to_bytes() uses secure_allocator if necessary",
953
            [](auto& result) {
1✔
954
               Botan::bitvector bv;
1✔
955
               Botan::secure_bitvector sbv;
1✔
956

957
               auto rbv = bv.to_bytes();
1✔
958
               auto rsbv = sbv.to_bytes();
1✔
959

960
               result.confirm("ordinary bitvector uses ordinary std::vector",
2✔
961
                              std::is_same_v<std::vector<uint8_t>, decltype(rbv)>);
962
               result.confirm("secure bitvector uses secure_vector",
2✔
963
                              std::is_same_v<Botan::secure_vector<uint8_t>, decltype(rsbv)>);
964
            }),
1✔
965

966
      CHECK("load all bits from byte-array (aligned data)",
967
            [&](auto& result) {
1✔
968
               Botan::bitvector bv(bytearray);
1✔
969
               validate_bytewise(result, bv, bytearray);
1✔
970

971
               const auto rbv = bv.to_bytes();
1✔
972
               result.confirm("uint8_t rendered correctly", std::ranges::equal(bytearray, rbv));
3✔
973
            }),
2✔
974

975
      CHECK("load all bits from byte-array (unaligned blocks)",
976
            [&](auto& result) {
1✔
977
               std::array<uint8_t, 63> unaligned_bytearray;
978
               Botan::copy_mem(unaligned_bytearray, std::span{bytearray}.first<unaligned_bytearray.size()>());
1✔
979

980
               Botan::bitvector bv(unaligned_bytearray);
1✔
981
               validate_bytewise(result, bv, unaligned_bytearray);
1✔
982

983
               const auto rbv = bv.to_bytes();
1✔
984
               result.confirm("uint8_t rendered correctly", std::ranges::equal(unaligned_bytearray, rbv));
2✔
985
            }),
3✔
986

987
      CHECK("load bits from byte-array (unaligned data)",
988
            [&](auto& result) {
1✔
989
               constexpr size_t bits_to_load = 31;
1✔
990
               constexpr size_t bytes_to_load = Botan::ceil_tobytes(bits_to_load);
1✔
991

992
               Botan::bitvector bv(bytearray, bits_to_load);
1✔
993

994
               for(size_t i = 0; i < bits_to_load; ++i) {
32✔
995
                  const bool expected = (i == 8) || (i == 17) || (i == 24) || (i == 25);
31✔
996
                  result.test_eq(Botan::fmt("bit {} is correct", i), bv.at(i), expected);
62✔
997
               }
998

999
               const auto rbv = bv.to_bytes();
1✔
1000
               std::array<uint8_t, bytes_to_load> expected_bytes;
1001
               Botan::copy_mem(expected_bytes, std::span{bytearray}.first<bytes_to_load>());
1✔
1002
               expected_bytes.back() &= (uint8_t(1) << (bits_to_load % 8)) - 1;
1✔
1003
               result.confirm("uint8_t rendered correctly", std::ranges::equal(expected_bytes, rbv));
2✔
1004
            }),
2✔
1005

1006
      CHECK("to_bytes(std::span) can handle non-zero out-memory",
1007
            [&](auto& result) {
1✔
1008
               constexpr size_t bits_to_load = 33;
1✔
1009
               constexpr size_t bytes_to_load = Botan::ceil_tobytes(bits_to_load);
1✔
1010

1011
               Botan::bitvector bv(bytearray, bits_to_load);
1✔
1012
               bv.set(32);
1✔
1013

1014
               std::array<uint8_t, bytes_to_load> out = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
1✔
1015
               bv.to_bytes(out);
1✔
1016

1017
               result.test_eq_sz("uint8_t rendered correctly", out[4], 0x01);
2✔
1018
            }),
1✔
1019
   };
7✔
1020
}
1✔
1021

1022
std::vector<Test::Result> test_bitvector_constant_time_operations(Botan::RandomNumberGenerator&) {
1✔
1023
   constexpr Botan::CT::Choice yes = Botan::CT::Choice::yes();
1✔
1024
   constexpr Botan::CT::Choice no = Botan::CT::Choice::no();
1✔
1025

1026
   return {
1✔
1027
      CHECK("conditional XOR, block aligned",
1028
            [&](auto& result) {
1✔
1029
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF"));
2✔
1030
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F"));
2✔
1031
               const auto initial_bv1 = bv1;
1✔
1032
               const auto xor_result = bv1 ^ bv2;
1✔
1033

1034
               bv1.ct_conditional_xor(no, bv2);
1✔
1035
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1036

1037
               bv1.ct_conditional_xor(yes, bv2);
1✔
1038
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1039
            }),
4✔
1040

1041
      CHECK("conditional XOR, byte aligned",
1042
            [&](auto& result) {
1✔
1043
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF42"));
2✔
1044
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F13"));
2✔
1045
               const auto initial_bv1 = bv1;
1✔
1046
               const auto xor_result = bv1 ^ bv2;
1✔
1047

1048
               bv1.ct_conditional_xor(no, bv2);
1✔
1049
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1050

1051
               bv1.ct_conditional_xor(yes, bv2);
1✔
1052
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1053
            }),
4✔
1054

1055
      CHECK("conditional XOR, no alignment",
1056
            [&](auto& result) {
1✔
1057
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF42"));
1✔
1058
               bv1.push_back(true);
1✔
1059
               bv1.push_back(false);
1✔
1060
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F13"));
1✔
1061
               bv2.push_back(false);
1✔
1062
               bv2.push_back(false);
1✔
1063

1064
               const auto initial_bv1 = bv1;
1✔
1065
               const auto xor_result = bv1 ^ bv2;
1✔
1066

1067
               bv1.ct_conditional_xor(no, bv2);
1✔
1068
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1069

1070
               bv1.ct_conditional_xor(yes, bv2);
1✔
1071
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1072
            }),
4✔
1073
   };
4✔
1074
}
1✔
1075

1076
std::vector<Test::Result> test_bitvector_conditional_xor_workload(Botan::RandomNumberGenerator&) {
1✔
1077
   Test::Result res("Conditional XOR, Gauss Workload");
1✔
1078

1079
   auto rng = Test::new_rng("Conditional XOR, Gauss Workload");
1✔
1080

1081
   const size_t matrix_rows = 1664;
1✔
1082
   const size_t matrix_columns = 8192;
1✔
1083

1084
   std::vector<Botan::bitvector> bitvec_vec;
1✔
1085
   bitvec_vec.reserve(matrix_rows);
1✔
1086
   for(size_t i = 0; i < matrix_rows; ++i) {
1,665✔
1087
      bitvec_vec.push_back(Botan::bitvector(rng->random_vec(matrix_columns / 8)));
4,992✔
1088
   }
1089

1090
   // Simulate #ops of Gaussian Elimination
1091
   const size_t total_iter = matrix_rows * (3 * matrix_rows - 1) / 2;
1✔
1092
   const auto start = Test::timestamp();
1✔
1093
   for(size_t i = 0; i < total_iter; ++i) {
4,152,513✔
1094
      const auto choice = Botan::CT::Choice::from_int(static_cast<uint8_t>(rng->next_byte() % 2));
4,152,512✔
1095
      bitvec_vec.at(i % matrix_rows).ct_conditional_xor(choice, bitvec_vec.at(rng->next_byte() % matrix_rows));
4,152,512✔
1096
   }
1097
   res.set_ns_consumed(Test::timestamp() - start);
1✔
1098

1099
   res.confirm("Prevent compiler from optimizing away",
3✔
1100
               bitvec_vec.at(0).any_vartime() || bitvec_vec.at(0).none_vartime());
1✔
1101
   return {res};
3✔
1102
}
3✔
1103

1104
std::vector<Test::Result> test_bitvector_iterators(Botan::RandomNumberGenerator&) {
1✔
1105
   return {
1✔
1106
      CHECK("Iterators: range-based for loop",
1107
            [](auto& result) {
1✔
1108
               Botan::bitvector bv(6);
1✔
1109
               bv.set(0).set(3).set(4);
1✔
1110

1111
               for(size_t i = 0; auto& ref : bv) {
8✔
1112
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1113
                  result.test_eq(Botan::fmt("bit {} is as expected", i), ref, expected);
6✔
1114
                  ++i;
6✔
1115
               }
1116

1117
               for(size_t i = 0; const auto& ref : bv) {
8✔
1118
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1119
                  result.test_eq(Botan::fmt("const bit {} is as expected", i), ref, expected);
6✔
1120
                  ++i;
6✔
1121
               }
1122

1123
               for(auto ref : bv) {
14✔
1124
                  ref = true;
6✔
1125
               }
1126

1127
               result.confirm("all bits are set", bv.all_vartime());
2✔
1128
            }),
1✔
1129

1130
      CHECK("Iterators: bare usage",
1131
            [](auto& result) {
1✔
1132
               Botan::bitvector bv(6);
1✔
1133
               bv.set(0).set(3).set(4);
1✔
1134

1135
               size_t i = 0;
1✔
1136
               for(auto itr = bv.begin(); itr != bv.end(); ++itr, ++i) {
7✔
1137
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1138
                  result.test_eq(Botan::fmt("bit {} is as expected", i), *itr, expected);
12✔
1139
               }
1140

1141
               i = 0;
1✔
1142
               for(auto itr = bv.cbegin(); itr != bv.cend(); itr++, ++i) {
7✔
1143
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1144
                  result.test_eq(Botan::fmt("const bit {} is as expected", i), itr->is_set(), expected);
12✔
1145
               }
1146

1147
               i = 6;
1✔
1148
               auto ritr = bv.end();
1✔
1149
               do {
1150
                  --ritr;
6✔
1151
                  --i;
6✔
1152
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1153
                  result.test_eq(Botan::fmt("reverse bit {} is as expected", i), *ritr, expected);
6✔
1154
               } while(ritr != bv.begin());
11✔
1155

1156
               for(auto itr = bv.begin(); itr != bv.end(); ++itr) {
7✔
1157
                  itr->flip();
6✔
1158
               }
1159

1160
               i = 0;
1✔
1161
               for(auto itr = bv.begin(); itr != bv.end(); ++itr, ++i) {
7✔
1162
                  const bool expected = i == 1 || i == 2 || i == 5;
6✔
1163
                  result.test_eq(Botan::fmt("flipped bit {} is as expected", i), *itr, expected);
12✔
1164
               }
1165
            }),
1✔
1166

1167
      CHECK("Iterators: std::distance and std::advance",
1168
            [](auto& result) {
1✔
1169
               Botan::bitvector bv(6);
1✔
1170
               using signed_size_t = std::make_signed_t<size_t>;
1171

1172
               result.test_is_eq("distance", std::distance(bv.begin(), bv.end()), signed_size_t(6));
2✔
1173
               result.test_is_eq("const distance", std::distance(bv.cbegin(), bv.cend()), signed_size_t(6));
3✔
1174

1175
               auto b = bv.begin();
1✔
1176
               std::advance(b, 3);
1✔
1177
               result.test_is_eq("half distance", std::distance(bv.begin(), b), signed_size_t(3));
3✔
1178
            }),
1✔
1179

1180
      CHECK("Iterators: large bitvector",
1181
            [](auto& result) {
1✔
1182
               Botan::bitvector bv(500);
1✔
1183

1184
               for(auto itr = bv.begin(); itr != bv.end(); ++itr) {
1,001✔
1185
                  if(std::distance(bv.begin(), itr) % 2 == 0) {
1,000✔
1186
                     itr->set();
250✔
1187
                  }
1188
                  if(std::distance(bv.begin(), itr) % 3 == 0) {
1,000✔
1189
                     *itr = true;
167✔
1190
                  }
1191
               }
1192

1193
               for(size_t i = 0; const auto& bit : bv) {
502✔
1194
                  const bool expected = (i % 2 == 0) || (i % 3 == 0);
500✔
1195
                  result.test_eq(Botan::fmt("bit {} is as expected", i), bit, expected);
500✔
1196
                  ++i;
500✔
1197
               }
1198
            }),
1✔
1199

1200
      CHECK("Iterators: satiesfies C++20 concepts",
1201
            [](auto& result) {
1✔
1202
               Botan::secure_bitvector bv(42);
1✔
1203
               auto ro_itr = bv.cbegin();
1✔
1204
               auto rw_itr = bv.begin();
1✔
1205

1206
               using ro = decltype(ro_itr);
1207
               using rw = decltype(rw_itr);
1208

1209
               result.confirm("ro input iterator", std::input_iterator<ro>);
2✔
1210
               result.confirm("rw input iterator", std::input_iterator<rw>);
2✔
1211
               result.confirm("ro is not an output iterator", !std::output_iterator<ro, bool>);
2✔
1212
               result.confirm("rw output iterator", std::output_iterator<rw, bool>);
2✔
1213
               result.confirm("ro bidirectional iterator", std::bidirectional_iterator<ro>);
2✔
1214
               result.confirm("rw bidirectional iterator", std::bidirectional_iterator<rw>);
2✔
1215
               result.confirm("ro not a contiguous iterator", !std::contiguous_iterator<ro>);
2✔
1216
               result.confirm("rw not a contiguous iterator", !std::contiguous_iterator<rw>);
2✔
1217
            }),
1✔
1218
   };
6✔
1219
}
1✔
1220

1221
using TestBitvector = Botan::Strong<Botan::bitvector, struct TestBitvector_>;
1222
using TestSecureBitvector = Botan::Strong<Botan::secure_bitvector, struct TestBitvector_>;
1223
using TestUInt32 = Botan::Strong<uint32_t, struct TestUInt32_>;
1224

1225
std::vector<Test::Result> test_bitvector_strongtype_adapter(Botan::RandomNumberGenerator&) {
1✔
1226
   Test::Result result("Bitvector in strong type");
1✔
1227

1228
   TestBitvector bv1(33);
1✔
1229

1230
   result.confirm("bv1 is not empty", !bv1.empty());
2✔
1231
   result.test_eq("bv1 has size 33", bv1.size(), size_t(33));
1✔
1232

1233
   bv1[0] = true;
1✔
1234
   bv1.at(1) = true;
1✔
1235
   bv1.set(2);
2✔
1236
   bv1.unset(3);
2✔
1237
   bv1.flip(4);
2✔
1238
   bv1.push_back(true);
1✔
1239
   bv1.push_back(false);
1✔
1240
   bv1.pop_back();
1✔
1241

1242
   result.confirm("bv1 front is set", bv1.front());
2✔
1243
   result.confirm("bv1 back is set", bv1.back());
2✔
1244
   result.confirm("bv1 has some one bits", bv1.any_vartime());
2✔
1245
   result.confirm("bv1 is not all zero", !bv1.none_vartime());
2✔
1246
   result.confirm("bv1 is not all one", !bv1.all_vartime());
2✔
1247

1248
   result.confirm("hamming weight of bv1", bv1.has_odd_hamming_weight().as_bool());
2✔
1249

1250
   for(size_t i = 0; auto bit : bv1) {
36✔
1251
      const bool expected = (i == 0 || i == 1 || i == 2 || i == 4 || i == 33);
34✔
1252
      result.confirm(Botan::fmt("bv1 bit {} is set", i), bit == expected);
68✔
1253
      ++i;
34✔
1254
   }
1255

1256
   bv1.flip();
2✔
1257

1258
   for(size_t i = 0; auto bit : bv1) {
36✔
1259
      const bool expected = (i == 0 || i == 1 || i == 2 || i == 4 || i == 33);
34✔
1260
      result.confirm(Botan::fmt("bv1 bit {} is set", i), bit != expected);
68✔
1261
      ++i;
34✔
1262
   }
1263

1264
   auto bv2 = bv1.as<TestSecureBitvector>();
1✔
1265

1266
   auto bv3 = bv1 | bv2;
1✔
1267
   result.confirm("bv3 is a secure_bitvector", std::same_as<Botan::secure_bitvector, decltype(bv3)>);
2✔
1268

1269
   auto bv4 = bv2.subvector<TestSecureBitvector>(0, 5);
1✔
1270
   result.confirm("bv4 is a TestSecureBitvector", std::same_as<TestSecureBitvector, decltype(bv4)>);
2✔
1271

1272
   auto bv5 = bv2.subvector<TestUInt32>(1);
1✔
1273
   result.confirm("bv5 is a TestUInt32", std::same_as<TestUInt32, decltype(bv5)>);
2✔
1274
   result.test_is_eq<TestUInt32::wrapped_type>("bv5 has expected value", bv5.get(), 0xFFFFFFF4);
1✔
1275

1276
   const auto str = bv4.to_string();
1✔
1277
   result.test_eq("bv4 to_string", str, "00010");
2✔
1278

1279
   return {result};
3✔
1280
}
6✔
1281

1282
}  // namespace
1283

1284
class BitVector_Tests final : public Test {
×
1285
   public:
1286
      std::vector<Test::Result> run() override {
1✔
1287
         std::vector<Test::Result> results;
1✔
1288
         auto& rng = Test::rng();
1✔
1289

1290
         std::vector<std::function<std::vector<Test::Result>(Botan::RandomNumberGenerator&)>> funcs{
1✔
1291
            test_bitvector_bitwise_accessors,
1292
            test_bitvector_capacity,
1293
            test_bitvector_subvector,
1294
            test_bitvector_global_modifiers_and_predicates,
1295
            test_bitvector_binary_operators,
1296
            test_bitvector_serialization,
1297
            test_bitvector_constant_time_operations,
1298
            test_bitvector_conditional_xor_workload,
1299
            test_bitvector_iterators,
1300
            test_bitvector_strongtype_adapter,
1301
         };
11✔
1302

1303
         for(const auto& test_func : funcs) {
11✔
1304
            auto fn_results = test_func(rng);
10✔
1305
            results.insert(results.end(), fn_results.begin(), fn_results.end());
10✔
1306
         }
10✔
1307

1308
         return results;
1✔
1309
      }
2✔
1310
};
1311

1312
BOTAN_REGISTER_TEST("utils", "bitvector", BitVector_Tests);
1313

1314
#endif
1315

1316
}  // namespace Botan_Tests
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc