• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

openmc-dev / openmc / 13375665600

17 Feb 2025 05:23PM UTC coverage: 84.967% (-0.005%) from 84.972%
13375665600

Pull #3304

github

web-flow
Merge 254c4c864 into a5b26de04
Pull Request #3304: Build NCrystal from Source for OpenMC

50234 of 59122 relevant lines covered (84.97%)

35412515.34 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

79.18
/src/random_ray/flat_source_domain.cpp
1
#include "openmc/random_ray/flat_source_domain.h"
2

3
#include "openmc/cell.h"
4
#include "openmc/eigenvalue.h"
5
#include "openmc/geometry.h"
6
#include "openmc/material.h"
7
#include "openmc/message_passing.h"
8
#include "openmc/mgxs_interface.h"
9
#include "openmc/output.h"
10
#include "openmc/plot.h"
11
#include "openmc/random_ray/random_ray.h"
12
#include "openmc/simulation.h"
13
#include "openmc/tallies/filter.h"
14
#include "openmc/tallies/tally.h"
15
#include "openmc/tallies/tally_scoring.h"
16
#include "openmc/timer.h"
17

18
#include <cstdio>
19

20
namespace openmc {
21

22
//==============================================================================
23
// FlatSourceDomain implementation
24
//==============================================================================
25

26
// Static Variable Declarations
27
RandomRayVolumeEstimator FlatSourceDomain::volume_estimator_ {
28
  RandomRayVolumeEstimator::HYBRID};
29
bool FlatSourceDomain::volume_normalized_flux_tallies_ {false};
30
bool FlatSourceDomain::adjoint_ {false};
31

32
FlatSourceDomain::FlatSourceDomain() : negroups_(data::mg.num_energy_groups_)
425✔
33
{
34
  // Count the number of source regions, compute the cell offset
35
  // indices, and store the material type The reason for the offsets is that
36
  // some cell types may not have material fills, and therefore do not
37
  // produce FSRs. Thus, we cannot index into the global arrays directly
38
  for (const auto& c : model::cells) {
3,995✔
39
    if (c->type_ != Fill::MATERIAL) {
3,570✔
40
      source_region_offsets_.push_back(-1);
1,819✔
41
    } else {
42
      source_region_offsets_.push_back(n_source_regions_);
1,751✔
43
      n_source_regions_ += c->n_instances_;
1,751✔
44
      n_source_elements_ += c->n_instances_ * negroups_;
1,751✔
45
    }
46
  }
47

48
  // Initialize cell-wise arrays
49
  bool is_linear = RandomRay::source_shape_ != RandomRaySourceShape::FLAT;
425✔
50
  source_regions_ = SourceRegionContainer(negroups_, is_linear);
425✔
51
  source_regions_.assign(n_source_regions_, SourceRegion(negroups_, is_linear));
425✔
52

53
  // Initialize materials
54
  int64_t source_region_id = 0;
425✔
55
  for (int i = 0; i < model::cells.size(); i++) {
3,995✔
56
    Cell& cell = *model::cells[i];
3,570✔
57
    if (cell.type_ == Fill::MATERIAL) {
3,570✔
58
      for (int j = 0; j < cell.n_instances_; j++) {
542,419✔
59
        source_regions_.material(source_region_id++) = cell.material(j);
540,668✔
60
      }
61
    }
62
  }
63

64
  // Sanity check
65
  if (source_region_id != n_source_regions_) {
425✔
66
    fatal_error("Unexpected number of source regions");
×
67
  }
68

69
  // Initialize tally volumes
70
  if (volume_normalized_flux_tallies_) {
425✔
71
    tally_volumes_.resize(model::tallies.size());
357✔
72
    for (int i = 0; i < model::tallies.size(); i++) {
1,292✔
73
      //  Get the shape of the 3D result tensor
74
      auto shape = model::tallies[i]->results().shape();
935✔
75

76
      // Create a new 2D tensor with the same size as the first
77
      // two dimensions of the 3D tensor
78
      tally_volumes_[i] =
935✔
79
        xt::xtensor<double, 2>::from_shape({shape[0], shape[1]});
1,870✔
80
    }
81
  }
82

83
  // Compute simulation domain volume based on ray source
84
  auto* is = dynamic_cast<IndependentSource*>(RandomRay::ray_source_.get());
425✔
85
  SpatialDistribution* space_dist = is->space();
425✔
86
  SpatialBox* sb = dynamic_cast<SpatialBox*>(space_dist);
425✔
87
  Position dims = sb->upper_right() - sb->lower_left();
425✔
88
  simulation_volume_ = dims.x * dims.y * dims.z;
425✔
89
}
425✔
90

91
void FlatSourceDomain::batch_reset()
11,730✔
92
{
93
// Reset scalar fluxes and iteration volume tallies to zero
94
#pragma omp parallel for
6,210✔
95
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
5,380,880✔
96
    source_regions_.volume(sr) = 0.0;
5,375,360✔
97
  }
98
#pragma omp parallel for
6,210✔
99
  for (int64_t se = 0; se < n_source_elements_; se++) {
10,845,200✔
100
    source_regions_.scalar_flux_new(se) = 0.0;
10,839,680✔
101
  }
102
}
11,730✔
103

104
void FlatSourceDomain::accumulate_iteration_flux()
4,590✔
105
{
106
#pragma omp parallel for
2,430✔
107
  for (int64_t se = 0; se < n_source_elements_; se++) {
3,960,400✔
108
    source_regions_.scalar_flux_final(se) +=
3,958,240✔
109
      source_regions_.scalar_flux_new(se);
3,958,240✔
110
  }
111
}
4,590✔
112

113
// Compute new estimate of scattering + fission sources in each source region
114
// based on the flux estimate from the previous iteration.
115
void FlatSourceDomain::update_neutron_source(double k_eff)
4,845✔
116
{
117
  simulation::time_update_src.start();
4,845✔
118

119
  double inverse_k_eff = 1.0 / k_eff;
4,845✔
120

121
  // Add scattering + fission source
122
#pragma omp parallel for
2,565✔
123
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
2,108,680✔
124
    int material = source_regions_.material(sr);
2,106,400✔
125

126
    for (int g_out = 0; g_out < negroups_; g_out++) {
6,652,160✔
127
      double sigma_t = sigma_t_[material * negroups_ + g_out];
4,545,760✔
128
      double scatter_source = 0.0;
4,545,760✔
129
      double fission_source = 0.0;
4,545,760✔
130

131
      for (int g_in = 0; g_in < negroups_; g_in++) {
26,167,040✔
132
        double scalar_flux = source_regions_.scalar_flux_old(sr, g_in);
21,621,280✔
133
        double sigma_s =
134
          sigma_s_[material * negroups_ * negroups_ + g_out * negroups_ + g_in];
21,621,280✔
135
        double nu_sigma_f = nu_sigma_f_[material * negroups_ + g_in];
21,621,280✔
136
        double chi = chi_[material * negroups_ + g_out];
21,621,280✔
137

138
        scatter_source += sigma_s * scalar_flux;
21,621,280✔
139
        fission_source += nu_sigma_f * scalar_flux * chi;
21,621,280✔
140
      }
141
      source_regions_.source(sr, g_out) =
4,545,760✔
142
        (scatter_source + fission_source * inverse_k_eff) / sigma_t;
4,545,760✔
143
    }
144
  }
145

146
  // Add external source if in fixed source mode
147
  if (settings::run_mode == RunMode::FIXED_SOURCE) {
4,845✔
148
#pragma omp parallel for
2,205✔
149
    for (int64_t se = 0; se < n_source_elements_; se++) {
4,096,840✔
150
      source_regions_.source(se) += source_regions_.external_source(se);
4,094,880✔
151
    }
152
  }
153

154
  simulation::time_update_src.stop();
4,845✔
155
}
4,845✔
156

157
// Normalizes flux and updates simulation-averaged volume estimate
158
void FlatSourceDomain::normalize_scalar_flux_and_volumes(
4,845✔
159
  double total_active_distance_per_iteration)
160
{
161
  double normalization_factor = 1.0 / total_active_distance_per_iteration;
4,845✔
162
  double volume_normalization_factor =
4,845✔
163
    1.0 / (total_active_distance_per_iteration * simulation::current_batch);
4,845✔
164

165
// Normalize scalar flux to total distance travelled by all rays this
166
// iteration
167
#pragma omp parallel for
2,565✔
168
  for (int64_t se = 0; se < n_source_elements_; se++) {
4,548,040✔
169
    source_regions_.scalar_flux_new(se) *= normalization_factor;
4,545,760✔
170
  }
171

172
// Accumulate cell-wise ray length tallies collected this iteration, then
173
// update the simulation-averaged cell-wise volume estimates
174
#pragma omp parallel for
2,565✔
175
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
2,108,680✔
176
    source_regions_.volume_t(sr) += source_regions_.volume(sr);
2,106,400✔
177
    source_regions_.volume_naive(sr) =
4,212,800✔
178
      source_regions_.volume(sr) * normalization_factor;
2,106,400✔
179
    source_regions_.volume(sr) =
2,106,400✔
180
      source_regions_.volume_t(sr) * volume_normalization_factor;
2,106,400✔
181
  }
182
}
4,845✔
183

184
void FlatSourceDomain::set_flux_to_flux_plus_source(
9,659,706✔
185
  int64_t sr, double volume, int g)
186
{
187
  double sigma_t = sigma_t_[source_regions_.material(sr) * negroups_ + g];
9,659,706✔
188
  source_regions_.scalar_flux_new(sr, g) /= (sigma_t * volume);
9,659,706✔
189
  source_regions_.scalar_flux_new(sr, g) += source_regions_.source(sr, g);
9,659,706✔
190
}
9,659,706✔
191

192
void FlatSourceDomain::set_flux_to_old_flux(int64_t sr, int g)
×
193
{
194
  source_regions_.scalar_flux_new(sr, g) =
×
195
    source_regions_.scalar_flux_old(sr, g);
×
196
}
197

198
void FlatSourceDomain::set_flux_to_source(int64_t sr, int g)
34✔
199
{
200
  source_regions_.scalar_flux_new(sr, g) = source_regions_.source(sr, g);
34✔
201
}
34✔
202

203
// Combine transport flux contributions and flat source contributions from the
204
// previous iteration to generate this iteration's estimate of scalar flux.
205
int64_t FlatSourceDomain::add_source_to_scalar_flux()
11,730✔
206
{
207
  int64_t n_hits = 0;
11,730✔
208

209
#pragma omp parallel for reduction(+ : n_hits)
6,210✔
210
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
5,380,880✔
211

212
    double volume_simulation_avg = source_regions_.volume(sr);
5,375,360✔
213
    double volume_iteration = source_regions_.volume_naive(sr);
5,375,360✔
214

215
    // Increment the number of hits if cell was hit this iteration
216
    if (volume_iteration) {
5,375,360✔
217
      n_hits++;
5,375,344✔
218
    }
219

220
    // The volume treatment depends on the volume estimator type
221
    // and whether or not an external source is present in the cell.
222
    double volume;
223
    switch (volume_estimator_) {
5,375,360✔
224
    case RandomRayVolumeEstimator::NAIVE:
967,680✔
225
      volume = volume_iteration;
967,680✔
226
      break;
967,680✔
227
    case RandomRayVolumeEstimator::SIMULATION_AVERAGED:
691,200✔
228
      volume = volume_simulation_avg;
691,200✔
229
      break;
691,200✔
230
    case RandomRayVolumeEstimator::HYBRID:
3,716,480✔
231
      if (source_regions_.external_source_present(sr)) {
3,716,480✔
232
        volume = volume_iteration;
14,160✔
233
      } else {
234
        volume = volume_simulation_avg;
3,702,320✔
235
      }
236
      break;
3,716,480✔
237
    default:
238
      fatal_error("Invalid volume estimator type");
239
    }
240

241
    for (int g = 0; g < negroups_; g++) {
16,215,040✔
242
      // There are three scenarios we need to consider:
243
      if (volume_iteration > 0.0) {
10,839,680✔
244
        // 1. If the FSR was hit this iteration, then the new flux is equal to
245
        // the flat source from the previous iteration plus the contributions
246
        // from rays passing through the source region (computed during the
247
        // transport sweep)
248
        set_flux_to_flux_plus_source(sr, volume, g);
10,839,664✔
249
      } else if (volume_simulation_avg > 0.0) {
16✔
250
        // 2. If the FSR was not hit this iteration, but has been hit some
251
        // previous iteration, then we need to make a choice about what
252
        // to do. Naively we will usually want to set the flux to be equal
253
        // to the reduced source. However, in fixed source problems where
254
        // there is a strong external source present in the cell, and where
255
        // the cell has a very low cross section, this approximation will
256
        // cause a huge upward bias in the flux estimate of the cell (in these
257
        // conditions, the flux estimate can be orders of magnitude too large).
258
        // Thus, to avoid this bias, if any external source is present
259
        // in the cell we will use the previous iteration's flux estimate. This
260
        // injects a small degree of correlation into the simulation, but this
261
        // is going to be trivial when the miss rate is a few percent or less.
262
        if (source_regions_.external_source_present(sr)) {
16✔
263
          set_flux_to_old_flux(sr, g);
264
        } else {
265
          set_flux_to_source(sr, g);
16✔
266
        }
267
      }
268
      // If the FSR was not hit this iteration, and it has never been hit in
269
      // any iteration (i.e., volume is zero), then we want to set this to 0
270
      // to avoid dividing anything by a zero volume. This happens implicitly
271
      // given that the new scalar flux arrays are set to zero each iteration.
272
    }
273
  }
274

275
  // Return the number of source regions that were hit this iteration
276
  return n_hits;
11,730✔
277
}
278

279
// Generates new estimate of k_eff based on the differences between this
280
// iteration's estimate of the scalar flux and the last iteration's estimate.
281
double FlatSourceDomain::compute_k_eff(double k_eff_old) const
2,040✔
282
{
283
  double fission_rate_old = 0;
2,040✔
284
  double fission_rate_new = 0;
2,040✔
285

286
  // Vector for gathering fission source terms for Shannon entropy calculation
287
  vector<float> p(n_source_regions_, 0.0f);
2,040✔
288

289
#pragma omp parallel for reduction(+ : fission_rate_old, fission_rate_new)
1,080✔
290
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
256,640✔
291

292
    // If simulation averaged volume is zero, don't include this cell
293
    double volume = source_regions_.volume(sr);
255,680✔
294
    if (volume == 0.0) {
255,680✔
295
      continue;
296
    }
297

298
    int material = source_regions_.material(sr);
255,680✔
299

300
    double sr_fission_source_old = 0;
255,680✔
301
    double sr_fission_source_new = 0;
255,680✔
302

303
    for (int g = 0; g < negroups_; g++) {
1,799,680✔
304
      double nu_sigma_f = nu_sigma_f_[material * negroups_ + g];
1,544,000✔
305
      sr_fission_source_old +=
1,544,000✔
306
        nu_sigma_f * source_regions_.scalar_flux_old(sr, g);
1,544,000✔
307
      sr_fission_source_new +=
1,544,000✔
308
        nu_sigma_f * source_regions_.scalar_flux_new(sr, g);
1,544,000✔
309
    }
310

311
    // Compute total fission rates in FSR
312
    sr_fission_source_old *= volume;
255,680✔
313
    sr_fission_source_new *= volume;
255,680✔
314

315
    // Accumulate totals
316
    fission_rate_old += sr_fission_source_old;
255,680✔
317
    fission_rate_new += sr_fission_source_new;
255,680✔
318

319
    // Store total fission rate in the FSR for Shannon calculation
320
    p[sr] = sr_fission_source_new;
255,680✔
321
  }
322

323
  double k_eff_new = k_eff_old * (fission_rate_new / fission_rate_old);
2,040✔
324

325
  double H = 0.0;
2,040✔
326
  // defining an inverse sum for better performance
327
  double inverse_sum = 1 / fission_rate_new;
2,040✔
328

329
#pragma omp parallel for reduction(+ : H)
1,080✔
330
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
256,640✔
331
    // Only if FSR has non-negative and non-zero fission source
332
    if (p[sr] > 0.0f) {
255,680✔
333
      // Normalize to total weight of bank sites. p_i for better performance
334
      float p_i = p[sr] * inverse_sum;
104,320✔
335
      // Sum values to obtain Shannon entropy.
336
      H -= p_i * std::log2(p_i);
104,320✔
337
    }
338
  }
339

340
  // Adds entropy value to shared entropy vector in openmc namespace.
341
  simulation::entropy.push_back(H);
2,040✔
342

343
  return k_eff_new;
2,040✔
344
}
2,040✔
345

346
// This function is responsible for generating a mapping between random
347
// ray flat source regions (cell instances) and tally bins. The mapping
348
// takes the form of a "TallyTask" object, which accounts for one single
349
// score being applied to a single tally. Thus, a single source region
350
// may have anywhere from zero to many tally tasks associated with it ---
351
// meaning that the global "tally_task" data structure is in 2D. The outer
352
// dimension corresponds to the source element (i.e., each entry corresponds
353
// to a specific energy group within a specific source region), and the
354
// inner dimension corresponds to the tallying task itself. Mechanically,
355
// the mapping between FSRs and spatial filters is done by considering
356
// the location of a single known ray midpoint that passed through the
357
// FSR. I.e., during transport, the first ray to pass through a given FSR
358
// will write down its midpoint for use with this function. This is a cheap
359
// and easy way of mapping FSRs to spatial tally filters, but comes with
360
// the downside of adding the restriction that spatial tally filters must
361
// share boundaries with the physical geometry of the simulation (so as
362
// not to subdivide any FSR). It is acceptable for a spatial tally region
363
// to contain multiple FSRs, but not the other way around.
364

365
// TODO: In future work, it would be preferable to offer a more general
366
// (but perhaps slightly more expensive) option for handling arbitrary
367
// spatial tallies that would be allowed to subdivide FSRs.
368

369
// Besides generating the mapping structure, this function also keeps track
370
// of whether or not all flat source regions have been hit yet. This is
371
// required, as there is no guarantee that all flat source regions will
372
// be hit every iteration, such that in the first few iterations some FSRs
373
// may not have a known position within them yet to facilitate mapping to
374
// spatial tally filters. However, after several iterations, if all FSRs
375
// have been hit and have had a tally map generated, then this status will
376
// be passed back to the caller to alert them that this function doesn't
377
// need to be called for the remainder of the simulation.
378

379
void FlatSourceDomain::convert_source_regions_to_tallies()
300✔
380
{
381
  openmc::simulation::time_tallies.start();
300✔
382

383
  // Tracks if we've generated a mapping yet for all source regions.
384
  bool all_source_regions_mapped = true;
300✔
385

386
// Attempt to generate mapping for all source regions
387
#pragma omp parallel for
150✔
388
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
190,974✔
389

390
    // If this source region has not been hit by a ray yet, then
391
    // we aren't going to be able to map it, so skip it.
392
    if (!source_regions_.position_recorded(sr)) {
190,824✔
393
      all_source_regions_mapped = false;
394
      continue;
395
    }
396

397
    // A particle located at the recorded midpoint of a ray
398
    // crossing through this source region is used to estabilish
399
    // the spatial location of the source region
400
    Particle p;
190,824✔
401
    p.r() = source_regions_.position(sr);
190,824✔
402
    p.r_last() = source_regions_.position(sr);
190,824✔
403
    bool found = exhaustive_find_cell(p);
190,824✔
404

405
    // Loop over energy groups (so as to support energy filters)
406
    for (int g = 0; g < negroups_; g++) {
450,624✔
407

408
      // Set particle to the current energy
409
      p.g() = g;
259,800✔
410
      p.g_last() = g;
259,800✔
411
      p.E() = data::mg.energy_bin_avg_[p.g()];
259,800✔
412
      p.E_last() = p.E();
259,800✔
413

414
      int64_t source_element = sr * negroups_ + g;
259,800✔
415

416
      // If this task has already been populated, we don't need to do
417
      // it again.
418
      if (source_regions_.tally_task(sr, g).size() > 0) {
259,800✔
419
        continue;
420
      }
421

422
      // Loop over all active tallies. This logic is essentially identical
423
      // to what happens when scanning for applicable tallies during
424
      // MC transport.
425
      for (auto i_tally : model::active_tallies) {
889,776✔
426
        Tally& tally {*model::tallies[i_tally]};
629,976✔
427

428
        // Initialize an iterator over valid filter bin combinations.
429
        // If there are no valid combinations, use a continue statement
430
        // to ensure we skip the assume_separate break below.
431
        auto filter_iter = FilterBinIter(tally, p);
629,976✔
432
        auto end = FilterBinIter(tally, true, &p.filter_matches());
629,976✔
433
        if (filter_iter == end)
629,976✔
434
          continue;
352,512✔
435

436
        // Loop over filter bins.
437
        for (; filter_iter != end; ++filter_iter) {
554,928✔
438
          auto filter_index = filter_iter.index_;
277,464✔
439
          auto filter_weight = filter_iter.weight_;
277,464✔
440

441
          // Loop over scores
442
          for (auto score_index = 0; score_index < tally.scores_.size();
715,872✔
443
               score_index++) {
444
            auto score_bin = tally.scores_[score_index];
438,408✔
445
            // If a valid tally, filter, and score combination has been found,
446
            // then add it to the list of tally tasks for this source element.
447
            TallyTask task(i_tally, filter_index, score_index, score_bin);
438,408✔
448
            source_regions_.tally_task(sr, g).push_back(task);
438,408✔
449

450
            // Also add this task to the list of volume tasks for this source
451
            // region.
452
            source_regions_.volume_task(sr).insert(task);
438,408✔
453
          }
454
        }
455
      }
456
      // Reset all the filter matches for the next tally event.
457
      for (auto& match : p.filter_matches())
1,011,720✔
458
        match.bins_present_ = false;
751,920✔
459
    }
460
  }
190,824✔
461
  openmc::simulation::time_tallies.stop();
300✔
462

463
  mapped_all_tallies_ = all_source_regions_mapped;
300✔
464
}
300✔
465

466
// Set the volume accumulators to zero for all tallies
467
void FlatSourceDomain::reset_tally_volumes()
3,240✔
468
{
469
  if (volume_normalized_flux_tallies_) {
3,240✔
470
#pragma omp parallel for
1,260✔
471
    for (int i = 0; i < tally_volumes_.size(); i++) {
4,440✔
472
      auto& tensor = tally_volumes_[i];
3,180✔
473
      tensor.fill(0.0); // Set all elements of the tensor to 0.0
3,180✔
474
    }
475
  }
476
}
3,240✔
477

478
// In fixed source mode, due to the way that volumetric fixed sources are
479
// converted and applied as volumetric sources in one or more source regions,
480
// we need to perform an additional normalization step to ensure that the
481
// reported scalar fluxes are in units per source neutron. This allows for
482
// direct comparison of reported tallies to Monte Carlo flux results.
483
// This factor needs to be computed at each iteration, as it is based on the
484
// volume estimate of each FSR, which improves over the course of the
485
// simulation
486
double FlatSourceDomain::compute_fixed_source_normalization_factor() const
3,614✔
487
{
488
  // If we are not in fixed source mode, then there are no external sources
489
  // so no normalization is needed.
490
  if (settings::run_mode != RunMode::FIXED_SOURCE || adjoint_) {
3,614✔
491
    return 1.0;
925✔
492
  }
493

494
  // Step 1 is to sum over all source regions and energy groups to get the
495
  // total external source strength in the simulation.
496
  double simulation_external_source_strength = 0.0;
2,689✔
497
#pragma omp parallel for reduction(+ : simulation_external_source_strength)
1,353✔
498
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
1,873,864✔
499
    int material = source_regions_.material(sr);
1,872,528✔
500
    double volume = source_regions_.volume(sr) * simulation_volume_;
1,872,528✔
501
    for (int g = 0; g < negroups_; g++) {
4,404,864✔
502
      double sigma_t = sigma_t_[material * negroups_ + g];
2,532,336✔
503
      simulation_external_source_strength +=
2,532,336✔
504
        source_regions_.external_source(sr, g) * sigma_t * volume;
2,532,336✔
505
    }
506
  }
507

508
  // Step 2 is to determine the total user-specified external source strength
509
  double user_external_source_strength = 0.0;
2,689✔
510
  for (auto& ext_source : model::external_sources) {
5,378✔
511
    user_external_source_strength += ext_source->strength();
2,689✔
512
  }
513

514
  // The correction factor is the ratio of the user-specified external source
515
  // strength to the simulation external source strength.
516
  double source_normalization_factor =
2,689✔
517
    user_external_source_strength / simulation_external_source_strength;
518

519
  return source_normalization_factor;
2,689✔
520
}
521

522
// Tallying in random ray is not done directly during transport, rather,
523
// it is done only once after each power iteration. This is made possible
524
// by way of a mapping data structure that relates spatial source regions
525
// (FSRs) to tally/filter/score combinations. The mechanism by which the
526
// mapping is done (and the limitations incurred) is documented in the
527
// "convert_source_regions_to_tallies()" function comments above. The present
528
// tally function simply traverses the mapping data structure and executes
529
// the scoring operations to OpenMC's native tally result arrays.
530

531
void FlatSourceDomain::random_ray_tally()
3,240✔
532
{
533
  openmc::simulation::time_tallies.start();
3,240✔
534

535
  // Reset our tally volumes to zero
536
  reset_tally_volumes();
3,240✔
537

538
  double source_normalization_factor =
539
    compute_fixed_source_normalization_factor();
3,240✔
540

541
// We loop over all source regions and energy groups. For each
542
// element, we check if there are any scores needed and apply
543
// them.
544
#pragma omp parallel for
1,620✔
545
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
1,860,780✔
546
    // The fsr.volume_ is the unitless fractional simulation averaged volume
547
    // (i.e., it is the FSR's fraction of the overall simulation volume). The
548
    // simulation_volume_ is the total 3D physical volume in cm^3 of the
549
    // entire global simulation domain (as defined by the ray source box).
550
    // Thus, the FSR's true 3D spatial volume in cm^3 is found by multiplying
551
    // its fraction of the total volume by the total volume. Not important in
552
    // eigenvalue solves, but useful in fixed source solves for returning the
553
    // flux shape with a magnitude that makes sense relative to the fixed
554
    // source strength.
555
    double volume = source_regions_.volume(sr) * simulation_volume_;
1,859,160✔
556

557
    double material = source_regions_.material(sr);
1,859,160✔
558
    for (int g = 0; g < negroups_; g++) {
4,827,840✔
559
      double flux =
560
        source_regions_.scalar_flux_new(sr, g) * source_normalization_factor;
2,968,680✔
561

562
      // Determine numerical score value
563
      for (auto& task : source_regions_.tally_task(sr, g)) {
8,614,560✔
564
        double score;
565
        switch (task.score_type) {
5,645,880✔
566

567
        case SCORE_FLUX:
3,057,000✔
568
          score = flux * volume;
3,057,000✔
569
          break;
3,057,000✔
570

571
        case SCORE_TOTAL:
572
          score = flux * volume * sigma_t_[material * negroups_ + g];
573
          break;
574

575
        case SCORE_FISSION:
1,294,440✔
576
          score = flux * volume * sigma_f_[material * negroups_ + g];
1,294,440✔
577
          break;
1,294,440✔
578

579
        case SCORE_NU_FISSION:
1,294,440✔
580
          score = flux * volume * nu_sigma_f_[material * negroups_ + g];
1,294,440✔
581
          break;
1,294,440✔
582

583
        case SCORE_EVENTS:
584
          score = 1.0;
585
          break;
586

587
        default:
588
          fatal_error("Invalid score specified in tallies.xml. Only flux, "
589
                      "total, fission, nu-fission, and events are supported in "
590
                      "random ray mode.");
591
          break;
592
        }
593

594
        // Apply score to the appropriate tally bin
595
        Tally& tally {*model::tallies[task.tally_idx]};
5,645,880✔
596
#pragma omp atomic
597
        tally.results_(task.filter_idx, task.score_idx, TallyResult::VALUE) +=
5,645,880✔
598
          score;
599
      }
600
    }
601

602
    // For flux tallies, the total volume of the spatial region is needed
603
    // for normalizing the flux. We store this volume in a separate tensor.
604
    // We only contribute to each volume tally bin once per FSR.
605
    if (volume_normalized_flux_tallies_) {
1,859,160✔
606
      for (const auto& task : source_regions_.volume_task(sr)) {
5,089,200✔
607
        if (task.score_type == SCORE_FLUX) {
3,401,640✔
608
#pragma omp atomic
609
          tally_volumes_[task.tally_idx](task.filter_idx, task.score_idx) +=
2,274,360✔
610
            volume;
611
        }
612
      }
613
    }
614
  } // end FSR loop
615

616
  // Normalize any flux scores by the total volume of the FSRs scoring to that
617
  // bin. To do this, we loop over all tallies, and then all filter bins,
618
  // and then scores. For each score, we check the tally data structure to
619
  // see what index that score corresponds to. If that score is a flux score,
620
  // then we divide it by volume.
621
  if (volume_normalized_flux_tallies_) {
3,240✔
622
    for (int i = 0; i < model::tallies.size(); i++) {
8,880✔
623
      Tally& tally {*model::tallies[i]};
6,360✔
624
#pragma omp parallel for
3,180✔
625
      for (int bin = 0; bin < tally.n_filter_bins(); bin++) {
28,170✔
626
        for (int score_idx = 0; score_idx < tally.n_scores(); score_idx++) {
68,460✔
627
          auto score_type = tally.scores_[score_idx];
43,470✔
628
          if (score_type == SCORE_FLUX) {
43,470✔
629
            double vol = tally_volumes_[i](bin, score_idx);
24,990✔
630
            if (vol > 0.0) {
24,990✔
631
              tally.results_(bin, score_idx, TallyResult::VALUE) /= vol;
24,990✔
632
            }
633
          }
634
        }
635
      }
636
    }
637
  }
638

639
  openmc::simulation::time_tallies.stop();
3,240✔
640
}
3,240✔
641

642
void FlatSourceDomain::all_reduce_replicated_source_regions()
11,730✔
643
{
644
#ifdef OPENMC_MPI
645
  // If we only have 1 MPI rank, no need
646
  // to reduce anything.
647
  if (mpi::n_procs <= 1)
6,900✔
648
    return;
649

650
  simulation::time_bank_sendrecv.start();
6,900✔
651

652
  // First, we broadcast the fully mapped tally status variable so that
653
  // all ranks are on the same page
654
  int mapped_all_tallies_i = static_cast<int>(mapped_all_tallies_);
6,900✔
655
  MPI_Bcast(&mapped_all_tallies_i, 1, MPI_INT, 0, mpi::intracomm);
6,900✔
656

657
  bool reduce_position =
6,900✔
658
    simulation::current_batch > settings::n_inactive && !mapped_all_tallies_i;
6,900✔
659

660
  source_regions_.mpi_sync_ranks(reduce_position);
6,900✔
661

662
  simulation::time_bank_sendrecv.stop();
6,900✔
663
#endif
664
}
4,830✔
665

666
double FlatSourceDomain::evaluate_flux_at_point(
×
667
  Position r, int64_t sr, int g) const
668
{
669
  return source_regions_.scalar_flux_final(sr, g) /
×
670
         (settings::n_batches - settings::n_inactive);
×
671
}
672

673
// Outputs all basic material, FSR ID, multigroup flux, and
674
// fission source data to .vtk file that can be directly
675
// loaded and displayed by Paraview. Note that .vtk binary
676
// files require big endian byte ordering, so endianness
677
// is checked and flipped if necessary.
678
void FlatSourceDomain::output_to_vtk() const
×
679
{
680
  // Rename .h5 plot filename(s) to .vtk filenames
681
  for (int p = 0; p < model::plots.size(); p++) {
×
682
    PlottableInterface* plot = model::plots[p].get();
×
683
    plot->path_plot() =
×
684
      plot->path_plot().substr(0, plot->path_plot().find_last_of('.')) + ".vtk";
×
685
  }
686

687
  // Print header information
688
  print_plot();
×
689

690
  // Outer loop over plots
691
  for (int p = 0; p < model::plots.size(); p++) {
×
692

693
    // Get handle to OpenMC plot object and extract params
694
    Plot* openmc_plot = dynamic_cast<Plot*>(model::plots[p].get());
×
695

696
    // Random ray plots only support voxel plots
697
    if (!openmc_plot) {
×
698
      warning(fmt::format("Plot {} is invalid plot type -- only voxel plotting "
×
699
                          "is allowed in random ray mode.",
700
        p));
701
      continue;
×
702
    } else if (openmc_plot->type_ != Plot::PlotType::voxel) {
×
703
      warning(fmt::format("Plot {} is invalid plot type -- only voxel plotting "
×
704
                          "is allowed in random ray mode.",
705
        p));
706
      continue;
×
707
    }
708

709
    int Nx = openmc_plot->pixels_[0];
×
710
    int Ny = openmc_plot->pixels_[1];
×
711
    int Nz = openmc_plot->pixels_[2];
×
712
    Position origin = openmc_plot->origin_;
×
713
    Position width = openmc_plot->width_;
×
714
    Position ll = origin - width / 2.0;
×
715
    double x_delta = width.x / Nx;
×
716
    double y_delta = width.y / Ny;
×
717
    double z_delta = width.z / Nz;
×
718
    std::string filename = openmc_plot->path_plot();
×
719

720
    // Perform sanity checks on file size
721
    uint64_t bytes = Nx * Ny * Nz * (negroups_ + 1 + 1 + 1) * sizeof(float);
×
722
    write_message(5, "Processing plot {}: {}... (Estimated size is {} MB)",
×
723
      openmc_plot->id(), filename, bytes / 1.0e6);
×
724
    if (bytes / 1.0e9 > 1.0) {
×
725
      warning("Voxel plot specification is very large (>1 GB). Plotting may be "
×
726
              "slow.");
727
    } else if (bytes / 1.0e9 > 100.0) {
×
728
      fatal_error("Voxel plot specification is too large (>100 GB). Exiting.");
×
729
    }
730

731
    // Relate voxel spatial locations to random ray source regions
732
    vector<int> voxel_indices(Nx * Ny * Nz);
×
733
    vector<Position> voxel_positions(Nx * Ny * Nz);
×
734

735
#pragma omp parallel for collapse(3)
736
    for (int z = 0; z < Nz; z++) {
737
      for (int y = 0; y < Ny; y++) {
738
        for (int x = 0; x < Nx; x++) {
739
          Position sample;
740
          sample.z = ll.z + z_delta / 2.0 + z * z_delta;
741
          sample.y = ll.y + y_delta / 2.0 + y * y_delta;
742
          sample.x = ll.x + x_delta / 2.0 + x * x_delta;
743
          Particle p;
744
          p.r() = sample;
745
          bool found = exhaustive_find_cell(p);
746
          int i_cell = p.lowest_coord().cell;
747
          int64_t source_region_idx =
748
            source_region_offsets_[i_cell] + p.cell_instance();
749
          voxel_indices[z * Ny * Nx + y * Nx + x] = source_region_idx;
750
          voxel_positions[z * Ny * Nx + y * Nx + x] = sample;
751
        }
752
      }
753
    }
754

755
    double source_normalization_factor =
756
      compute_fixed_source_normalization_factor();
×
757

758
    // Open file for writing
759
    std::FILE* plot = std::fopen(filename.c_str(), "wb");
×
760

761
    // Write vtk metadata
762
    std::fprintf(plot, "# vtk DataFile Version 2.0\n");
×
763
    std::fprintf(plot, "Dataset File\n");
×
764
    std::fprintf(plot, "BINARY\n");
×
765
    std::fprintf(plot, "DATASET STRUCTURED_POINTS\n");
×
766
    std::fprintf(plot, "DIMENSIONS %d %d %d\n", Nx, Ny, Nz);
×
767
    std::fprintf(plot, "ORIGIN 0 0 0\n");
×
768
    std::fprintf(plot, "SPACING %lf %lf %lf\n", x_delta, y_delta, z_delta);
×
769
    std::fprintf(plot, "POINT_DATA %d\n", Nx * Ny * Nz);
×
770

771
    // Plot multigroup flux data
772
    for (int g = 0; g < negroups_; g++) {
×
773
      std::fprintf(plot, "SCALARS flux_group_%d float\n", g);
×
774
      std::fprintf(plot, "LOOKUP_TABLE default\n");
×
775
      for (int i = 0; i < Nx * Ny * Nz; i++) {
×
776
        int64_t fsr = voxel_indices[i];
×
777
        int64_t source_element = fsr * negroups_ + g;
×
778
        float flux = evaluate_flux_at_point(voxel_positions[i], fsr, g);
×
779
        flux = convert_to_big_endian<float>(flux);
×
780
        std::fwrite(&flux, sizeof(float), 1, plot);
×
781
      }
782
    }
783

784
    // Plot FSRs
785
    std::fprintf(plot, "SCALARS FSRs float\n");
×
786
    std::fprintf(plot, "LOOKUP_TABLE default\n");
×
787
    for (int fsr : voxel_indices) {
×
788
      float value = future_prn(10, fsr);
×
789
      value = convert_to_big_endian<float>(value);
×
790
      std::fwrite(&value, sizeof(float), 1, plot);
×
791
    }
792

793
    // Plot Materials
794
    std::fprintf(plot, "SCALARS Materials int\n");
×
795
    std::fprintf(plot, "LOOKUP_TABLE default\n");
×
796
    for (int fsr : voxel_indices) {
×
797
      int mat = source_regions_.material(fsr);
×
798
      mat = convert_to_big_endian<int>(mat);
×
799
      std::fwrite(&mat, sizeof(int), 1, plot);
×
800
    }
801

802
    // Plot fission source
803
    std::fprintf(plot, "SCALARS total_fission_source float\n");
×
804
    std::fprintf(plot, "LOOKUP_TABLE default\n");
×
805
    for (int i = 0; i < Nx * Ny * Nz; i++) {
×
806
      int64_t fsr = voxel_indices[i];
×
807

808
      float total_fission = 0.0;
×
809
      int mat = source_regions_.material(fsr);
×
810
      for (int g = 0; g < negroups_; g++) {
×
811
        int64_t source_element = fsr * negroups_ + g;
×
812
        float flux = evaluate_flux_at_point(voxel_positions[i], fsr, g);
×
813
        double sigma_f = sigma_f_[mat * negroups_ + g];
×
814
        total_fission += sigma_f * flux;
×
815
      }
816
      total_fission = convert_to_big_endian<float>(total_fission);
×
817
      std::fwrite(&total_fission, sizeof(float), 1, plot);
×
818
    }
819

820
    std::fclose(plot);
×
821
  }
822
}
823

824
void FlatSourceDomain::apply_external_source_to_source_region(
2,074✔
825
  Discrete* discrete, double strength_factor, int64_t sr)
826
{
827
  source_regions_.external_source_present(sr) = 1;
2,074✔
828

829
  const auto& discrete_energies = discrete->x();
2,074✔
830
  const auto& discrete_probs = discrete->prob();
2,074✔
831

832
  for (int i = 0; i < discrete_energies.size(); i++) {
4,352✔
833
    int g = data::mg.get_group_index(discrete_energies[i]);
2,278✔
834
    source_regions_.external_source(sr, g) +=
2,278✔
835
      discrete_probs[i] * strength_factor;
2,278✔
836
  }
837
}
2,074✔
838

839
void FlatSourceDomain::apply_external_source_to_cell_instances(int32_t i_cell,
323✔
840
  Discrete* discrete, double strength_factor, int target_material_id,
841
  const vector<int32_t>& instances)
842
{
843
  Cell& cell = *model::cells[i_cell];
323✔
844

845
  if (cell.type_ != Fill::MATERIAL)
323✔
846
    return;
×
847

848
  for (int j : instances) {
31,637✔
849
    int cell_material_idx = cell.material(j);
31,314✔
850
    int cell_material_id = model::materials[cell_material_idx]->id();
31,314✔
851
    if (target_material_id == C_NONE ||
31,314✔
852
        cell_material_id == target_material_id) {
853
      int64_t source_region = source_region_offsets_[i_cell] + j;
2,074✔
854
      apply_external_source_to_source_region(
2,074✔
855
        discrete, strength_factor, source_region);
856
    }
857
  }
858
}
859

860
void FlatSourceDomain::apply_external_source_to_cell_and_children(
357✔
861
  int32_t i_cell, Discrete* discrete, double strength_factor,
862
  int32_t target_material_id)
863
{
864
  Cell& cell = *model::cells[i_cell];
357✔
865

866
  if (cell.type_ == Fill::MATERIAL) {
357✔
867
    vector<int> instances(cell.n_instances_);
323✔
868
    std::iota(instances.begin(), instances.end(), 0);
323✔
869
    apply_external_source_to_cell_instances(
323✔
870
      i_cell, discrete, strength_factor, target_material_id, instances);
871
  } else if (target_material_id == C_NONE) {
357✔
872
    std::unordered_map<int32_t, vector<int32_t>> cell_instance_list =
873
      cell.get_contained_cells(0, nullptr);
×
874
    for (const auto& pair : cell_instance_list) {
×
875
      int32_t i_child_cell = pair.first;
×
876
      apply_external_source_to_cell_instances(i_child_cell, discrete,
×
877
        strength_factor, target_material_id, pair.second);
×
878
    }
879
  }
880
}
357✔
881

882
void FlatSourceDomain::count_external_source_regions()
289✔
883
{
884
  n_external_source_regions_ = 0;
289✔
885
#pragma omp parallel for reduction(+ : n_external_source_regions_)
153✔
886
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
213,064✔
887
    if (source_regions_.external_source_present(sr)) {
212,928✔
888
      n_external_source_regions_++;
976✔
889
    }
890
  }
891
}
289✔
892

893
void FlatSourceDomain::convert_external_sources()
289✔
894
{
895
  // Loop over external sources
896
  for (int es = 0; es < model::external_sources.size(); es++) {
578✔
897
    Source* s = model::external_sources[es].get();
289✔
898
    IndependentSource* is = dynamic_cast<IndependentSource*>(s);
289✔
899
    Discrete* energy = dynamic_cast<Discrete*>(is->energy());
289✔
900
    const std::unordered_set<int32_t>& domain_ids = is->domain_ids();
289✔
901

902
    double strength_factor = is->strength();
289✔
903

904
    if (is->domain_type() == Source::DomainType::MATERIAL) {
289✔
905
      for (int32_t material_id : domain_ids) {
34✔
906
        for (int i_cell = 0; i_cell < model::cells.size(); i_cell++) {
102✔
907
          apply_external_source_to_cell_and_children(
85✔
908
            i_cell, energy, strength_factor, material_id);
909
        }
910
      }
911
    } else if (is->domain_type() == Source::DomainType::CELL) {
272✔
912
      for (int32_t cell_id : domain_ids) {
34✔
913
        int32_t i_cell = model::cell_map[cell_id];
17✔
914
        apply_external_source_to_cell_and_children(
17✔
915
          i_cell, energy, strength_factor, C_NONE);
916
      }
917
    } else if (is->domain_type() == Source::DomainType::UNIVERSE) {
255✔
918
      for (int32_t universe_id : domain_ids) {
510✔
919
        int32_t i_universe = model::universe_map[universe_id];
255✔
920
        Universe& universe = *model::universes[i_universe];
255✔
921
        for (int32_t i_cell : universe.cells_) {
510✔
922
          apply_external_source_to_cell_and_children(
255✔
923
            i_cell, energy, strength_factor, C_NONE);
924
        }
925
      }
926
    }
927
  } // End loop over external sources
928

929
// Divide the fixed source term by sigma t (to save time when applying each
930
// iteration)
931
#pragma omp parallel for
153✔
932
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
213,064✔
933
    for (int g = 0; g < negroups_; g++) {
459,264✔
934
      double sigma_t = sigma_t_[source_regions_.material(sr) * negroups_ + g];
246,336✔
935
      source_regions_.external_source(sr, g) /= sigma_t;
246,336✔
936
    }
937
  }
938
}
289✔
939

940
void FlatSourceDomain::flux_swap()
11,730✔
941
{
942
  source_regions_.flux_swap();
11,730✔
943
}
11,730✔
944

945
void FlatSourceDomain::flatten_xs()
425✔
946
{
947
  // Temperature and angle indices, if using multiple temperature
948
  // data sets and/or anisotropic data sets.
949
  // TODO: Currently assumes we are only using single temp/single angle data.
950
  const int t = 0;
425✔
951
  const int a = 0;
425✔
952

953
  n_materials_ = data::mg.macro_xs_.size();
425✔
954
  for (auto& m : data::mg.macro_xs_) {
1,547✔
955
    for (int g_out = 0; g_out < negroups_; g_out++) {
3,672✔
956
      if (m.exists_in_model) {
2,550✔
957
        double sigma_t =
958
          m.get_xs(MgxsType::TOTAL, g_out, NULL, NULL, NULL, t, a);
2,550✔
959
        sigma_t_.push_back(sigma_t);
2,550✔
960

961
        double nu_Sigma_f =
962
          m.get_xs(MgxsType::NU_FISSION, g_out, NULL, NULL, NULL, t, a);
2,550✔
963
        nu_sigma_f_.push_back(nu_Sigma_f);
2,550✔
964

965
        double sigma_f =
966
          m.get_xs(MgxsType::FISSION, g_out, NULL, NULL, NULL, t, a);
2,550✔
967
        sigma_f_.push_back(sigma_f);
2,550✔
968

969
        double chi =
970
          m.get_xs(MgxsType::CHI_PROMPT, g_out, &g_out, NULL, NULL, t, a);
2,550✔
971
        chi_.push_back(chi);
2,550✔
972

973
        for (int g_in = 0; g_in < negroups_; g_in++) {
15,096✔
974
          double sigma_s =
975
            m.get_xs(MgxsType::NU_SCATTER, g_in, &g_out, NULL, NULL, t, a);
12,546✔
976
          sigma_s_.push_back(sigma_s);
12,546✔
977
        }
978
      } else {
979
        sigma_t_.push_back(0);
×
980
        nu_sigma_f_.push_back(0);
×
981
        sigma_f_.push_back(0);
×
982
        chi_.push_back(0);
×
983
        for (int g_in = 0; g_in < negroups_; g_in++) {
×
984
          sigma_s_.push_back(0);
×
985
        }
986
      }
987
    }
988
  }
989
}
425✔
990

991
void FlatSourceDomain::set_adjoint_sources(const vector<double>& forward_flux)
34✔
992
{
993
  // Set the external source to 1/forward_flux
994
  // The forward flux is given in terms of total for the forward simulation
995
  // so we must convert it to a "per batch" quantity
996
#pragma omp parallel for
18✔
997
  for (int64_t se = 0; se < n_source_elements_; se++) {
27,664✔
998
    source_regions_.external_source(se) = 1.0 / forward_flux[se];
27,648✔
999
  }
1000

1001
  // Divide the fixed source term by sigma t (to save time when applying each
1002
  // iteration)
1003
#pragma omp parallel for
18✔
1004
  for (int64_t sr = 0; sr < n_source_regions_; sr++) {
27,664✔
1005
    for (int g = 0; g < negroups_; g++) {
55,296✔
1006
      double sigma_t = sigma_t_[source_regions_.material(sr) * negroups_ + g];
27,648✔
1007
      source_regions_.external_source(sr, g) /= sigma_t;
27,648✔
1008
    }
1009
  }
1010
}
34✔
1011

1012
void FlatSourceDomain::transpose_scattering_matrix()
51✔
1013
{
1014
  // Transpose the inner two dimensions for each material
1015
  for (int m = 0; m < n_materials_; ++m) {
187✔
1016
    int material_offset = m * negroups_ * negroups_;
136✔
1017
    for (int i = 0; i < negroups_; ++i) {
476✔
1018
      for (int j = i + 1; j < negroups_; ++j) {
1,054✔
1019
        // Calculate indices of the elements to swap
1020
        int idx1 = material_offset + i * negroups_ + j;
714✔
1021
        int idx2 = material_offset + j * negroups_ + i;
714✔
1022

1023
        // Swap the elements to transpose the matrix
1024
        std::swap(sigma_s_[idx1], sigma_s_[idx2]);
714✔
1025
      }
1026
    }
1027
  }
1028
}
51✔
1029

1030
void FlatSourceDomain::serialize_final_fluxes(vector<double>& flux)
374✔
1031
{
1032
  // Ensure array is correct size
1033
  flux.resize(n_source_regions_ * negroups_);
374✔
1034
// Serialize the final fluxes for output
1035
#pragma omp parallel for
198✔
1036
  for (int64_t se = 0; se < n_source_elements_; se++) {
305,264✔
1037
    flux[se] = source_regions_.scalar_flux_final(se);
305,088✔
1038
  }
1039
}
374✔
1040

1041
} // namespace openmc
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc