• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

formalsec / smtml / 274

05 Feb 2025 01:53PM UTC coverage: 47.698% (+0.2%) from 47.539%
274

push

github

filipeom
fix doc

1544 of 3237 relevant lines covered (47.7%)

32.65 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

43.73
/src/expr.ml
1
(* SPDX-License-Identifier: MIT *)
2
(* Copyright (C) 2023-2024 formalsec *)
3
(* Written by the Smtml programmers *)
4

5
type t = expr Hc.hash_consed
6

7
and expr =
8
  | Val of Value.t
9
  | Ptr of
10
      { base : int32
11
      ; offset : t
12
      }
13
  | Symbol of Symbol.t
14
  | List of t list
15
  | App of Symbol.t * t list
16
  | Unop of Ty.t * Ty.Unop.t * t
17
  | Binop of Ty.t * Ty.Binop.t * t * t
18
  | Triop of Ty.t * Ty.Triop.t * t * t * t
19
  | Relop of Ty.t * Ty.Relop.t * t * t
20
  | Cvtop of Ty.t * Ty.Cvtop.t * t
21
  | Naryop of Ty.t * Ty.Naryop.t * t list
22
  | Extract of t * int * int
23
  | Concat of t * t
24
  | Binder of Binder.t * t list * t
25

26
module Expr = struct
27
  type t = expr
28

29
  let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
30
    if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
4✔
31
    else false
×
32

33
  let equal (e1 : expr) (e2 : expr) : bool =
34
    match (e1, e2) with
1,402✔
35
    | Val v1, Val v2 -> Value.equal v1 v2
793✔
36
    | Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
3✔
37
      Int32.equal b1 b2 && phys_equal o1 o2
3✔
38
    | Symbol s1, Symbol s2 -> Symbol.equal s1 s2
408✔
39
    | List l1, List l2 -> list_eq l1 l2
4✔
40
    | App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
×
41
    | Unop (t1, op1, e1), Unop (t2, op2, e2) ->
31✔
42
      Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
31✔
43
    | Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
88✔
44
      Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
88✔
45
      && phys_equal e3 e4
88✔
46
    | Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
36✔
47
      Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
36✔
48
      && phys_equal e3 e4
36✔
49
    | Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
4✔
50
      Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
4✔
51
      && phys_equal e3 e4 && phys_equal e5 e6
4✔
52
    | Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
35✔
53
      Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
35✔
54
    | Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
×
55
      Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
×
56
    | Extract (e1, h1, l1), Extract (e2, h2, l2) ->
×
57
      phys_equal e1 e2 && h1 = h2 && l1 = l2
×
58
    | Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
×
59
    | Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
×
60
      Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
×
61
    | ( ( Val _ | Ptr _ | Symbol _ | List _ | App _ | Unop _ | Binop _ | Triop _
×
62
        | Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _ | Binder _ )
×
63
      , _ ) ->
64
      false
65

66
  let hash (e : expr) : int =
67
    let h x = Hashtbl.hash x in
5,263✔
68
    match e with
69
    | Val v -> h v
1,716✔
70
    | Ptr { base; offset } -> h (base, offset.tag)
13✔
71
    | Symbol s -> h s
1,050✔
72
    | List v -> h v
16✔
73
    | App (x, es) -> h (x, es)
20✔
74
    | Unop (ty, op, e) -> h (ty, op, e.tag)
155✔
75
    | Cvtop (ty, op, e) -> h (ty, op, e.tag)
83✔
76
    | Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
1,406✔
77
    | Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
720✔
78
    | Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
46✔
79
    | Naryop (ty, op, es) -> h (ty, op, es)
×
80
    | Extract (e, hi, lo) -> h (e.tag, hi, lo)
16✔
81
    | Concat (e1, e2) -> h (e1.tag, e2.tag)
6✔
82
    | Binder (b, vars, e) -> h (b, vars, e.tag)
16✔
83
end
84

85
module Hc = Hc.Make [@inlined hint] (Expr)
86

87
let equal (hte1 : t) (hte2 : t) = Int.equal hte1.tag hte2.tag [@@inline]
200✔
88

89
let hash (hte : t) = hte.tag [@@inline]
7✔
90

91
module Key = struct
92
  type nonrec t = t
93

94
  let to_int hte = hash hte
7✔
95
end
96

97
module Set = PatriciaTree.MakeHashconsedSet (Key) ()
98

99
let make (e : expr) = Hc.hashcons e [@@inline]
3,328✔
100

101
let view (hte : t) : expr = hte.node [@@inline]
6,345✔
102

103
let compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag [@@inline]
×
104

105
let symbol s = make (Symbol s)
729✔
106

107
let is_num (e : t) = match view e with Val (Num _) -> true | _ -> false
×
108

109
(** The return type of an expression *)
110
let rec ty (hte : t) : Ty.t =
111
  match view hte with
292✔
112
  | Val x -> Value.type_of x
53✔
113
  | Ptr _ -> Ty_bitv 32
×
114
  | Symbol x -> Symbol.type_of x
152✔
115
  | List _ -> Ty_list
×
116
  | App _ -> Ty_app
×
117
  | Unop (ty, _, _) -> ty
23✔
118
  | Binop (ty, _, _, _) -> ty
36✔
119
  | Triop (_, Ite, _, hte1, hte2) ->
×
120
    let ty1 = ty hte1 in
121
    let ty2 = ty hte2 in
×
122
    assert (Ty.equal ty1 ty2);
×
123
    ty1
124
  | Triop (ty, _, _, _, _) -> ty
×
125
  | Relop (ty, _, _, _) -> ty
8✔
126
  | Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
×
127
    match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
1✔
128
  | Cvtop (ty, _, _) -> ty
17✔
129
  | Naryop (ty, _, _) -> ty
×
130
  | Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
2✔
131
  | Concat (e1, e2) -> (
×
132
    match (ty e1, ty e2) with
×
133
    | Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
×
134
    | t1, t2 ->
×
135
      Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
136
  | Binder (_, _, e) -> ty e
×
137

138
let rec is_symbolic (v : t) : bool =
139
  match view v with
×
140
  | Val _ -> false
×
141
  | Symbol _ -> true
×
142
  | Ptr { offset; _ } -> is_symbolic offset
×
143
  | List vs -> List.exists is_symbolic vs
×
144
  | App (_, vs) -> List.exists is_symbolic vs
×
145
  | Unop (_, _, v) -> is_symbolic v
×
146
  | Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
147
  | Triop (_, _, v1, v2, v3) ->
×
148
    is_symbolic v1 || is_symbolic v2 || is_symbolic v3
×
149
  | Cvtop (_, _, v) -> is_symbolic v
×
150
  | Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
×
151
  | Naryop (_, _, vs) -> List.exists is_symbolic vs
×
152
  | Extract (e, _, _) -> is_symbolic e
×
153
  | Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
×
154
  | Binder (_, _, e) -> is_symbolic e
×
155

156
let get_symbols (hte : t list) =
157
  let tbl = Hashtbl.create 64 in
×
158
  let rec symbols (hte : t) =
×
159
    match view hte with
×
160
    | Val _ -> ()
×
161
    | Ptr { offset; _ } -> symbols offset
×
162
    | Symbol s -> Hashtbl.replace tbl s ()
×
163
    | List es -> List.iter symbols es
×
164
    | App (_, es) -> List.iter symbols es
×
165
    | Unop (_, _, e1) -> symbols e1
×
166
    | Binop (_, _, e1, e2) ->
×
167
      symbols e1;
168
      symbols e2
×
169
    | Triop (_, _, e1, e2, e3) ->
×
170
      symbols e1;
171
      symbols e2;
×
172
      symbols e3
×
173
    | Relop (_, _, e1, e2) ->
×
174
      symbols e1;
175
      symbols e2
×
176
    | Cvtop (_, _, e) -> symbols e
×
177
    | Naryop (_, _, es) -> List.iter symbols es
×
178
    | Extract (e, _, _) -> symbols e
×
179
    | Concat (e1, e2) ->
×
180
      symbols e1;
181
      symbols e2
×
182
    | Binder (_, vars, e) ->
×
183
      List.iter symbols vars;
184
      symbols e
×
185
  in
186
  List.iter symbols hte;
187
  Hashtbl.fold (fun k () acc -> k :: acc) tbl []
×
188

189
let negate_relop (hte : t) : (t, string) Result.t =
190
  let e =
×
191
    match view hte with
192
    | Relop (ty, Eq, e1, e2) -> Ok (Relop (ty, Ne, e1, e2))
×
193
    | Relop (ty, Ne, e1, e2) -> Ok (Relop (ty, Eq, e1, e2))
×
194
    | Relop (ty, Lt, e1, e2) -> Ok (Relop (ty, Ge, e1, e2))
×
195
    | Relop (ty, LtU, e1, e2) -> Ok (Relop (ty, GeU, e1, e2))
×
196
    | Relop (ty, Le, e1, e2) -> Ok (Relop (ty, Gt, e1, e2))
×
197
    | Relop (ty, LeU, e1, e2) -> Ok (Relop (ty, GtU, e1, e2))
×
198
    | Relop (ty, Gt, e1, e2) -> Ok (Relop (ty, Le, e1, e2))
×
199
    | Relop (ty, GtU, e1, e2) -> Ok (Relop (ty, LeU, e1, e2))
×
200
    | Relop (ty, Ge, e1, e2) -> Ok (Relop (ty, Lt, e1, e2))
×
201
    | Relop (ty, GeU, e1, e2) -> Ok (Relop (ty, LtU, e1, e2))
×
202
    | _ -> Error "negate_relop: not a relop."
×
203
  in
204
  Result.map make e
205

206
module Pp = struct
207
  let rec pp fmt (hte : t) =
208
    match view hte with
×
209
    | Val v -> Value.pp fmt v
×
210
    | Ptr { base; offset } -> Fmt.pf fmt "(Ptr (i32 %ld) %a)" base pp offset
×
211
    | Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
×
212
    | List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
×
213
    | App (s, v) ->
×
214
      Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s
215
        (Fmt.list ~sep:Fmt.comma pp)
×
216
        v
217
    | Unop (ty, op, e) ->
×
218
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
219
    | Binop (ty, op, e1, e2) ->
×
220
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp
221
        e2
222
    | Triop (ty, op, e1, e2, e3) ->
×
223
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1
224
        pp e2 pp e3
225
    | Relop (ty, op, e1, e2) ->
×
226
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp
227
        e2
228
    | Cvtop (ty, op, e) ->
×
229
      Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
230
    | Naryop (ty, op, es) ->
×
231
      Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
232
        (Fmt.list ~sep:Fmt.comma pp)
×
233
        es
234
    | Extract (e, h, l) ->
×
235
      Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
236
    | Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
×
237
    | Binder (b, vars, e) ->
×
238
      Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b
239
        (Fmt.list ~sep:Fmt.sp pp) vars pp e
×
240

241
  let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
×
242

243
  let pp_smt fmt (es : t list) : unit =
244
    let pp_symbols fmt syms =
×
245
      Fmt.list ~sep:Fmt.semi
×
246
        (fun fmt sym ->
247
          let t = Symbol.type_of sym in
×
248
          Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
×
249
        fmt syms
250
    in
251
    let pp_asserts fmt es =
252
      Fmt.list ~sep:Fmt.semi
×
253
        (fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
×
254
        fmt es
255
    in
256
    let syms = get_symbols es in
257
    if List.length syms > 0 then Fmt.pf fmt "%a@\n" pp_symbols syms;
×
258
    if List.length es > 0 then Fmt.pf fmt "%a@\n" pp_asserts es;
×
259
    Fmt.string fmt "(check-sat)"
×
260
end
261

262
let pp = Pp.pp
263

264
let pp_list = Pp.pp_list
265

266
let pp_smt = Pp.pp_smt
267

268
let to_string e = Fmt.str "%a" pp e
×
269

270
let value (v : Value.t) : t = make (Val v) [@@inline]
1,204✔
271

272
let ptr base offset = make (Ptr { base; offset })
8✔
273

274
let app symbol args = make (App (symbol, args))
10✔
275

276
let let_in vars expr = make (Binder (Let_in, vars, expr))
8✔
277

278
let unop' ty op hte = make (Unop (ty, op, hte)) [@@inline]
73✔
279

280
let unop ty op hte =
281
  match (op, view hte) with
81✔
282
  | Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> unop' ty op hte
×
283
  | _, Val v -> value (Eval.unop ty op v)
27✔
284
  | Not, Unop (_, Not, hte') -> hte'
2✔
285
  | Neg, Unop (_, Neg, hte') -> hte'
1✔
286
  | Trim, Cvtop (Ty_real, ToString, _) -> hte
×
287
  | Head, List (hd :: _) -> hd
1✔
288
  | Tail, List (_ :: tl) -> make (List tl)
1✔
289
  | Reverse, List es -> make (List (List.rev es))
2✔
290
  | Length, List es -> value (Int (List.length es))
1✔
291
  | _ -> unop' ty op hte
46✔
292

293
let binop' ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
717✔
294

295
let rec binop ty op hte1 hte2 =
296
  match (op, view hte1, view hte2) with
737✔
297
  | Ty.Binop.(String_in_re | Regexp_range), _, _ -> binop' ty op hte1 hte2
×
298
  | op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
61✔
299
  | Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
1✔
300
    if Int32.equal b1 b2 then binop ty Sub os1 os2 else binop' ty op hte1 hte2
×
301
  | Add, Ptr { base; offset }, _ ->
1✔
302
    ptr base (binop (Ty_bitv 32) Add offset hte2)
1✔
303
  | Sub, Ptr { base; offset }, _ ->
1✔
304
    ptr base (binop (Ty_bitv 32) Sub offset hte2)
1✔
305
  | Rem, Ptr { base; offset }, _ ->
1✔
306
    let rhs = value (Num (I32 base)) in
307
    let addr = binop (Ty_bitv 32) Add rhs offset in
1✔
308
    binop ty Rem addr hte2
1✔
309
  | Add, _, Ptr { base; offset } ->
1✔
310
    ptr base (binop (Ty_bitv 32) Add offset hte1)
1✔
311
  | Sub, _, Ptr { base; offset } ->
×
312
    binop ty Sub hte1 (binop (Ty_bitv 32) Add (value (Num (I32 base))) offset)
×
313
  | (Add | Or), Val (Num (I32 0l)), _ -> hte2
×
314
  | (And | Div | DivU | Mul | Rem | RemU), Val (Num (I32 0l)), _ -> hte1
×
315
  | (Add | Or), _, Val (Num (I32 0l)) -> hte1
×
316
  | (And | Mul), _, Val (Num (I32 0l)) -> hte2
×
317
  | Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
1✔
318
    let v = value (Eval.binop ty Add v1 v2) in
1✔
319
    binop' ty Add x v
1✔
320
  | Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
1✔
321
    let v = value (Eval.binop ty Add v1 v2) in
1✔
322
    binop' ty Sub x v
1✔
323
  | Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
1✔
324
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
325
    binop' ty Mul x v
1✔
326
  | Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
1✔
327
    let v = value (Eval.binop ty Add v1 v2) in
1✔
328
    binop' ty Add v x
1✔
329
  | Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
1✔
330
    let v = value (Eval.binop ty Mul v1 v2) in
1✔
331
    binop' ty Mul v x
1✔
332
  | At, List es, Val (Int n) ->
1✔
333
    (* TODO: use another datastructure? *)
334
    begin
335
      match List.nth_opt es n with None -> assert false | Some v -> v
1✔
336
    end
337
  | List_cons, _, List es -> make (List (hte1 :: es))
1✔
338
  | List_append, List _, (List [] | Val (List [])) -> hte1
×
339
  | List_append, (List [] | Val (List [])), List _ -> hte2
×
340
  | List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
1✔
341
  | List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
×
342
  | List_append, List l0, List l1 -> make (List (l0 @ l1))
×
343
  | _ -> binop' ty op hte1 hte2
659✔
344

345
let triop' ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
21✔
346

347
let triop ty op e1 e2 e3 =
348
  match (op, view e1, view e2, view e3) with
27✔
349
  | Ty.Triop.Ite, Val True, _, _ -> e2
2✔
350
  | Ite, Val False, _, _ -> e3
1✔
351
  | op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
4✔
352
  | _ -> triop' ty op e1 e2 e3
20✔
353

354
let relop' ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
344✔
355

356
let rec relop ty op hte1 hte2 =
357
  match (op, view hte1, view hte2) with
372✔
358
  | op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
33✔
359
  | Ty.Relop.Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
×
360
    if Float.is_nan v || Float.is_infinite v then value True
×
361
    else relop' ty op hte1 hte2
×
362
  | _, Val (Real v), _ | _, _, Val (Real v) ->
×
363
    if Float.is_nan v || Float.is_infinite v then value False
×
364
    else relop' ty op hte1 hte2
3✔
365
  | Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
×
366
  | Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
×
367
  | Eq, _, Val (App (`Op "symbol", [ Str _ ]))
×
368
  | Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
369
    value False
370
  | Ne, _, Val (App (`Op "symbol", [ Str _ ]))
×
371
  | Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
×
372
    value True
373
  | Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
374
    if Int32.equal b1 b2 then relop Ty_bool Eq os1 os2 else value False
1✔
375
  | Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
2✔
376
    if Int32.equal b1 b2 then relop Ty_bool Ne os1 os2 else value True
1✔
377
  | ( (LtU | LeU | GtU | GeU)
1✔
378
    , Ptr { base = b1; offset = os1 }
379
    , Ptr { base = b2; offset = os2 } ) ->
380
    if Int32.equal b1 b2 then relop ty op os1 os2
2✔
381
    else
382
      value
2✔
383
        (if Eval.relop ty op (Num (I32 b1)) (Num (I32 b2)) then True else False)
1✔
384
  | op, Val (Num _ as n), Ptr { base; offset = { node = Val (Num _ as o); _ } }
2✔
385
    ->
386
    let base = Eval.binop (Ty_bitv 32) Add (Num (I32 base)) o in
387
    value (if Eval.relop ty op n base then True else False)
1✔
388
  | op, Ptr { base; offset = { node = Val (Num _ as o); _ } }, Val (Num _ as n)
2✔
389
    ->
390
    let base = Eval.binop (Ty_bitv 32) Add (Num (I32 base)) o in
391
    value (if Eval.relop ty op base n then True else False)
1✔
392
  | op, List l1, List l2 -> relop_list op l1 l2
×
393
  | _, _, _ -> relop' ty op hte1 hte2
284✔
394

395
and relop_list op l1 l2 =
396
  match (op, l1, l2) with
×
397
  | Eq, [], [] -> value True
×
398
  | Eq, _, [] | Eq, [], _ -> value False
×
399
  | Eq, l1, l2 ->
×
400
    if not (List.compare_lengths l1 l2 = 0) then value False
×
401
    else
402
      List.fold_left2
×
403
        (fun acc a b ->
404
          binop Ty_bool And acc
×
405
          @@
406
          match (ty a, ty b) with
×
407
          | Ty_real, Ty_real -> relop Ty_real Eq a b
×
408
          | _ -> relop Ty_bool Eq a b )
×
409
        (value True) l1 l2
×
410
  | Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
×
411
  | (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
412

413
let cvtop' ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
39✔
414

415
let cvtop ty op hte =
416
  match (op, view hte) with
56✔
417
  | Ty.Cvtop.String_to_re, _ -> cvtop' ty op hte
×
418
  | _, Val v -> value (Eval.cvtop ty op v)
30✔
419
  | String_to_float, Cvtop (Ty_real, ToString, real) -> real
×
420
  | _ -> cvtop' ty op hte
26✔
421

422
let naryop' ty op es = make (Naryop (ty, op, es)) [@@inline]
×
423

424
let naryop ty op es =
425
  if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
×
426
  then
427
    let vs =
7✔
428
      List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
20✔
429
    in
430
    value (Eval.naryop ty op vs)
7✔
431
  else naryop' ty op es
×
432

433
let nland64 (x : int64) (n : int) =
434
  let rec loop x' n' acc =
×
435
    if n' = 0 then Int64.logand x' acc
×
436
    else loop x' (n' - 1) Int64.(logor (shift_left acc 8) 0xffL)
×
437
  in
438
  loop x n 0L
439

440
let nland32 (x : int32) (n : int) =
441
  let rec loop x' n' acc =
×
442
    if n' = 0 then Int32.logand x' acc
×
443
    else loop x' (n' - 1) Int32.(logor (shift_left acc 8) 0xffl)
×
444
  in
445
  loop x n 0l
446

447
let extract' (hte : t) ~(high : int) ~(low : int) : t =
448
  make (Extract (hte, high, low))
8✔
449
[@@inline]
450

451
let extract (hte : t) ~(high : int) ~(low : int) : t =
452
  match view hte with
2✔
453
  | Val (Num (I64 x)) ->
×
454
    let x' = nland64 (Int64.shift_right x (low * 8)) (high - low) in
×
455
    value (Num (I64 x'))
×
456
  | _ -> if high - low = Ty.size (ty hte) then hte else extract' hte ~high ~low
1✔
457

458
let concat' (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
3✔
459

460
let concat (msb : t) (lsb : t) : t =
461
  match (view msb, view lsb) with
3✔
462
  | ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
×
463
    , Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1) ) ->
464
    let d1 = h1 - l1 in
465
    let d2 = h2 - l2 in
466
    let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
×
467
    let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
×
468
    let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
×
469
    extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0
×
470
  | ( Extract ({ node = Val (Num (I32 x2)); _ }, h2, l2)
×
471
    , Extract ({ node = Val (Num (I32 x1)); _ }, h1, l1) ) ->
472
    let d1 = h1 - l1 in
473
    let d2 = h2 - l2 in
474
    let x1' = nland32 (Int32.shift_right x1 (l1 * 8)) d1 in
×
475
    let x2' = nland32 (Int32.shift_right x2 (l2 * 8)) d2 in
×
476
    let x = Int32.(logor (shift_left x2' (d1 * 8)) x1') in
×
477
    extract' (value (Num (I32 x))) ~high:(d1 + d2) ~low:0
×
478
  | Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
3✔
479
    extract' s1 ~high:h ~low:l
3✔
480
  | ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
×
481
    , Concat
482
        ({ node = Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1); _ }, se) )
483
    when not (is_num se) ->
×
484
    let d1 = h1 - l1 in
×
485
    let d2 = h2 - l2 in
486
    let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
×
487
    let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
×
488
    let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
×
489
    concat' (extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0) se
×
490
  | _ -> concat' msb lsb
×
491

492
let rec simplify_expr ?(rm_extract = true) (hte : t) : t =
38✔
493
  match view hte with
44✔
494
  | Val _ | Symbol _ -> hte
5✔
495
  | Ptr { base; offset } -> ptr base (simplify_expr offset)
×
496
  | List es -> make @@ List (List.map simplify_expr es)
×
497
  | App (x, es) -> make @@ App (x, List.map simplify_expr es)
×
498
  | Unop (ty, op, e) ->
1✔
499
    let e = simplify_expr e in
500
    unop ty op e
1✔
501
  | Binop (ty, op, e1, e2) ->
7✔
502
    let e1 = simplify_expr e1 in
503
    let e2 = simplify_expr e2 in
7✔
504
    binop ty op e1 e2
7✔
505
  | Relop (ty, op, e1, e2) ->
1✔
506
    let e1 = simplify_expr e1 in
507
    let e2 = simplify_expr e2 in
1✔
508
    relop ty op e1 e2
1✔
509
  | Triop (ty, op, c, e1, e2) ->
1✔
510
    let c = simplify_expr c in
511
    let e1 = simplify_expr e1 in
1✔
512
    let e2 = simplify_expr e2 in
1✔
513
    triop ty op c e1 e2
1✔
514
  | Cvtop (ty, op, e) ->
1✔
515
    let e = simplify_expr e in
516
    cvtop ty op e
1✔
517
  | Naryop (ty, op, es) ->
×
518
    let es = List.map (simplify_expr ~rm_extract:false) es in
519
    naryop ty op es
×
520
  | Extract (s, high, low) ->
5✔
521
    if not rm_extract then hte else extract s ~high ~low
1✔
522
  | Concat (e1, e2) ->
3✔
523
    let msb = simplify_expr ~rm_extract:false e1 in
524
    let lsb = simplify_expr ~rm_extract:false e2 in
3✔
525
    concat msb lsb
3✔
526
  | Binder _ ->
×
527
    (* Not simplifying anything atm *)
528
    hte
529

530
let simplify (hte : t) : t =
531
  let rec loop x =
8✔
532
    let simpl_x = simplify_expr x in
17✔
533
    if equal x simpl_x then simpl_x else loop simpl_x
8✔
534
  in
535
  loop hte
536

537
module Bool = struct
538
  open Ty
539

540
  let of_val = function
541
    | Val True -> Some true
×
542
    | Val False -> Some false
×
543
    | _ -> None
×
544

545
  let true_ = value True
44✔
546

547
  let false_ = value False
44✔
548

549
  let to_val b = if b then true_ else false_
×
550

551
  let v b = to_val b [@@inline]
×
552

553
  let not b =
554
    let bexpr = view b in
×
555
    match of_val bexpr with
×
556
    | Some b -> to_val (not b)
×
557
    | None -> (
×
558
      match bexpr with
559
      | Unop (Ty_bool, Not, cond) -> cond
×
560
      | _ -> unop Ty_bool Not b )
×
561

562
  let equal b1 b2 =
563
    match (view b1, view b2) with
×
564
    | Val True, Val True | Val False, Val False -> true_
×
565
    | _ -> relop Ty_bool Eq b1 b2
×
566

567
  let distinct b1 b2 =
568
    match (view b1, view b2) with
×
569
    | Val True, Val False | Val False, Val True -> true_
×
570
    | _ -> relop Ty_bool Ne b1 b2
×
571

572
  let and_ b1 b2 =
573
    match (of_val (view b1), of_val (view b2)) with
×
574
    | Some true, _ -> b2
×
575
    | _, Some true -> b1
×
576
    | Some false, _ | _, Some false -> false_
×
577
    | _ -> binop Ty_bool And b1 b2
×
578

579
  let or_ b1 b2 =
580
    match (of_val (view b1), of_val (view b2)) with
×
581
    | Some false, _ -> b2
×
582
    | _, Some false -> b1
×
583
    | Some true, _ | _, Some true -> true_
×
584
    | _ -> binop Ty_bool Or b1 b2
×
585

586
  let ite c r1 r2 = triop Ty_bool Ite c r1 r2
×
587
end
588

589
module Make (T : sig
590
  type elt
591

592
  val ty : Ty.t
593

594
  val num : elt -> Num.t
595
end) =
596
struct
597
  open Ty
598

599
  let v i = value (Num (T.num i))
24✔
600

601
  let sym x = symbol Symbol.(x @: T.ty)
12✔
602

603
  let ( ~- ) e = unop T.ty Neg e
×
604

605
  let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
×
606

607
  let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
×
608

609
  let ( > ) e1 e2 = relop T.ty Gt e1 e2
2✔
610

611
  let ( >= ) e1 e2 = relop T.ty Ge e1 e2
×
612

613
  let ( < ) e1 e2 = relop T.ty Lt e1 e2
5✔
614

615
  let ( <= ) e1 e2 = relop T.ty Le e1 e2
×
616
end
617

618
module Bitv = struct
619
  open Ty
620

621
  module I8 = Make (struct
622
    type elt = int
623

624
    let ty = Ty_bitv 8
625

626
    let num i = Num.I8 i
3✔
627
  end)
628

629
  module I32 = Make (struct
630
    type elt = int32
631

632
    let ty = Ty_bitv 32
633

634
    let num i = Num.I32 i
13✔
635
  end)
636

637
  module I64 = Make (struct
638
    type elt = int64
639

640
    let ty = Ty_bitv 64
641

642
    let num i = Num.I64 i
1✔
643
  end)
644
end
645

646
module Fpa = struct
647
  open Ty
648

649
  module F32 = struct
650
    include Make (struct
651
      type elt = float
652

653
      let ty = Ty_fp 32
654

655
      let num f = Num.F32 (Int32.bits_of_float f)
6✔
656
    end)
657

658
    (* Redeclare equality due to incorrect theory annotation *)
659
    let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
3✔
660

661
    let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
×
662
  end
663

664
  module F64 = struct
665
    include Make (struct
666
      type elt = float
667

668
      let ty = Ty_fp 64
669

670
      let num f = Num.F64 (Int64.bits_of_float f)
1✔
671
    end)
672

673
    (* Redeclare equality due to incorrect theory annotation *)
674
    let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
1✔
675

676
    let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
×
677
  end
678
end
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc