• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

python-control / python-control / 13123294086

03 Feb 2025 09:34PM UTC coverage: 94.752% (+0.02%) from 94.731%
13123294086

push

github

web-flow
Merge pull request #1121 from murrayrm/fix_bode_margins_title-02Feb2025

Fix missing plot title in bode_plot() with display_margins

9678 of 10214 relevant lines covered (94.75%)

8.28 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

95.06
control/freqplot.py
1
# freqplot.py - frequency domain plots for control systems
2
#
3
# Initial author: Richard M. Murray
4
# Creation date: 24 May 2009
5

6
"""Frequency domain plots for control systems.
7

8
This module contains some standard control system plots: Bode plots,
9
Nyquist plots and other frequency response plots.  The code for
10
Nichols charts is in nichols.py.  The code for pole-zero diagrams is
11
in pzmap.py and rlocus.py.
12

13
"""
14

15
import itertools
9✔
16
import math
9✔
17
import warnings
9✔
18

19
import matplotlib as mpl
9✔
20
import matplotlib.pyplot as plt
9✔
21
import numpy as np
9✔
22

23
from . import config
9✔
24
from .bdalg import feedback
9✔
25
from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _find_axes_center, \
9✔
26
    _get_color, _get_color_offset, _get_line_labels, _make_legend_labels, \
27
    _process_ax_keyword, _process_legend_keywords, _process_line_labels, \
28
    _update_plot_title
29
from .ctrlutil import unwrap
9✔
30
from .exception import ControlMIMONotImplemented
9✔
31
from .frdata import FrequencyResponseData
9✔
32
from .lti import LTI, _process_frequency_response, frequency_response
9✔
33
from .margins import stability_margins
9✔
34
from .statesp import StateSpace
9✔
35
from .xferfcn import TransferFunction
9✔
36

37
__all__ = ['bode_plot', 'NyquistResponseData', 'nyquist_response',
9✔
38
           'nyquist_plot', 'singular_values_response',
39
           'singular_values_plot', 'gangof4_plot', 'gangof4_response',
40
           'bode', 'nyquist', 'gangof4', 'FrequencyResponseList',
41
           'NyquistResponseList']
42

43
# Default values for module parameter variables
44
_freqplot_defaults = {
9✔
45
    'freqplot.feature_periphery_decades': 1,
46
    'freqplot.number_of_samples': 1000,
47
    'freqplot.dB': False,  # Plot gain in dB
48
    'freqplot.deg': True,  # Plot phase in degrees
49
    'freqplot.Hz': False,  # Plot frequency in Hertz
50
    'freqplot.grid': True,  # Turn on grid for gain and phase
51
    'freqplot.wrap_phase': False,  # Wrap the phase plot at a given value
52
    'freqplot.freq_label': "Frequency [{units}]",
53
    'freqplot.magnitude_label': "Magnitude",
54
    'freqplot.share_magnitude': 'row',
55
    'freqplot.share_phase': 'row',
56
    'freqplot.share_frequency': 'col',
57
    'freqplot.title_frame': 'axes',
58
}
59

60
#
61
# Frequency response data list class
62
#
63
# This class is a subclass of list that adds a plot() method, enabling
64
# direct plotting from routines returning a list of FrequencyResponseData
65
# objects.
66
#
67

68
class FrequencyResponseList(list):
9✔
69
    """List of FrequencyResponseData objects with plotting capability.
70

71
    This class consists of a list of `FrequencyResponseData` objects.
72
    It is a subclass of the Python `list` class, with a `plot` method that
73
    plots the individual `FrequencyResponseData` objects.
74

75
    """
76
    def plot(self, *args, plot_type=None, **kwargs):
9✔
77
        """Plot a list of frequency responses.
78

79
        See `FrequencyResponseData.plot` for details.
80

81
        """
82
        if plot_type == None:
9✔
83
            for response in self:
9✔
84
                if plot_type is not None and response.plot_type != plot_type:
9✔
85
                    raise TypeError(
×
86
                        "inconsistent plot_types in data; set plot_type "
87
                        "to 'bode', 'nichols', or 'svplot'")
88
                plot_type = response.plot_type
9✔
89

90
        # Use FRD plot method, which can handle lists via plot functions
91
        return FrequencyResponseData.plot(
9✔
92
            self, plot_type=plot_type, *args, **kwargs)
93

94
#
95
# Bode plot
96
#
97
# This is the default method for plotting frequency responses.  There are
98
# lots of options available for tuning the format of the plot, (hopefully)
99
# covering most of the common use cases.
100
#
101

102
def bode_plot(
9✔
103
        data, omega=None, *fmt, ax=None, omega_limits=None, omega_num=None,
104
        plot=None, plot_magnitude=True, plot_phase=None,
105
        overlay_outputs=None, overlay_inputs=None, phase_label=None,
106
        magnitude_label=None, label=None, display_margins=None,
107
        margins_method='best', title=None, sharex=None, sharey=None, **kwargs):
108
    """Bode plot for a system.
109

110
    Plot the magnitude and phase of the frequency response over a
111
    (optional) frequency range.
112

113
    Parameters
114
    ----------
115
    data : list of `FrequencyResponseData` or `LTI`
116
        List of LTI systems or `FrequencyResponseData` objects.  A
117
        single system or frequency response can also be passed.
118
    omega : array_like, optional
119
        Set of frequencies in rad/sec to plot over.  If not specified, this
120
        will be determined from the properties of the systems.  Ignored if
121
        `data` is not a list of systems.
122
    *fmt : `matplotlib.pyplot.plot` format string, optional
123
        Passed to `matplotlib` as the format string for all lines in the plot.
124
        The `omega` parameter must be present (use omega=None if needed).
125
    dB : bool
126
        If True, plot result in dB.  Default is False.
127
    Hz : bool
128
        If True, plot frequency in Hz (omega must be provided in rad/sec).
129
        Default value (False) set by `config.defaults['freqplot.Hz']`.
130
    deg : bool
131
        If True, plot phase in degrees (else radians).  Default
132
        value (True) set by `config.defaults['freqplot.deg']`.
133
    display_margins : bool or str
134
        If True, draw gain and phase margin lines on the magnitude and phase
135
        graphs and display the margins at the top of the graph.  If set to
136
        'overlay', the values for the gain and phase margin are placed on
137
        the graph.  Setting `display_margins` turns off the axes grid, unless
138
        `grid` is explicitly set to True.
139
    **kwargs : `matplotlib.pyplot.plot` keyword properties, optional
140
        Additional keywords passed to `matplotlib` to specify line properties.
141

142
    Returns
143
    -------
144
    cplt : `ControlPlot` object
145
        Object containing the data that were plotted.  See `ControlPlot`
146
        for more detailed information.
147
    cplt.lines : Array of `matplotlib.lines.Line2D` objects
148
        Array containing information on each line in the plot.  The shape
149
        of the array matches the subplots shape and the value of the array
150
        is a list of Line2D objects in that subplot.
151
    cplt.axes : 2D ndarray of `matplotlib.axes.Axes`
152
        Axes for each subplot.
153
    cplt.figure : `matplotlib.figure.Figure`
154
        Figure containing the plot.
155
    cplt.legend : 2D array of `matplotlib.legend.Legend`
156
        Legend object(s) contained in the plot.
157

158
    Other Parameters
159
    ----------------
160
    ax : array of `matplotlib.axes.Axes`, optional
161
        The matplotlib axes to draw the figure on.  If not specified, the
162
        axes for the current figure are used or, if there is no current
163
        figure with the correct number and shape of axes, a new figure is
164
        created.  The shape of the array must match the shape of the
165
        plotted data.
166
    freq_label, magnitude_label, phase_label : str, optional
167
        Labels to use for the frequency, magnitude, and phase axes.
168
        Defaults are set by `config.defaults['freqplot.<keyword>']`.
169
    grid : bool, optional
170
        If True, plot grid lines on gain and phase plots.  Default is set by
171
        `config.defaults['freqplot.grid']`.
172
    initial_phase : float, optional
173
        Set the reference phase to use for the lowest frequency.  If set, the
174
        initial phase of the Bode plot will be set to the value closest to the
175
        value specified.  Units are in either degrees or radians, depending on
176
        the `deg` parameter. Default is -180 if wrap_phase is False, 0 if
177
        wrap_phase is True.
178
    label : str or array_like of str, optional
179
        If present, replace automatically generated label(s) with the given
180
        label(s).  If sysdata is a list, strings should be specified for each
181
        system.  If MIMO, strings required for each system, output, and input.
182
    legend_map : array of str, optional
183
        Location of the legend for multi-axes plots.  Specifies an array
184
        of legend location strings matching the shape of the subplots, with
185
        each entry being either None (for no legend) or a legend location
186
        string (see `~matplotlib.pyplot.legend`).
187
    legend_loc : int or str, optional
188
        Include a legend in the given location. Default is 'center right',
189
        with no legend for a single response.  Use False to suppress legend.
190
    margins_method : str, optional
191
        Method to use in computing margins (see `stability_margins`).
192
    omega_limits : array_like of two values
193
        Set limits for plotted frequency range. If Hz=True the limits are
194
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
195
        elements is equivalent to providing `omega_limits`. Ignored if
196
        data is not a list of systems.
197
    omega_num : int
198
        Number of samples to use for the frequency range.  Defaults to
199
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
200
        not a list of systems.
201
    overlay_inputs, overlay_outputs : bool, optional
202
        If set to True, combine input and/or output signals onto a single
203
        plot and use line colors, labels, and a legend to distinguish them.
204
    plot : bool, optional
205
        (legacy) If given, `bode_plot` returns the legacy return values
206
        of magnitude, phase, and frequency.  If False, just return the
207
        values with no plot.
208
    plot_magnitude, plot_phase : bool, optional
209
        If set to False, do not plot the magnitude or phase, respectively.
210
    rcParams : dict
211
        Override the default parameters used for generating plots.
212
        Default is set by `config.defaults['ctrlplot.rcParams']`.
213
    share_frequency, share_magnitude, share_phase : str or bool, optional
214
        Determine whether and how axis limits are shared between the
215
        indicated variables.  Can be set set to 'row' to share across all
216
        subplots in a row, 'col' to set across all subplots in a column, or
217
        False to allow independent limits.  Note: if `sharex` is given,
218
        it sets the value of `share_frequency`; if `sharey` is given, it
219
        sets the value of both `share_magnitude` and `share_phase`.
220
        Default values are 'row' for `share_magnitude` and `share_phase`,
221
        'col', for `share_frequency`, and can be set using
222
        `config.defaults['freqplot.share_<axis>']`.
223
    show_legend : bool, optional
224
        Force legend to be shown if True or hidden if False.  If
225
        None, then show legend when there is more than one line on an
226
        axis or `legend_loc` or `legend_map` has been specified.
227
    title : str, optional
228
        Set the title of the plot.  Defaults to plot type and system name(s).
229
    title_frame : str, optional
230
        Set the frame of reference used to center the plot title. If set to
231
        'axes' (default), the horizontal position of the title will be
232
        centered relative to the axes.  If set to 'figure', it will be
233
        centered with respect to the figure (faster execution).  The default
234
        value can be set using `config.defaults['freqplot.title_frame']`.
235
    wrap_phase : bool or float
236
        If wrap_phase is False (default), then the phase will be unwrapped
237
        so that it is continuously increasing or decreasing.  If wrap_phase is
238
        True the phase will be restricted to the range [-180, 180) (or
239
        [:math:`-\\pi`, :math:`\\pi`) radians). If `wrap_phase` is specified
240
        as a float, the phase will be offset by 360 degrees if it falls below
241
        the specified value. Default value is False and can be set using
242
        `config.defaults['freqplot.wrap_phase']`.
243

244
    See Also
245
    --------
246
    frequency_response
247

248
    Notes
249
    -----
250
    Starting with python-control version 0.10, `bode_plot` returns a
251
    `ControlPlot` object instead of magnitude, phase, and
252
    frequency. To recover the old behavior, call `bode_plot` with
253
    `plot` = True, which will force the legacy values (mag, phase, omega) to
254
    be returned (with a warning).  To obtain just the frequency response of
255
    a system (or list of systems) without plotting, use the
256
    `frequency_response` command.
257

258
    If a discrete-time model is given, the frequency response is plotted
259
    along the upper branch of the unit circle, using the mapping ``z =
260
    exp(1j * omega * dt)`` where `omega` ranges from 0 to pi/`dt` and `dt`
261
    is the discrete timebase.  If timebase not specified (`dt` = True),
262
    `dt` is set to 1.
263

264
    The default values for Bode plot configuration parameters can be reset
265
    using the `config.defaults` dictionary, with module name 'bode'.
266

267
    Examples
268
    --------
269
    >>> G = ct.ss([[-1, -2], [3, -4]], [[5], [7]], [[6, 8]], [[9]])
270
    >>> out = ct.bode_plot(G)
271

272
    """
273
    #
274
    # Process keywords and set defaults
275
    #
276

277
    # Make a copy of the kwargs dictionary since we will modify it
278
    kwargs = dict(kwargs)
9✔
279

280
    # Legacy keywords for margins
281
    display_margins = config._process_legacy_keyword(
9✔
282
        kwargs, 'margins', 'display_margins', display_margins)
283
    if kwargs.pop('margin_info', False):
9✔
284
        warnings.warn(
×
285
            "keyword 'margin_info' is deprecated; "
286
            "use 'display_margins='overlay'")
287
        if display_margins is False:
×
288
            raise ValueError(
×
289
                "conflicting_keywords: `display_margins` and `margin_info`")
290

291
    # Turn off grid if display margins, unless explicitly overridden
292
    if display_margins and 'grid' not in kwargs:
9✔
293
        kwargs['grid'] = False
9✔
294

295
    margins_method = config._process_legacy_keyword(
9✔
296
        kwargs, 'method', 'margins_method', margins_method)
297

298
    # Get values for params (and pop from list to allow keyword use in plot)
299
    dB = config._get_param(
9✔
300
        'freqplot', 'dB', kwargs, _freqplot_defaults, pop=True)
301
    deg = config._get_param(
9✔
302
        'freqplot', 'deg', kwargs, _freqplot_defaults, pop=True)
303
    Hz = config._get_param(
9✔
304
        'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True)
305
    grid = config._get_param(
9✔
306
        'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True)
307
    wrap_phase = config._get_param(
9✔
308
        'freqplot', 'wrap_phase', kwargs, _freqplot_defaults, pop=True)
309
    initial_phase = config._get_param(
9✔
310
        'freqplot', 'initial_phase', kwargs, None, pop=True)
311
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
312
    title_frame = config._get_param(
9✔
313
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
314

315
    # Set the default labels
316
    freq_label = config._get_param(
9✔
317
        'freqplot', 'freq_label', kwargs, _freqplot_defaults, pop=True)
318
    if magnitude_label is None:
9✔
319
        magnitude_label = config._get_param(
9✔
320
            'freqplot', 'magnitude_label', kwargs,
321
            _freqplot_defaults, pop=True) + (" [dB]" if dB else "")
322
    if phase_label is None:
9✔
323
        phase_label = "Phase [deg]" if deg else "Phase [rad]"
9✔
324

325
    # Use sharex and sharey as proxies for share_{magnitude, phase, frequency}
326
    if sharey is not None:
9✔
327
        if 'share_magnitude' in kwargs or 'share_phase' in kwargs:
9✔
328
            ValueError(
×
329
                "sharey cannot be present with share_magnitude/share_phase")
330
        kwargs['share_magnitude'] = sharey
9✔
331
        kwargs['share_phase'] = sharey
9✔
332
    if sharex is not None:
9✔
333
        if 'share_frequency' in kwargs:
9✔
334
            ValueError(
×
335
                "sharex cannot be present with share_frequency")
336
        kwargs['share_frequency'] = sharex
9✔
337

338
    if not isinstance(data, (list, tuple)):
9✔
339
        data = [data]
9✔
340

341
    #
342
    # Pre-process the data to be plotted (unwrap phase, limit frequencies)
343
    #
344
    # To maintain compatibility with legacy uses of bode_plot(), we do some
345
    # initial processing on the data, specifically phase unwrapping and
346
    # setting the initial value of the phase.  If bode_plot is called with
347
    # plot == False, then these values are returned to the user (instead of
348
    # the list of lines created, which is the new output for _plot functions.
349
    #
350

351
    # If we were passed a list of systems, convert to data
352
    if any([isinstance(
9✔
353
            sys, (StateSpace, TransferFunction)) for sys in data]):
354
        data = frequency_response(
9✔
355
            data, omega=omega, omega_limits=omega_limits,
356
            omega_num=omega_num, Hz=Hz)
357
    else:
358
        # Generate warnings if frequency keywords were given
359
        if omega_num is not None:
9✔
360
            warnings.warn("`omega_num` ignored when passed response data")
9✔
361
        elif omega is not None:
9✔
362
            warnings.warn("`omega` ignored when passed response data")
9✔
363

364
        # Check to make sure omega_limits is sensible
365
        if omega_limits is not None and \
9✔
366
           (len(omega_limits) != 2 or omega_limits[1] <= omega_limits[0]):
367
            raise ValueError(f"invalid limits: {omega_limits=}")
9✔
368

369
    # If plot_phase is not specified, check the data first, otherwise true
370
    if plot_phase is None:
9✔
371
        plot_phase = True if data[0].plot_phase is None else data[0].plot_phase
9✔
372

373
    if not plot_magnitude and not plot_phase:
9✔
374
        raise ValueError(
9✔
375
            "plot_magnitude and plot_phase both False; no data to plot")
376

377
    mag_data, phase_data, omega_data = [], [], []
9✔
378
    for response in data:
9✔
379
        noutputs, ninputs = response.noutputs, response.ninputs
9✔
380

381
        if initial_phase is None:
9✔
382
            # Start phase in the range 0 to -360 w/ initial phase = 0
383
            # TODO: change this to 0 to 270 (?)
384
            # If wrap_phase is true, use 0 instead (phase \in (-pi, pi])
385
            initial_phase_value = -math.pi if wrap_phase is not True else 0
9✔
386
        elif isinstance(initial_phase, (int, float)):
9✔
387
            # Allow the user to override the default calculation
388
            if deg:
9✔
389
                initial_phase_value = initial_phase/180. * math.pi
9✔
390
            else:
391
                initial_phase_value = initial_phase
9✔
392
        else:
393
            raise ValueError("initial_phase must be a number.")
×
394

395
        # Shift and wrap the phase
396
        phase = np.angle(response.frdata)               # 3D array
9✔
397
        for i, j in itertools.product(range(noutputs), range(ninputs)):
9✔
398
            # Shift the phase if needed
399
            if abs(phase[i, j, 0] - initial_phase_value) > math.pi:
9✔
400
                phase[i, j] -= 2*math.pi * round(
9✔
401
                    (phase[i, j, 0] - initial_phase_value) / (2*math.pi))
402

403
            # Phase wrapping
404
            if wrap_phase is False:
9✔
405
                phase[i, j] = unwrap(phase[i, j]) # unwrap the phase
9✔
406
            elif wrap_phase is True:
9✔
407
                pass                                    # default calc OK
9✔
408
            elif isinstance(wrap_phase, (int, float)):
9✔
409
                phase[i, j] = unwrap(phase[i, j]) # unwrap phase first
9✔
410
                if deg:
9✔
411
                    wrap_phase *= math.pi/180.
9✔
412

413
                # Shift the phase if it is below the wrap_phase
414
                phase[i, j] += 2*math.pi * np.maximum(
9✔
415
                    0, np.ceil((wrap_phase - phase[i, j])/(2*math.pi)))
416
            else:
417
                raise ValueError("wrap_phase must be bool or float.")
×
418

419
        # Save the data for later use
420
        mag_data.append(np.abs(response.frdata))
9✔
421
        phase_data.append(phase)
9✔
422
        omega_data.append(response.omega)
9✔
423

424
    #
425
    # Process `plot` keyword
426
    #
427
    # We use the `plot` keyword to track legacy usage of `bode_plot`.
428
    # Prior to v0.10, the `bode_plot` command returned mag, phase, and
429
    # omega.  Post v0.10, we return an array with the same shape as the
430
    # axes we use for plotting, with each array element containing a list
431
    # of lines drawn on that axes.
432
    #
433
    # There are three possibilities at this stage in the code:
434
    #
435
    # * plot == True: set explicitly by the user. Return mag, phase, omega,
436
    #   with a warning.
437
    #
438
    # * plot == False: set explicitly by the user. Return mag, phase,
439
    #   omega, with a warning.
440
    #
441
    # * plot == None: this is the new default setting.  Return an array of
442
    #   lines that were drawn.
443
    #
444
    # If `bode_plot` was called with no `plot` argument and the return
445
    # values were used, the new code will cause problems (you get an array
446
    # of lines instead of magnitude, phase, and frequency).  To recover the
447
    # old behavior, call `bode_plot` with `plot=True`.
448
    #
449
    # All of this should be removed in v0.11+ when we get rid of deprecated
450
    # code.
451
    #
452

453
    if plot is not None:
9✔
454
        warnings.warn(
9✔
455
            "bode_plot() return value of mag, phase, omega is deprecated; "
456
            "use frequency_response()", FutureWarning)
457

458
    if plot is False:
9✔
459
        # Process the data to match what we were sent
460
        for i in range(len(mag_data)):
9✔
461
            mag_data[i] = _process_frequency_response(
9✔
462
                data[i], omega_data[i], mag_data[i], squeeze=data[i].squeeze)
463
            phase_data[i] = _process_frequency_response(
9✔
464
                data[i], omega_data[i], phase_data[i], squeeze=data[i].squeeze)
465

466
        if len(data) == 1:
9✔
467
            return mag_data[0], phase_data[0], omega_data[0]
9✔
468
        else:
469
            return mag_data, phase_data, omega_data
9✔
470
    #
471
    # Find/create axes
472
    #
473
    # Data are plotted in a standard subplots array, whose size depends on
474
    # which signals are being plotted and how they are combined.  The
475
    # baseline layout for data is to plot everything separately, with
476
    # the magnitude and phase for each output making up the rows and the
477
    # columns corresponding to the different inputs.
478
    #
479
    #      Input 0                 Input m
480
    # +---------------+       +---------------+
481
    # |  mag H_y0,u0  |  ...  |  mag H_y0,um  |
482
    # +---------------+       +---------------+
483
    # +---------------+       +---------------+
484
    # | phase H_y0,u0 |  ...  | phase H_y0,um |
485
    # +---------------+       +---------------+
486
    #         :                       :
487
    # +---------------+       +---------------+
488
    # |  mag H_yp,u0  |  ...  |  mag H_yp,um  |
489
    # +---------------+       +---------------+
490
    # +---------------+       +---------------+
491
    # | phase H_yp,u0 |  ...  | phase H_yp,um |
492
    # +---------------+       +---------------+
493
    #
494
    # Several operations are available that change this layout.
495
    #
496
    # * Omitting: either the magnitude or the phase plots can be omitted
497
    #   using the plot_magnitude and plot_phase keywords.
498
    #
499
    # * Overlay: inputs and/or outputs can be combined onto a single set of
500
    #   axes using the overlay_inputs and overlay_outputs keywords.  This
501
    #   basically collapses data along either the rows or columns, and a
502
    #   legend is generated.
503
    #
504

505
    # Decide on the maximum number of inputs and outputs
506
    ninputs, noutputs = 0, 0
9✔
507
    for response in data:       # TODO: make more pythonic/numpic
9✔
508
        ninputs = max(ninputs, response.ninputs)
9✔
509
        noutputs = max(noutputs, response.noutputs)
9✔
510

511
    # Figure how how many rows and columns to use + offsets for inputs/outputs
512
    if overlay_outputs and overlay_inputs:
9✔
513
        nrows = plot_magnitude + plot_phase
9✔
514
        ncols = 1
9✔
515
    elif overlay_outputs:
9✔
516
        nrows = plot_magnitude + plot_phase
9✔
517
        ncols = ninputs
9✔
518
    elif overlay_inputs:
9✔
519
        nrows = (noutputs if plot_magnitude else 0) + \
9✔
520
            (noutputs if plot_phase else 0)
521
        ncols = 1
9✔
522
    else:
523
        nrows = (noutputs if plot_magnitude else 0) + \
9✔
524
            (noutputs if plot_phase else 0)
525
        ncols = ninputs
9✔
526

527
    if ax is None:
9✔
528
        # Set up default sharing of axis limits if not specified
529
        for kw in ['share_magnitude', 'share_phase', 'share_frequency']:
9✔
530
            if kw not in kwargs or kwargs[kw] is None:
9✔
531
                kwargs[kw] = config.defaults['freqplot.' + kw]
9✔
532

533
    fig, ax_array = _process_ax_keyword(
9✔
534
        ax, (nrows, ncols), squeeze=False, rcParams=rcParams, clear_text=True)
535
    legend_loc, legend_map, show_legend = _process_legend_keywords(
9✔
536
        kwargs, (nrows,ncols), 'center right')
537

538
    # Get the values for sharing axes limits
539
    share_magnitude = kwargs.pop('share_magnitude', None)
9✔
540
    share_phase = kwargs.pop('share_phase', None)
9✔
541
    share_frequency = kwargs.pop('share_frequency', None)
9✔
542

543
    # Set up axes variables for easier access below
544
    if plot_magnitude and not plot_phase:
9✔
545
        mag_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
546
        for i in range(noutputs):
9✔
547
            for j in range(ninputs):
9✔
548
                if overlay_outputs and overlay_inputs:
9✔
549
                    mag_map[i, j] = (0, 0)
9✔
550
                elif overlay_outputs:
9✔
551
                    mag_map[i, j] = (0, j)
9✔
552
                elif overlay_inputs:
9✔
553
                    mag_map[i, j] = (i, 0)
×
554
                else:
555
                    mag_map[i, j] = (i, j)
9✔
556
        phase_map = np.full((noutputs, ninputs), None)
9✔
557
        share_phase = False
9✔
558

559
    elif plot_phase and not plot_magnitude:
9✔
560
        phase_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
561
        for i in range(noutputs):
9✔
562
            for j in range(ninputs):
9✔
563
                if overlay_outputs and overlay_inputs:
9✔
564
                    phase_map[i, j] = (0, 0)
×
565
                elif overlay_outputs:
9✔
566
                    phase_map[i, j] = (0, j)
×
567
                elif overlay_inputs:
9✔
568
                    phase_map[i, j] = (i, 0)
9✔
569
                else:
570
                    phase_map[i, j] = (i, j)
9✔
571
        mag_map = np.full((noutputs, ninputs), None)
9✔
572
        share_magnitude = False
9✔
573

574
    else:
575
        mag_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
576
        phase_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
577
        for i in range(noutputs):
9✔
578
            for j in range(ninputs):
9✔
579
                if overlay_outputs and overlay_inputs:
9✔
580
                    mag_map[i, j] = (0, 0)
×
581
                    phase_map[i, j] = (1, 0)
×
582
                elif overlay_outputs:
9✔
583
                    mag_map[i, j] = (0, j)
×
584
                    phase_map[i, j] = (1, j)
×
585
                elif overlay_inputs:
9✔
586
                    mag_map[i, j] = (i*2, 0)
×
587
                    phase_map[i, j] = (i*2 + 1, 0)
×
588
                else:
589
                    mag_map[i, j] = (i*2, j)
9✔
590
                    phase_map[i, j] = (i*2 + 1, j)
9✔
591

592
    # Identity map needed for setting up shared axes
593
    ax_map = np.empty((nrows, ncols), dtype=tuple)
9✔
594
    for i, j in itertools.product(range(nrows), range(ncols)):
9✔
595
        ax_map[i, j] = (i, j)
9✔
596

597
    #
598
    # Set up axes limit sharing
599
    #
600
    # This code uses the share_magnitude, share_phase, and share_frequency
601
    # keywords to decide which axes have shared limits and what ticklabels
602
    # to include.  The sharing code needs to come before the plots are
603
    # generated, but additional code for removing tick labels needs to come
604
    # *during* and *after* the plots are generated (see below).
605
    #
606
    # Note: if the various share_* keywords are None then a previous set of
607
    # axes are available and no updates should be made.
608
    #
609

610
    # Utility function to turn on sharing
611
    def _share_axes(ref, share_map, axis):
9✔
612
        ref_ax = ax_array[ref]
9✔
613
        for index in np.nditer(share_map, flags=["refs_ok"]):
9✔
614
            if index.item() == ref:
9✔
615
                continue
9✔
616
            if axis == 'x':
9✔
617
                ax_array[index.item()].sharex(ref_ax)
9✔
618
            elif axis == 'y':
9✔
619
                ax_array[index.item()].sharey(ref_ax)
9✔
620
            else:
621
                raise ValueError("axis must be 'x' or 'y'")
×
622

623
    # Process magnitude, phase, and frequency axes
624
    for name, value, map, axis in zip(
9✔
625
            ['share_magnitude', 'share_phase', 'share_frequency'],
626
            [ share_magnitude,   share_phase,   share_frequency],
627
            [ mag_map,           phase_map,     ax_map],
628
            [ 'y',               'y',           'x']):
629
        if value in [True, 'all']:
9✔
630
            _share_axes(map[0 if axis == 'y' else -1, 0], map, axis)
9✔
631
        elif axis == 'y' and value in ['row']:
9✔
632
            for i in range(noutputs if not overlay_outputs else 1):
9✔
633
                _share_axes(map[i, 0], map[i], 'y')
9✔
634
        elif axis == 'x' and value in ['col']:
9✔
635
            for j in range(ncols):
9✔
636
                _share_axes(map[-1, j], map[:, j], 'x')
9✔
637
        elif value in [False, 'none']:
9✔
638
            # TODO: turn off any sharing that is on
639
            pass
9✔
640
        elif value is not None:
9✔
641
            raise ValueError(
×
642
                f"unknown value for `{name}`: '{value}'")
643

644
    #
645
    # Plot the data
646
    #
647
    # The mag_map and phase_map arrays have the indices axes needed for
648
    # making the plots.  Labels are used on each axes for later creation of
649
    # legends.  The generic labels if of the form:
650
    #
651
    #     To output label, From input label, system name
652
    #
653
    # The input and output labels are omitted if overlay_inputs or
654
    # overlay_outputs is False, respectively.  The system name is always
655
    # included, since multiple calls to plot() will require a legend that
656
    # distinguishes which system signals are plotted.  The system name is
657
    # stripped off later (in the legend-handling code) if it is not needed.
658
    #
659
    # Note: if we are building on top of an existing plot, tick labels
660
    # should be preserved from the existing axes.  For log scale axes the
661
    # tick labels seem to appear no matter what => we have to detect if
662
    # they are present at the start and, it not, remove them after calling
663
    # loglog or semilogx.
664
    #
665

666
    # Create a list of lines for the output
667
    out = np.empty((nrows, ncols), dtype=object)
9✔
668
    for i in range(nrows):
9✔
669
        for j in range(ncols):
9✔
670
            out[i, j] = []      # unique list in each element
9✔
671

672
    # Process label keyword
673
    line_labels = _process_line_labels(label, len(data), ninputs, noutputs)
9✔
674

675
    # Utility function for creating line label
676
    def _make_line_label(response, output_index, input_index):
9✔
677
        label = ""              # start with an empty label
9✔
678

679
        # Add the output name if it won't appear as an axes label
680
        if noutputs > 1 and overlay_outputs:
9✔
681
            label += response.output_labels[output_index]
9✔
682

683
        # Add the input name if it won't appear as a column label
684
        if ninputs > 1 and overlay_inputs:
9✔
685
            label += ", " if label != "" else ""
9✔
686
            label += response.input_labels[input_index]
9✔
687

688
        # Add the system name (will strip off later if redundant)
689
        label += ", " if label != "" else ""
9✔
690
        label += f"{response.sysname}"
9✔
691

692
        return label
9✔
693

694
    for index, response in enumerate(data):
9✔
695
        # Get the (pre-processed) data in fully indexed form
696
        mag = mag_data[index]
9✔
697
        phase = phase_data[index]
9✔
698
        omega_sys, sysname = omega_data[index], response.sysname
9✔
699

700
        for i, j in itertools.product(range(noutputs), range(ninputs)):
9✔
701
            # Get the axes to use for magnitude and phase
702
            ax_mag = ax_array[mag_map[i, j]]
9✔
703
            ax_phase = ax_array[phase_map[i, j]]
9✔
704

705
            # Get the frequencies and convert to Hz, if needed
706
            omega_plot = omega_sys / (2 * math.pi) if Hz else omega_sys
9✔
707
            if response.isdtime(strict=True):
9✔
708
                nyq_freq = (0.5/response.dt) if Hz else (math.pi/response.dt)
9✔
709

710
            # Save the magnitude and phase to plot
711
            mag_plot = 20 * np.log10(mag[i, j]) if dB else mag[i, j]
9✔
712
            phase_plot = phase[i, j] * 180. / math.pi if deg else phase[i, j]
9✔
713

714
            # Generate a label
715
            if line_labels is None:
9✔
716
                label = _make_line_label(response, i, j)
9✔
717
            else:
718
                label = line_labels[index, i, j]
9✔
719

720
            # Magnitude
721
            if plot_magnitude:
9✔
722
                pltfcn = ax_mag.semilogx if dB else ax_mag.loglog
9✔
723

724
                # Plot the main data
725
                lines = pltfcn(
9✔
726
                    omega_plot, mag_plot, *fmt, label=label, **kwargs)
727
                out[mag_map[i, j]] += lines
9✔
728

729
                # Save the information needed for the Nyquist line
730
                if response.isdtime(strict=True):
9✔
731
                    ax_mag.axvline(
9✔
732
                        nyq_freq, color=lines[0].get_color(), linestyle='--',
733
                        label='_nyq_mag_' + sysname)
734

735
                # Add a grid to the plot
736
                ax_mag.grid(grid, which='both')
9✔
737

738
            # Phase
739
            if plot_phase:
9✔
740
                lines = ax_phase.semilogx(
9✔
741
                    omega_plot, phase_plot, *fmt, label=label, **kwargs)
742
                out[phase_map[i, j]] += lines
9✔
743

744
                # Save the information needed for the Nyquist line
745
                if response.isdtime(strict=True):
9✔
746
                    ax_phase.axvline(
9✔
747
                        nyq_freq, color=lines[0].get_color(), linestyle='--',
748
                        label='_nyq_phase_' + sysname)
749

750
                # Add a grid to the plot
751
                ax_phase.grid(grid, which='both')
9✔
752

753
        #
754
        # Display gain and phase margins (SISO only)
755
        #
756

757
        if display_margins:
9✔
758
            if ninputs > 1 or noutputs > 1:
9✔
759
                raise NotImplementedError(
760
                    "margins are not available for MIMO systems")
761

762
            if display_margins == 'overlay' and len(data) > 1:
9✔
763
                raise NotImplementedError(
764
                    f"{display_margins=} not supported for multi-trace plots")
765

766
            # Compute stability margins for the system
767
            margins = stability_margins(response, method=margins_method)
9✔
768
            gm, pm, Wcg, Wcp = (margins[i] for i in [0, 1, 3, 4])
9✔
769

770
            # Figure out sign of the phase at the first gain crossing
771
            # (needed if phase_wrap is True)
772
            phase_at_cp = phase[
9✔
773
                0, 0, (np.abs(omega_data[0] - Wcp)).argmin()]
774
            if phase_at_cp >= 0.:
9✔
775
                phase_limit = 180.
9✔
776
            else:
777
                phase_limit = -180.
9✔
778

779
            if Hz:
9✔
780
                Wcg, Wcp = Wcg/(2*math.pi), Wcp/(2*math.pi)
9✔
781

782
            # Draw lines at gain and phase limits
783
            if plot_magnitude:
9✔
784
                ax_mag.axhline(y=0 if dB else 1, color='k', linestyle=':',
9✔
785
                               zorder=-20)
786

787
            if plot_phase:
9✔
788
                ax_phase.axhline(y=phase_limit if deg else
9✔
789
                                 math.radians(phase_limit),
790
                                 color='k', linestyle=':', zorder=-20)
791

792
            # Annotate the phase margin (if it exists)
793
            if plot_phase and pm != float('inf') and Wcp != float('nan'):
9✔
794
                # Draw dotted lines marking the gain crossover frequencies
795
                if plot_magnitude:
9✔
796
                    ax_mag.axvline(Wcp, color='k', linestyle=':', zorder=-30)
9✔
797
                ax_phase.axvline(Wcp, color='k', linestyle=':', zorder=-30)
9✔
798

799
                # Draw solid segments indicating the margins
800
                if deg:
9✔
801
                    ax_phase.semilogx(
9✔
802
                        [Wcp, Wcp], [phase_limit + pm, phase_limit],
803
                        color='k', zorder=-20)
804
                else:
805
                    ax_phase.semilogx(
9✔
806
                        [Wcp, Wcp], [math.radians(phase_limit) +
807
                                     math.radians(pm),
808
                                     math.radians(phase_limit)],
809
                        color='k', zorder=-20)
810

811
            # Annotate the gain margin (if it exists)
812
            if plot_magnitude and gm != float('inf') and \
9✔
813
               Wcg != float('nan'):
814
                # Draw dotted lines marking the phase crossover frequencies
815
                ax_mag.axvline(Wcg, color='k', linestyle=':', zorder=-30)
9✔
816
                if plot_phase:
9✔
817
                    ax_phase.axvline(Wcg, color='k', linestyle=':', zorder=-30)
9✔
818

819
                # Draw solid segments indicating the margins
820
                if dB:
9✔
821
                    ax_mag.semilogx(
9✔
822
                        [Wcg, Wcg], [0, -20*np.log10(gm)],
823
                        color='k', zorder=-20)
824
                else:
825
                    ax_mag.loglog(
9✔
826
                        [Wcg, Wcg], [1., 1./gm], color='k', zorder=-20)
827

828
            if display_margins == 'overlay':
9✔
829
                # TODO: figure out how to handle case of multiple lines
830
                # Put the margin information in the lower left corner
831
                if plot_magnitude:
9✔
832
                    ax_mag.text(
9✔
833
                        0.04, 0.06,
834
                        'G.M.: %.2f %s\nFreq: %.2f %s' %
835
                        (20*np.log10(gm) if dB else gm,
836
                         'dB ' if dB else '',
837
                         Wcg, 'Hz' if Hz else 'rad/s'),
838
                        horizontalalignment='left',
839
                        verticalalignment='bottom',
840
                        transform=ax_mag.transAxes,
841
                        fontsize=8 if int(mpl.__version__[0]) == 1 else 6)
842

843
                if plot_phase:
9✔
844
                    ax_phase.text(
9✔
845
                        0.04, 0.06,
846
                        'P.M.: %.2f %s\nFreq: %.2f %s' %
847
                        (pm if deg else math.radians(pm),
848
                         'deg' if deg else 'rad',
849
                         Wcp, 'Hz' if Hz else 'rad/s'),
850
                        horizontalalignment='left',
851
                        verticalalignment='bottom',
852
                        transform=ax_phase.transAxes,
853
                        fontsize=8 if int(mpl.__version__[0]) == 1 else 6)
854

855
            else:
856
                # Put the title underneath the suptitle (one line per system)
857
                ax_ = ax_mag if ax_mag else ax_phase
9✔
858
                axes_title = ax_.get_title()
9✔
859
                if axes_title is not None and axes_title != "":
9✔
860
                    axes_title += "\n"
9✔
861
                with plt.rc_context(rcParams):
9✔
862
                    ax_.set_title(
9✔
863
                        axes_title + f"{sysname}: "
864
                        "Gm = %.2f %s(at %.2f %s), "
865
                        "Pm = %.2f %s (at %.2f %s)" %
866
                        (20*np.log10(gm) if dB else gm,
867
                         'dB ' if dB else '',
868
                         Wcg, 'Hz' if Hz else 'rad/s',
869
                         pm if deg else math.radians(pm),
870
                         'deg' if deg else 'rad',
871
                         Wcp, 'Hz' if Hz else 'rad/s'))
872

873
    #
874
    # Finishing handling axes limit sharing
875
    #
876
    # This code handles labels on Bode plots and also removes tick labels
877
    # on shared axes.  It needs to come *after* the plots are generated,
878
    # in order to handle two things:
879
    #
880
    # * manually generated labels and grids need to reflect the limits for
881
    #   shared axes, which we don't know until we have plotted everything;
882
    #
883
    # * the loglog and semilog functions regenerate the labels (not quite
884
    #   sure why, since using sharex and sharey in subplots does not have
885
    #   this behavior).
886
    #
887
    # Note: as before, if the various share_* keywords are None then a
888
    # previous set of axes are available and no updates are made. (TODO: true?)
889
    #
890

891
    for i in range(noutputs):
9✔
892
        for j in range(ninputs):
9✔
893
            # Utility function to generate phase labels
894
            def gen_zero_centered_series(val_min, val_max, period):
9✔
895
                v1 = np.ceil(val_min / period - 0.2)
9✔
896
                v2 = np.floor(val_max / period + 0.2)
9✔
897
                return np.arange(v1, v2 + 1) * period
9✔
898

899
            # Label the phase axes using multiples of 45 degrees
900
            if plot_phase:
9✔
901
                ax_phase = ax_array[phase_map[i, j]]
9✔
902

903
                # Set the labels
904
                if deg:
9✔
905
                    ylim = ax_phase.get_ylim()
9✔
906
                    num = np.floor((ylim[1] - ylim[0]) / 45)
9✔
907
                    factor = max(1, np.round(num / (32 / nrows)) * 2)
9✔
908
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
909
                        ylim[0], ylim[1], 45 * factor))
910
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
911
                        ylim[0], ylim[1], 15 * factor), minor=True)
912
                else:
913
                    ylim = ax_phase.get_ylim()
9✔
914
                    num = np.ceil((ylim[1] - ylim[0]) / (math.pi/4))
9✔
915
                    factor = max(1, np.round(num / (36 / nrows)) * 2)
9✔
916
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
917
                        ylim[0], ylim[1], math.pi / 4. * factor))
918
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
919
                        ylim[0], ylim[1], math.pi / 12. * factor), minor=True)
920

921
    # Turn off y tick labels for shared axes
922
    for i in range(0, noutputs):
9✔
923
        for j in range(1, ncols):
9✔
924
            if share_magnitude in [True, 'all', 'row']:
9✔
925
                ax_array[mag_map[i, j]].tick_params(labelleft=False)
9✔
926
            if share_phase in [True, 'all', 'row']:
9✔
927
                ax_array[phase_map[i, j]].tick_params(labelleft=False)
9✔
928

929
    # Turn off x tick labels for shared axes
930
    for i in range(0, nrows-1):
9✔
931
        for j in range(0, ncols):
9✔
932
            if share_frequency in [True, 'all', 'col']:
9✔
933
                ax_array[i, j].tick_params(labelbottom=False)
9✔
934

935
    # If specific omega_limits were given, use them
936
    if omega_limits is not None:
9✔
937
        for i, j in itertools.product(range(nrows), range(ncols)):
9✔
938
            ax_array[i, j].set_xlim(omega_limits)
9✔
939

940
    #
941
    # Label the axes (including header labels)
942
    #
943
    # Once the data are plotted, we label the axes.  The horizontal axes is
944
    # always frequency and this is labeled only on the bottom most row.  The
945
    # vertical axes can consist either of a single signal or a combination
946
    # of signals (when overlay_inputs or overlay_outputs is True)
947
    #
948
    # Input/output signals are give at the top of columns and left of rows
949
    # when these are individually plotted.
950
    #
951

952
    # Label the columns (do this first to get row labels in the right spot)
953
    for j in range(ncols):
9✔
954
        # If we have more than one column, label the individual responses
955
        if (noutputs > 1 and not overlay_outputs or ninputs > 1) \
9✔
956
           and not overlay_inputs:
957
            with plt.rc_context(rcParams):
9✔
958
                ax_array[0, j].set_title(f"From {data[0].input_labels[j]}")
9✔
959

960
        # Label the frequency axis
961
        ax_array[-1, j].set_xlabel(
9✔
962
            freq_label.format(units="Hz" if Hz else "rad/s"))
963

964
    # Label the rows
965
    for i in range(noutputs if not overlay_outputs else 1):
9✔
966
        if plot_magnitude:
9✔
967
            ax_mag = ax_array[mag_map[i, 0]]
9✔
968
            ax_mag.set_ylabel(magnitude_label)
9✔
969
        if plot_phase:
9✔
970
            ax_phase = ax_array[phase_map[i, 0]]
9✔
971
            ax_phase.set_ylabel(phase_label)
9✔
972

973
        if (noutputs > 1 or ninputs > 1) and not overlay_outputs:
9✔
974
            if plot_magnitude and plot_phase:
9✔
975
                # Get existing ylabel for left column and add a blank line
976
                ax_mag.set_ylabel("\n" + ax_mag.get_ylabel())
9✔
977
                ax_phase.set_ylabel("\n" + ax_phase.get_ylabel())
9✔
978

979
                # Find the midpoint between the row axes (+ tight_layout)
980
                _, ypos = _find_axes_center(fig, [ax_mag, ax_phase])
9✔
981

982
                # Get the bounding box including the labels
983
                inv_transform = fig.transFigure.inverted()
9✔
984
                mag_bbox = inv_transform.transform(
9✔
985
                    ax_mag.get_tightbbox(fig.canvas.get_renderer()))
986

987
                # Figure out location for text (center left in figure frame)
988
                xpos = mag_bbox[0, 0]               # left edge
9✔
989

990
                # Put a centered label as text outside the box
991
                fig.text(
9✔
992
                    0.8 * xpos, ypos, f"To {data[0].output_labels[i]}\n",
993
                    rotation=90, ha='left', va='center',
994
                    fontsize=rcParams['axes.titlesize'])
995
            else:
996
                # Only a single axes => add label to the left
997
                ax_array[i, 0].set_ylabel(
9✔
998
                    f"To {data[0].output_labels[i]}\n" +
999
                    ax_array[i, 0].get_ylabel())
1000

1001
    #
1002
    # Update the plot title (= figure suptitle)
1003
    #
1004
    # If plots are built up by multiple calls to plot() and the title is
1005
    # not given, then the title is updated to provide a list of unique text
1006
    # items in each successive title.  For data generated by the frequency
1007
    # response function this will generate a common prefix followed by a
1008
    # list of systems (e.g., "Step response for sys[1], sys[2]").
1009
    #
1010

1011
    # Set initial title for the data (unique system names, preserving order)
1012
    seen = set()
9✔
1013
    sysnames = [response.sysname for response in data if not
9✔
1014
                (response.sysname in seen or seen.add(response.sysname))]
1015

1016
    if ax is None and title is None:
9✔
1017
        if data[0].title is None:
9✔
1018
            title = "Bode plot for " + ", ".join(sysnames)
9✔
1019
        else:
1020
            # Allow data to set the title (used by gangof4)
1021
            title = data[0].title
9✔
1022
        _update_plot_title(title, fig, rcParams=rcParams, frame=title_frame)
9✔
1023
    elif ax is None:
9✔
1024
        _update_plot_title(
9✔
1025
            title, fig=fig, rcParams=rcParams, frame=title_frame,
1026
            use_existing=False)
1027

1028
    #
1029
    # Create legends
1030
    #
1031
    # Legends can be placed manually by passing a legend_map array that
1032
    # matches the shape of the sublots, with each item being a string
1033
    # indicating the location of the legend for that axes (or None for no
1034
    # legend).
1035
    #
1036
    # If no legend spec is passed, a minimal number of legends are used so
1037
    # that each line in each axis can be uniquely identified.  The details
1038
    # depends on the various plotting parameters, but the general rule is
1039
    # to place legends in the top row and right column.
1040
    #
1041
    # Because plots can be built up by multiple calls to plot(), the legend
1042
    # strings are created from the line labels manually.  Thus an initial
1043
    # call to plot() may not generate any legends (e.g., if no signals are
1044
    # overlaid), but subsequent calls to plot() will need a legend for each
1045
    # different response (system).
1046
    #
1047

1048
    # Create axis legends
1049
    if show_legend != False:
9✔
1050
        # Figure out where to put legends
1051
        if legend_map is None:
9✔
1052
            legend_map = np.full(ax_array.shape, None, dtype=object)
9✔
1053
            legend_map[0, -1] = legend_loc
9✔
1054

1055
        legend_array = np.full(ax_array.shape, None, dtype=object)
9✔
1056
        for i, j in itertools.product(range(nrows), range(ncols)):
9✔
1057
            if legend_map[i, j] is None:
9✔
1058
                continue
9✔
1059
            ax = ax_array[i, j]
9✔
1060

1061
            # Get the labels to use, removing common strings
1062
            lines = [line for line in ax.get_lines()
9✔
1063
                     if line.get_label()[0] != '_']
1064
            labels = _make_legend_labels(
9✔
1065
                [line.get_label() for line in lines],
1066
                ignore_common=line_labels is not None)
1067

1068
            # Generate the label, if needed
1069
            if show_legend == True or len(labels) > 1:
9✔
1070
                with plt.rc_context(rcParams):
9✔
1071
                    legend_array[i, j] = ax.legend(
9✔
1072
                        lines, labels, loc=legend_map[i, j])
1073
    else:
1074
        legend_array = None
9✔
1075

1076
    #
1077
    # Legacy return processing
1078
    #
1079
    if plot is True:            # legacy usage; remove in future release
9✔
1080
        # Process the data to match what we were sent
1081
        for i in range(len(mag_data)):
9✔
1082
            mag_data[i] = _process_frequency_response(
9✔
1083
                data[i], omega_data[i], mag_data[i], squeeze=data[i].squeeze)
1084
            phase_data[i] = _process_frequency_response(
9✔
1085
                data[i], omega_data[i], phase_data[i], squeeze=data[i].squeeze)
1086

1087
        if len(data) == 1:
9✔
1088
            return mag_data[0], phase_data[0], omega_data[0]
9✔
1089
        else:
1090
            return mag_data, phase_data, omega_data
9✔
1091

1092
    return ControlPlot(out, ax_array, fig, legend=legend_array)
9✔
1093

1094

1095
#
1096
# Nyquist plot
1097
#
1098

1099
# Default values for module parameter variables
1100
_nyquist_defaults = {
9✔
1101
    'nyquist.primary_style': ['-', '-.'],       # style for primary curve
1102
    'nyquist.mirror_style': ['--', ':'],        # style for mirror curve
1103
    'nyquist.arrows': 2,                        # number of arrows around curve
1104
    'nyquist.arrow_size': 8,                    # pixel size for arrows
1105
    'nyquist.encirclement_threshold': 0.05,     # warning threshold
1106
    'nyquist.indent_radius': 1e-4,              # indentation radius
1107
    'nyquist.indent_direction': 'right',        # indentation direction
1108
    'nyquist.indent_points': 50,                # number of points to insert
1109
    'nyquist.max_curve_magnitude': 20,          # clip large values
1110
    'nyquist.max_curve_offset': 0.02,           # offset of primary/mirror
1111
    'nyquist.start_marker': 'o',                # marker at start of curve
1112
    'nyquist.start_marker_size': 4,             # size of the marker
1113
    'nyquist.circle_style':                     # style for unit circles
1114
      {'color': 'black', 'linestyle': 'dashed', 'linewidth': 1}
1115
}
1116

1117

1118
class NyquistResponseData:
9✔
1119
    """Nyquist response data object.
1120

1121
    Nyquist contour analysis allows the stability and robustness of a
1122
    closed loop linear system to be evaluated using the open loop response
1123
    of the loop transfer function.  The NyquistResponseData class is used
1124
    by the `nyquist_response` function to return the
1125
    response of a linear system along the Nyquist 'D' contour.  The
1126
    response object can be used to obtain information about the Nyquist
1127
    response or to generate a Nyquist plot.
1128

1129
    Parameters
1130
    ----------
1131
    count : integer
1132
        Number of encirclements of the -1 point by the Nyquist curve for
1133
        a system evaluated along the Nyquist contour.
1134
    contour : complex array
1135
        The Nyquist 'D' contour, with appropriate indentations to avoid
1136
        open loop poles and zeros near/on the imaginary axis.
1137
    response : complex array
1138
        The value of the linear system under study along the Nyquist contour.
1139
    dt : None or float
1140
        The system timebase.
1141
    sysname : str
1142
        The name of the system being analyzed.
1143
    return_contour : bool
1144
        If True, when the object is accessed as an iterable return two
1145
        elements: `count` (number of encirclements) and `contour`.  If
1146
        False (default), then return only `count`.
1147

1148
    """
1149
    def __init__(
9✔
1150
            self, count, contour, response, dt, sysname=None,
1151
            return_contour=False):
1152
        self.count = count
9✔
1153
        self.contour = contour
9✔
1154
        self.response = response
9✔
1155
        self.dt = dt
9✔
1156
        self.sysname = sysname
9✔
1157
        self.return_contour = return_contour
9✔
1158

1159
    # Implement iter to allow assigning to a tuple
1160
    def __iter__(self):
9✔
1161
        if self.return_contour:
9✔
1162
            return iter((self.count, self.contour))
9✔
1163
        else:
1164
            return iter((self.count, ))
9✔
1165

1166
    # Implement (thin) getitem to allow access via legacy indexing
1167
    def __getitem__(self, index):
9✔
1168
        return list(self.__iter__())[index]
×
1169

1170
    # Implement (thin) len to emulate legacy testing interface
1171
    def __len__(self):
9✔
1172
        return 2 if self.return_contour else 1
9✔
1173

1174
    def plot(self, *args, **kwargs):
9✔
1175
        """Plot a list of Nyquist responses.
1176

1177
        See `nyquist_plot` for details.
1178

1179
        """
1180
        return nyquist_plot(self, *args, **kwargs)
9✔
1181

1182

1183
class NyquistResponseList(list):
9✔
1184
    """List of NyquistResponseData objects with plotting capability.
1185

1186
    This class consists of a list of `NyquistResponseData` objects.
1187
    It is a subclass of the Python `list` class, with a `plot` method that
1188
    plots the individual `NyquistResponseData` objects.
1189

1190
    """
1191
    def plot(self, *args, **kwargs):
9✔
1192
        """Plot a list of Nyquist responses.
1193

1194
        See `nyquist_plot` for details.
1195

1196
        """
1197
        return nyquist_plot(self, *args, **kwargs)
9✔
1198

1199

1200
def nyquist_response(
9✔
1201
        sysdata, omega=None, omega_limits=None, omega_num=None,
1202
        return_contour=False, warn_encirclements=True, warn_nyquist=True,
1203
        _kwargs=None, _check_kwargs=True, **kwargs):
1204
    """Nyquist response for a system.
1205

1206
    Computes a Nyquist contour for the system over a (optional) frequency
1207
    range and evaluates the number of net encirclements.  The curve is
1208
    computed by evaluating the Nyquist segment along the positive imaginary
1209
    axis, with a mirror image generated to reflect the negative imaginary
1210
    axis.  Poles on or near the imaginary axis are avoided using a small
1211
    indentation.  The portion of the Nyquist contour at infinity is not
1212
    explicitly computed (since it maps to a constant value for any system
1213
    with a proper transfer function).
1214

1215
    Parameters
1216
    ----------
1217
    sysdata : LTI or list of LTI
1218
        List of linear input/output systems (single system is OK). Nyquist
1219
        curves for each system are plotted on the same graph.
1220
    omega : array_like, optional
1221
        Set of frequencies to be evaluated, in rad/sec.
1222

1223
    Returns
1224
    -------
1225
    responses : list of `NyquistResponseData`
1226
        For each system, a Nyquist response data object is returned.  If
1227
        `sysdata` is a single system, a single element is returned (not a
1228
        list).
1229
    response.count : int
1230
        Number of encirclements of the point -1 by the Nyquist curve.  If
1231
        multiple systems are given, an array of counts is returned.
1232
    response.contour : ndarray
1233
        The contour used to create the primary Nyquist curve segment.  To
1234
        obtain the Nyquist curve values, evaluate system(s) along contour.
1235

1236
    Other Parameters
1237
    ----------------
1238
    encirclement_threshold : float, optional
1239
        Define the threshold for generating a warning if the number of net
1240
        encirclements is a non-integer value.  Default value is 0.05 and can
1241
        be set using `config.defaults['nyquist.encirclement_threshold']`.
1242
    indent_direction : str, optional
1243
        For poles on the imaginary axis, set the direction of indentation to
1244
        be 'right' (default), 'left', or 'none'.  The default value can
1245
        be set using `config.defaults['nyquist.indent_direction']`.
1246
    indent_points : int, optional
1247
        Number of points to insert in the Nyquist contour around poles that
1248
        are at or near the imaginary axis.
1249
    indent_radius : float, optional
1250
        Amount to indent the Nyquist contour around poles on or near the
1251
        imaginary axis. Portions of the Nyquist plot corresponding to
1252
        indented portions of the contour are plotted using a different line
1253
        style. The default value can be set using
1254
        `config.defaults['nyquist.indent_radius']`.
1255
    omega_limits : array_like of two values
1256
        Set limits for plotted frequency range. If Hz=True the limits are
1257
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
1258
        elements is equivalent to providing `omega_limits`.
1259
    omega_num : int, optional
1260
        Number of samples to use for the frequency range.  Defaults to
1261
        `config.defaults['freqplot.number_of_samples']`.
1262
    warn_nyquist : bool, optional
1263
        If set to False, turn off warnings about frequencies above Nyquist.
1264
    warn_encirclements : bool, optional
1265
        If set to False, turn off warnings about number of encirclements not
1266
        meeting the Nyquist criterion.
1267

1268
    Notes
1269
    -----
1270
    If a discrete-time model is given, the frequency response is computed
1271
    along the upper branch of the unit circle, using the mapping ``z =
1272
    exp(1j * omega * dt)`` where `omega` ranges from 0 to pi/`dt` and
1273
    `dt` is the discrete timebase.  If timebase not specified
1274
    (`dt` = True), `dt` is set to 1.
1275

1276
    If a continuous-time system contains poles on or near the imaginary
1277
    axis, a small indentation will be used to avoid the pole.  The radius
1278
    of the indentation is given by `indent_radius` and it is taken to the
1279
    right of stable poles and the left of unstable poles.  If a pole is
1280
    exactly on the imaginary axis, the `indent_direction` parameter can be
1281
    used to set the direction of indentation.  Setting `indent_direction`
1282
    to 'none' will turn off indentation.
1283

1284
    For those portions of the Nyquist plot in which the contour is indented
1285
    to avoid poles, resulting in a scaling of the Nyquist plot, the line
1286
    styles are according to the settings of the `primary_style` and
1287
    `mirror_style` keywords.  By default the scaled portions of the primary
1288
    curve use a dotted line style and the scaled portion of the mirror
1289
    image use a dashdot line style.
1290

1291
    If the legacy keyword `return_contour` is specified as True, the
1292
    response object can be iterated over to return ``(count, contour)``.
1293
    This behavior is deprecated and will be removed in a future release.
1294

1295
    See Also
1296
    --------
1297
    nyquist_plot
1298

1299
    Examples
1300
    --------
1301
    >>> G = ct.zpk([], [-1, -2, -3], gain=100)
1302
    >>> response = ct.nyquist_response(G)
1303
    >>> count = response.count
1304
    >>> cplt = response.plot()
1305

1306
    """
1307
    # Create unified list of keyword arguments
1308
    if _kwargs is None:
9✔
1309
        _kwargs = kwargs
9✔
1310
    else:
1311
        # Use existing dictionary, to keep track of processed keywords
1312
        _kwargs |= kwargs
9✔
1313

1314
    # Get values for params
1315
    omega_num_given = omega_num is not None
9✔
1316
    omega_num = config._get_param('freqplot', 'number_of_samples', omega_num)
9✔
1317
    indent_radius = config._get_param(
9✔
1318
        'nyquist', 'indent_radius', _kwargs, _nyquist_defaults, pop=True)
1319
    encirclement_threshold = config._get_param(
9✔
1320
        'nyquist', 'encirclement_threshold', _kwargs,
1321
        _nyquist_defaults, pop=True)
1322
    indent_direction = config._get_param(
9✔
1323
        'nyquist', 'indent_direction', _kwargs, _nyquist_defaults, pop=True)
1324
    indent_points = config._get_param(
9✔
1325
        'nyquist', 'indent_points', _kwargs, _nyquist_defaults, pop=True)
1326

1327
    if _check_kwargs and _kwargs:
9✔
1328
        raise TypeError("unrecognized keywords: ", str(_kwargs))
9✔
1329

1330
    # Convert the first argument to a list
1331
    syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata]
9✔
1332

1333
    # Determine the range of frequencies to use, based on args/features
1334
    omega, omega_range_given = _determine_omega_vector(
9✔
1335
        syslist, omega, omega_limits, omega_num, feature_periphery_decades=2)
1336

1337
    # If omega was not specified explicitly, start at omega = 0
1338
    if not omega_range_given:
9✔
1339
        if omega_num_given:
9✔
1340
            # Just reset the starting point
1341
            omega[0] = 0.0
9✔
1342
        else:
1343
            # Insert points between the origin and the first frequency point
1344
            omega = np.concatenate((
9✔
1345
                np.linspace(0, omega[0], indent_points), omega[1:]))
1346

1347
    # Go through each system and keep track of the results
1348
    responses = []
9✔
1349
    for idx, sys in enumerate(syslist):
9✔
1350
        if not sys.issiso():
9✔
1351
            # TODO: Add MIMO nyquist plots.
1352
            raise ControlMIMONotImplemented(
9✔
1353
                "Nyquist plot currently only supports SISO systems.")
1354

1355
        # Figure out the frequency range
1356
        if isinstance(sys, FrequencyResponseData) and sys._ifunc is None \
9✔
1357
           and not omega_range_given:
1358
            omega_sys = sys.omega               # use system frequencies
9✔
1359
        else:
1360
            omega_sys = np.asarray(omega)       # use common omega vector
9✔
1361

1362
        # Determine the contour used to evaluate the Nyquist curve
1363
        if sys.isdtime(strict=True):
9✔
1364
            # Restrict frequencies for discrete-time systems
1365
            nyq_freq = math.pi / sys.dt
9✔
1366
            if not omega_range_given:
9✔
1367
                # limit up to and including Nyquist frequency
1368
                omega_sys = np.hstack((
9✔
1369
                    omega_sys[omega_sys < nyq_freq], nyq_freq))
1370

1371
            # Issue a warning if we are sampling above Nyquist
1372
            if np.any(omega_sys * sys.dt > np.pi) and warn_nyquist:
9✔
1373
                warnings.warn("evaluation above Nyquist frequency")
9✔
1374

1375
        # do indentations in s-plane where it is more convenient
1376
        splane_contour = 1j * omega_sys
9✔
1377

1378
        # Bend the contour around any poles on/near the imaginary axis
1379
        if isinstance(sys, (StateSpace, TransferFunction)) \
9✔
1380
                and indent_direction != 'none':
1381
            if sys.isctime():
9✔
1382
                splane_poles = sys.poles()
9✔
1383
                splane_cl_poles = sys.feedback().poles()
9✔
1384
            else:
1385
                # map z-plane poles to s-plane. We ignore any at the origin
1386
                # to avoid numerical warnings because we know we
1387
                # don't need to indent for them
1388
                zplane_poles = sys.poles()
9✔
1389
                zplane_poles = zplane_poles[~np.isclose(abs(zplane_poles), 0.)]
9✔
1390
                splane_poles = np.log(zplane_poles) / sys.dt
9✔
1391

1392
                zplane_cl_poles = sys.feedback().poles()
9✔
1393
                # eliminate z-plane poles at the origin to avoid warnings
1394
                zplane_cl_poles = zplane_cl_poles[
9✔
1395
                    ~np.isclose(abs(zplane_cl_poles), 0.)]
1396
                splane_cl_poles = np.log(zplane_cl_poles) / sys.dt
9✔
1397

1398
            #
1399
            # Check to make sure indent radius is small enough
1400
            #
1401
            # If there is a closed loop pole that is near the imaginary axis
1402
            # at a point that is near an open loop pole, it is possible that
1403
            # indentation might skip or create an extraneous encirclement.
1404
            # We check for that situation here and generate a warning if that
1405
            # could happen.
1406
            #
1407
            for p_cl in splane_cl_poles:
9✔
1408
                # See if any closed loop poles are near the imaginary axis
1409
                if abs(p_cl.real) <= indent_radius:
9✔
1410
                    # See if any open loop poles are close to closed loop poles
1411
                    if len(splane_poles) > 0:
9✔
1412
                        p_ol = splane_poles[
9✔
1413
                            (np.abs(splane_poles - p_cl)).argmin()]
1414

1415
                        if abs(p_ol - p_cl) <= indent_radius and \
9✔
1416
                                warn_encirclements:
1417
                            warnings.warn(
9✔
1418
                                "indented contour may miss closed loop pole; "
1419
                                "consider reducing indent_radius to below "
1420
                                f"{abs(p_ol - p_cl):5.2g}", stacklevel=2)
1421

1422
            #
1423
            # See if we should add some frequency points near imaginary poles
1424
            #
1425
            for p in splane_poles:
9✔
1426
                # See if we need to process this pole (skip if on the negative
1427
                # imaginary axis or not near imaginary axis + user override)
1428
                if p.imag < 0 or abs(p.real) > indent_radius or \
9✔
1429
                   omega_range_given:
1430
                    continue
9✔
1431

1432
                # Find the frequencies before the pole frequency
1433
                below_points = np.argwhere(
9✔
1434
                    splane_contour.imag - abs(p.imag) < -indent_radius)
1435
                if below_points.size > 0:
9✔
1436
                    first_point = below_points[-1].item()
9✔
1437
                    start_freq = p.imag - indent_radius
9✔
1438
                else:
1439
                    # Add the points starting at the beginning of the contour
1440
                    assert splane_contour[0] == 0
9✔
1441
                    first_point = 0
9✔
1442
                    start_freq = 0
9✔
1443

1444
                # Find the frequencies after the pole frequency
1445
                above_points = np.argwhere(
9✔
1446
                    splane_contour.imag - abs(p.imag) > indent_radius)
1447
                last_point = above_points[0].item()
9✔
1448

1449
                # Add points for half/quarter circle around pole frequency
1450
                # (these will get indented left or right below)
1451
                splane_contour = np.concatenate((
9✔
1452
                    splane_contour[0:first_point+1],
1453
                    (1j * np.linspace(
1454
                        start_freq, p.imag + indent_radius, indent_points)),
1455
                    splane_contour[last_point:]))
1456

1457
            # Indent points that are too close to a pole
1458
            if len(splane_poles) > 0: # accommodate no splane poles if dtime sys
9✔
1459
                for i, s in enumerate(splane_contour):
9✔
1460
                    # Find the nearest pole
1461
                    p = splane_poles[(np.abs(splane_poles - s)).argmin()]
9✔
1462

1463
                    # See if we need to indent around it
1464
                    if abs(s - p) < indent_radius:
9✔
1465
                        # Figure out how much to offset (simple trigonometry)
1466
                        offset = np.sqrt(
9✔
1467
                            indent_radius ** 2 - (s - p).imag ** 2) \
1468
                            - (s - p).real
1469

1470
                        # Figure out which way to offset the contour point
1471
                        if p.real < 0 or (p.real == 0 and
9✔
1472
                                        indent_direction == 'right'):
1473
                            # Indent to the right
1474
                            splane_contour[i] += offset
9✔
1475

1476
                        elif p.real > 0 or (p.real == 0 and
9✔
1477
                                            indent_direction == 'left'):
1478
                            # Indent to the left
1479
                            splane_contour[i] -= offset
9✔
1480

1481
                        else:
1482
                            raise ValueError(
9✔
1483
                                "unknown value for indent_direction")
1484

1485
        # change contour to z-plane if necessary
1486
        if sys.isctime():
9✔
1487
            contour = splane_contour
9✔
1488
        else:
1489
            contour = np.exp(splane_contour * sys.dt)
9✔
1490

1491
        # Make sure we don't try to evaluate at a pole
1492
        if isinstance(sys, (StateSpace, TransferFunction)):
9✔
1493
            if any([pole in contour for pole in sys.poles()]):
9✔
1494
                raise RuntimeError(
9✔
1495
                    "attempt to evaluate at a pole; indent required")
1496

1497
        # Compute the primary curve
1498
        resp = sys(contour)
9✔
1499

1500
        # Compute CW encirclements of -1 by integrating the (unwrapped) angle
1501
        phase = -unwrap(np.angle(resp + 1))
9✔
1502
        encirclements = np.sum(np.diff(phase)) / np.pi
9✔
1503
        count = int(np.round(encirclements, 0))
9✔
1504

1505
        # Let the user know if the count might not make sense
1506
        if abs(encirclements - count) > encirclement_threshold and \
9✔
1507
           warn_encirclements:
1508
            warnings.warn(
9✔
1509
                "number of encirclements was a non-integer value; this can"
1510
                " happen is contour is not closed, possibly based on a"
1511
                " frequency range that does not include zero.")
1512

1513
        #
1514
        # Make sure that the encirclements match the Nyquist criterion
1515
        #
1516
        # If the user specifies the frequency points to use, it is possible
1517
        # to miss encirclements, so we check here to make sure that the
1518
        # Nyquist criterion is actually satisfied.
1519
        #
1520
        if isinstance(sys, (StateSpace, TransferFunction)):
9✔
1521
            # Count the number of open/closed loop RHP poles
1522
            if sys.isctime():
9✔
1523
                if indent_direction == 'right':
9✔
1524
                    P = (sys.poles().real > 0).sum()
9✔
1525
                else:
1526
                    P = (sys.poles().real >= 0).sum()
9✔
1527
                Z = (sys.feedback().poles().real >= 0).sum()
9✔
1528
            else:
1529
                if indent_direction == 'right':
9✔
1530
                    P = (np.abs(sys.poles()) > 1).sum()
9✔
1531
                else:
1532
                    P = (np.abs(sys.poles()) >= 1).sum()
×
1533
                Z = (np.abs(sys.feedback().poles()) >= 1).sum()
9✔
1534

1535
            # Check to make sure the results make sense; warn if not
1536
            if Z != count + P and warn_encirclements:
9✔
1537
                warnings.warn(
9✔
1538
                    "number of encirclements does not match Nyquist criterion;"
1539
                    " check frequency range and indent radius/direction",
1540
                    UserWarning, stacklevel=2)
1541
            elif indent_direction == 'none' and any(sys.poles().real == 0) \
9✔
1542
                 and warn_encirclements:
1543
                warnings.warn(
×
1544
                    "system has pure imaginary poles but indentation is"
1545
                    " turned off; results may be meaningless",
1546
                    RuntimeWarning, stacklevel=2)
1547

1548
        # Decide on system name
1549
        sysname = sys.name if sys.name is not None else f"Unknown-{idx}"
9✔
1550

1551
        responses.append(NyquistResponseData(
9✔
1552
            count, contour, resp, sys.dt, sysname=sysname,
1553
            return_contour=return_contour))
1554

1555
    if isinstance(sysdata, (list, tuple)):
9✔
1556
        return NyquistResponseList(responses)
9✔
1557
    else:
1558
        return responses[0]
9✔
1559

1560

1561
def nyquist_plot(
9✔
1562
        data, omega=None, plot=None, label_freq=0, color=None, label=None,
1563
        return_contour=None, title=None, ax=None,
1564
        unit_circle=False, mt_circles=None, ms_circles=None, **kwargs):
1565
    """Nyquist plot for a system.
1566

1567
    Generates a Nyquist plot for the system over a (optional) frequency
1568
    range.  The curve is computed by evaluating the Nyquist segment along
1569
    the positive imaginary axis, with a mirror image generated to reflect
1570
    the negative imaginary axis.  Poles on or near the imaginary axis are
1571
    avoided using a small indentation.  The portion of the Nyquist contour
1572
    at infinity is not explicitly computed (since it maps to a constant
1573
    value for any system with a proper transfer function).
1574

1575
    Parameters
1576
    ----------
1577
    data : list of `LTI` or `NyquistResponseData`
1578
        List of linear input/output systems (single system is OK) or
1579
        Nyquist responses (computed using `nyquist_response`).
1580
        Nyquist curves for each system are plotted on the same graph.
1581
    omega : array_like, optional
1582
        Set of frequencies to be evaluated, in rad/sec. Specifying
1583
        `omega` as a list of two elements is equivalent to providing
1584
        `omega_limits`.
1585
    unit_circle : bool, optional
1586
        If True, display the unit circle, to read gain crossover
1587
        frequency.  The circle style is determined by
1588
        `config.defaults['nyquist.circle_style']`.
1589
    mt_circles : array_like, optional
1590
        Draw circles corresponding to the given magnitudes of sensitivity.
1591
    ms_circles : array_like, optional
1592
        Draw circles corresponding to the given magnitudes of complementary
1593
        sensitivity.
1594
    **kwargs : `matplotlib.pyplot.plot` keyword properties, optional
1595
        Additional keywords passed to `matplotlib` to specify line properties.
1596

1597
    Returns
1598
    -------
1599
    cplt : `ControlPlot` object
1600
        Object containing the data that were plotted.  See `ControlPlot`
1601
        for more detailed information.
1602
    cplt.lines : 2D array of `matplotlib.lines.Line2D`
1603
        Array containing information on each line in the plot.  The shape
1604
        of the array is given by (nsys, 4) where nsys is the number of
1605
        systems or Nyquist responses passed to the function.  The second
1606
        index specifies the segment type:
1607

1608
            - lines[idx, 0]: unscaled portion of the primary curve
1609
            - lines[idx, 1]: scaled portion of the primary curve
1610
            - lines[idx, 2]: unscaled portion of the mirror curve
1611
            - lines[idx, 3]: scaled portion of the mirror curve
1612

1613
    cplt.axes : 2D array of `matplotlib.axes.Axes`
1614
        Axes for each subplot.
1615
    cplt.figure : `matplotlib.figure.Figure`
1616
        Figure containing the plot.
1617
    cplt.legend : 2D array of `matplotlib.legend.Legend`
1618
        Legend object(s) contained in the plot.
1619

1620
    Other Parameters
1621
    ----------------
1622
    arrows : int or 1D/2D array of floats, optional
1623
        Specify the number of arrows to plot on the Nyquist curve.  If an
1624
        integer is passed. that number of equally spaced arrows will be
1625
        plotted on each of the primary segment and the mirror image.  If a
1626
        1D array is passed, it should consist of a sorted list of floats
1627
        between 0 and 1, indicating the location along the curve to plot an
1628
        arrow.  If a 2D array is passed, the first row will be used to
1629
        specify arrow locations for the primary curve and the second row
1630
        will be used for the mirror image.  Default value is 2 and can be
1631
        set using `config.defaults['nyquist.arrows']`.
1632
    arrow_size : float, optional
1633
        Arrowhead width and length (in display coordinates).  Default value is
1634
        8 and can be set using `config.defaults['nyquist.arrow_size']`.
1635
    arrow_style : matplotlib.patches.ArrowStyle, optional
1636
        Define style used for Nyquist curve arrows (overrides `arrow_size`).
1637
    ax : `matplotlib.axes.Axes`, optional
1638
        The matplotlib axes to draw the figure on.  If not specified and
1639
        the current figure has a single axes, that axes is used.
1640
        Otherwise, a new figure is created.
1641
    encirclement_threshold : float, optional
1642
        Define the threshold for generating a warning if the number of net
1643
        encirclements is a non-integer value.  Default value is 0.05 and can
1644
        be set using `config.defaults['nyquist.encirclement_threshold']`.
1645
    indent_direction : str, optional
1646
        For poles on the imaginary axis, set the direction of indentation to
1647
        be 'right' (default), 'left', or 'none'.
1648
    indent_points : int, optional
1649
        Number of points to insert in the Nyquist contour around poles that
1650
        are at or near the imaginary axis.
1651
    indent_radius : float, optional
1652
        Amount to indent the Nyquist contour around poles on or near the
1653
        imaginary axis. Portions of the Nyquist plot corresponding to indented
1654
        portions of the contour are plotted using a different line style.
1655
    label : str or array_like of str, optional
1656
        If present, replace automatically generated label(s) with the given
1657
        label(s).  If sysdata is a list, strings should be specified for each
1658
        system.
1659
    label_freq : int, optional
1660
        Label every nth frequency on the plot.  If not specified, no labels
1661
        are generated.
1662
    legend_loc : int or str, optional
1663
        Include a legend in the given location. Default is 'upper right',
1664
        with no legend for a single response.  Use False to suppress legend.
1665
    max_curve_magnitude : float, optional
1666
        Restrict the maximum magnitude of the Nyquist plot to this value.
1667
        Portions of the Nyquist plot whose magnitude is restricted are
1668
        plotted using a different line style.  The default value is 20 and
1669
        can be set using `config.defaults['nyquist.max_curve_magnitude']`.
1670
    max_curve_offset : float, optional
1671
        When plotting scaled portion of the Nyquist plot, increase/decrease
1672
        the magnitude by this fraction of the max_curve_magnitude to allow
1673
        any overlaps between the primary and mirror curves to be avoided.
1674
        The default value is 0.02 and can be set using
1675
        `config.defaults['nyquist.max_curve_magnitude']`.
1676
    mirror_style : [str, str] or False
1677
        Linestyles for mirror image of the Nyquist curve.  The first element
1678
        is used for unscaled portions of the Nyquist curve, the second element
1679
        is used for portions that are scaled (using max_curve_magnitude).  If
1680
        False then omit completely.  Default linestyle (['--', ':']) is
1681
        determined by `config.defaults['nyquist.mirror_style']`.
1682
    omega_limits : array_like of two values
1683
        Set limits for plotted frequency range. If Hz=True the limits are
1684
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
1685
        elements is equivalent to providing `omega_limits`.
1686
    omega_num : int, optional
1687
        Number of samples to use for the frequency range.  Defaults to
1688
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
1689
        not a list of systems.
1690
    plot : bool, optional
1691
        (legacy) If given, `nyquist_plot` returns the legacy return values
1692
        of (counts, contours).  If False, return the values with no plot.
1693
    primary_style : [str, str], optional
1694
        Linestyles for primary image of the Nyquist curve.  The first
1695
        element is used for unscaled portions of the Nyquist curve,
1696
        the second element is used for portions that are scaled (using
1697
        max_curve_magnitude).  Default linestyle (['-', '-.']) is
1698
        determined by `config.defaults['nyquist.mirror_style']`.
1699
    rcParams : dict
1700
        Override the default parameters used for generating plots.
1701
        Default is set by `config.defaults['ctrlplot.rcParams']`.
1702
    return_contour : bool, optional
1703
        (legacy) If True, return the encirclement count and Nyquist
1704
        contour used to generate the Nyquist plot.
1705
    show_legend : bool, optional
1706
        Force legend to be shown if True or hidden if False.  If
1707
        None, then show legend when there is more than one line on the
1708
        plot or `legend_loc` has been specified.
1709
    start_marker : str, optional
1710
        Matplotlib marker to use to mark the starting point of the Nyquist
1711
        plot.  Defaults value is 'o' and can be set using
1712
        `config.defaults['nyquist.start_marker']`.
1713
    start_marker_size : float, optional
1714
        Start marker size (in display coordinates).  Default value is
1715
        4 and can be set using `config.defaults['nyquist.start_marker_size']`.
1716
    title : str, optional
1717
        Set the title of the plot.  Defaults to plot type and system name(s).
1718
    title_frame : str, optional
1719
        Set the frame of reference used to center the plot title. If set to
1720
        'axes' (default), the horizontal position of the title will
1721
        centered relative to the axes.  If set to 'figure', it will be
1722
        centered with respect to the figure (faster execution).
1723
    warn_nyquist : bool, optional
1724
        If set to False, turn off warnings about frequencies above Nyquist.
1725
    warn_encirclements : bool, optional
1726
        If set to False, turn off warnings about number of encirclements not
1727
        meeting the Nyquist criterion.
1728

1729
    See Also
1730
    --------
1731
    nyquist_response
1732

1733
    Notes
1734
    -----
1735
    If a discrete-time model is given, the frequency response is computed
1736
    along the upper branch of the unit circle, using the mapping ``z =
1737
    exp(1j * omega * dt)`` where `omega` ranges from 0 to pi/`dt` and
1738
    `dt` is the discrete timebase.  If timebase not specified
1739
    (`dt` = True), `dt` is set to 1.
1740

1741
    If a continuous-time system contains poles on or near the imaginary
1742
    axis, a small indentation will be used to avoid the pole.  The radius
1743
    of the indentation is given by `indent_radius` and it is taken to the
1744
    right of stable poles and the left of unstable poles.  If a pole is
1745
    exactly on the imaginary axis, the `indent_direction` parameter can be
1746
    used to set the direction of indentation.  Setting `indent_direction`
1747
    to 'none' will turn off indentation.  If `return_contour` is True,
1748
    the exact contour used for evaluation is returned.
1749

1750
    For those portions of the Nyquist plot in which the contour is indented
1751
    to avoid poles, resulting in a scaling of the Nyquist plot, the line
1752
    styles are according to the settings of the `primary_style` and
1753
    `mirror_style` keywords.  By default the scaled portions of the primary
1754
    curve use a dotted line style and the scaled portion of the mirror
1755
    image use a dashdot line style.
1756

1757
    Examples
1758
    --------
1759
    >>> G = ct.zpk([], [-1, -2, -3], gain=100)
1760
    >>> out = ct.nyquist_plot(G)
1761

1762
    """
1763
    #
1764
    # Keyword processing
1765
    #
1766
    # Keywords for the nyquist_plot function can either be keywords that
1767
    # are unique to this function, keywords that are intended for use by
1768
    # nyquist_response (if data is a list of systems), or keywords that
1769
    # are intended for the plotting commands.
1770
    #
1771
    # We first pop off all keywords that are used directly by this
1772
    # function.  If data is a list of systems, when then pop off keywords
1773
    # that correspond to nyquist_response() keywords.  The remaining
1774
    # keywords are passed to matplotlib (and will generate an error if
1775
    # unrecognized).
1776
    #
1777

1778
    # Get values for params (and pop from list to allow keyword use in plot)
1779
    arrows = config._get_param(
9✔
1780
        'nyquist', 'arrows', kwargs, _nyquist_defaults, pop=True)
1781
    arrow_size = config._get_param(
9✔
1782
        'nyquist', 'arrow_size', kwargs, _nyquist_defaults, pop=True)
1783
    arrow_style = config._get_param('nyquist', 'arrow_style', kwargs, None)
9✔
1784
    ax_user = ax
9✔
1785
    max_curve_magnitude = config._get_param(
9✔
1786
        'nyquist', 'max_curve_magnitude', kwargs, _nyquist_defaults, pop=True)
1787
    max_curve_offset = config._get_param(
9✔
1788
        'nyquist', 'max_curve_offset', kwargs, _nyquist_defaults, pop=True)
1789
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
1790
    start_marker = config._get_param(
9✔
1791
        'nyquist', 'start_marker', kwargs, _nyquist_defaults, pop=True)
1792
    start_marker_size = config._get_param(
9✔
1793
        'nyquist', 'start_marker_size', kwargs, _nyquist_defaults, pop=True)
1794
    title_frame = config._get_param(
9✔
1795
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
1796

1797
    # Set line styles for the curves
1798
    def _parse_linestyle(style_name, allow_false=False):
9✔
1799
        style = config._get_param(
9✔
1800
            'nyquist', style_name, kwargs, _nyquist_defaults, pop=True)
1801
        if isinstance(style, str):
9✔
1802
            # Only one style provided, use the default for the other
1803
            style = [style, _nyquist_defaults['nyquist.' + style_name][1]]
9✔
1804
            warnings.warn(
9✔
1805
                "use of a single string for linestyle will be deprecated "
1806
                " in a future release", PendingDeprecationWarning)
1807
        if (allow_false and style is False) or \
9✔
1808
           (isinstance(style, list) and len(style) == 2):
1809
            return style
9✔
1810
        else:
1811
            raise ValueError(f"invalid '{style_name}': {style}")
9✔
1812

1813
    primary_style = _parse_linestyle('primary_style')
9✔
1814
    mirror_style = _parse_linestyle('mirror_style', allow_false=True)
9✔
1815

1816
    # Parse the arrows keyword
1817
    if not arrows:
9✔
1818
        arrow_pos = []
9✔
1819
    elif isinstance(arrows, int):
9✔
1820
        N = arrows
9✔
1821
        # Space arrows out, starting midway along each "region"
1822
        arrow_pos = np.linspace(0.5/N, 1 + 0.5/N, N, endpoint=False)
9✔
1823
    elif isinstance(arrows, (list, np.ndarray)):
9✔
1824
        arrow_pos = np.sort(np.atleast_1d(arrows))
9✔
1825
    else:
1826
        raise ValueError("unknown or unsupported arrow location")
9✔
1827

1828
    # Set the arrow style
1829
    if arrow_style is None:
9✔
1830
        arrow_style = mpl.patches.ArrowStyle(
9✔
1831
            'simple', head_width=arrow_size, head_length=arrow_size)
1832

1833
    # If argument was a singleton, turn it into a tuple
1834
    if not isinstance(data, (list, tuple)):
9✔
1835
        data = [data]
9✔
1836

1837
    # Process label keyword
1838
    line_labels = _process_line_labels(label, len(data))
9✔
1839

1840
    # If we are passed a list of systems, compute response first
1841
    if all([isinstance(
9✔
1842
            sys, (StateSpace, TransferFunction, FrequencyResponseData))
1843
            for sys in data]):
1844
        # Get the response; pop explicit keywords here, kwargs in _response()
1845
        nyquist_responses = nyquist_response(
9✔
1846
            data, omega=omega, return_contour=return_contour,
1847
            omega_limits=kwargs.pop('omega_limits', None),
1848
            omega_num=kwargs.pop('omega_num', None),
1849
            warn_encirclements=kwargs.pop('warn_encirclements', True),
1850
            warn_nyquist=kwargs.pop('warn_nyquist', True),
1851
            _kwargs=kwargs, _check_kwargs=False)
1852
    else:
1853
        nyquist_responses = data
9✔
1854

1855
    # Legacy return value processing
1856
    if plot is not None or return_contour is not None:
9✔
1857
        warnings.warn(
9✔
1858
            "nyquist_plot() return value of count[, contour] is deprecated; "
1859
            "use nyquist_response()", FutureWarning)
1860

1861
        # Extract out the values that we will eventually return
1862
        counts = [response.count for response in nyquist_responses]
9✔
1863
        contours = [response.contour for response in nyquist_responses]
9✔
1864

1865
    if plot is False:
9✔
1866
        # Make sure we used all of the keywords
1867
        if kwargs:
9✔
1868
            raise TypeError("unrecognized keywords: ", str(kwargs))
×
1869

1870
        if len(data) == 1:
9✔
1871
            counts, contours = counts[0], contours[0]
9✔
1872

1873
        # Return counts and (optionally) the contour we used
1874
        return (counts, contours) if return_contour else counts
9✔
1875

1876
    fig, ax = _process_ax_keyword(
9✔
1877
        ax_user, shape=(1, 1), squeeze=True, rcParams=rcParams)
1878
    legend_loc, _, show_legend = _process_legend_keywords(
9✔
1879
        kwargs, None, 'upper right')
1880

1881
    # Create a list of lines for the output
1882
    out = np.empty(len(nyquist_responses), dtype=object)
9✔
1883
    for i in range(out.shape[0]):
9✔
1884
        out[i] = []             # unique list in each element
9✔
1885

1886
    for idx, response in enumerate(nyquist_responses):
9✔
1887
        resp = response.response
9✔
1888
        if response.dt in [0, None]:
9✔
1889
            splane_contour = response.contour
9✔
1890
        else:
1891
            splane_contour = np.log(response.contour) / response.dt
9✔
1892

1893
        # Find the different portions of the curve (with scaled pts marked)
1894
        reg_mask = np.logical_or(
9✔
1895
            np.abs(resp) > max_curve_magnitude,
1896
            splane_contour.real != 0)
1897
        # reg_mask = np.logical_or(
1898
        #     np.abs(resp.real) > max_curve_magnitude,
1899
        #     np.abs(resp.imag) > max_curve_magnitude)
1900

1901
        scale_mask = ~reg_mask \
9✔
1902
            & np.concatenate((~reg_mask[1:], ~reg_mask[-1:])) \
1903
            & np.concatenate((~reg_mask[0:1], ~reg_mask[:-1]))
1904

1905
        # Rescale the points with large magnitude
1906
        rescale = np.logical_and(
9✔
1907
            reg_mask, abs(resp) > max_curve_magnitude)
1908
        resp[rescale] *= max_curve_magnitude / abs(resp[rescale])
9✔
1909

1910
        # Get the label to use for the line
1911
        label = response.sysname if line_labels is None else line_labels[idx]
9✔
1912

1913
        # Plot the regular portions of the curve (and grab the color)
1914
        x_reg = np.ma.masked_where(reg_mask, resp.real)
9✔
1915
        y_reg = np.ma.masked_where(reg_mask, resp.imag)
9✔
1916
        p = plt.plot(
9✔
1917
            x_reg, y_reg, primary_style[0], color=color, label=label, **kwargs)
1918
        c = p[0].get_color()
9✔
1919
        out[idx] += p
9✔
1920

1921
        # Figure out how much to offset the curve: the offset goes from
1922
        # zero at the start of the scaled section to max_curve_offset as
1923
        # we move along the curve
1924
        curve_offset = _compute_curve_offset(
9✔
1925
            resp, scale_mask, max_curve_offset)
1926

1927
        # Plot the scaled sections of the curve (changing linestyle)
1928
        x_scl = np.ma.masked_where(scale_mask, resp.real)
9✔
1929
        y_scl = np.ma.masked_where(scale_mask, resp.imag)
9✔
1930
        if x_scl.count() >= 1 and y_scl.count() >= 1:
9✔
1931
            out[idx] += plt.plot(
9✔
1932
                x_scl * (1 + curve_offset),
1933
                y_scl * (1 + curve_offset),
1934
                primary_style[1], color=c, **kwargs)
1935
        else:
1936
            out[idx] += [None]
9✔
1937

1938
        # Plot the primary curve (invisible) for setting arrows
1939
        x, y = resp.real.copy(), resp.imag.copy()
9✔
1940
        x[reg_mask] *= (1 + curve_offset[reg_mask])
9✔
1941
        y[reg_mask] *= (1 + curve_offset[reg_mask])
9✔
1942
        p = plt.plot(x, y, linestyle='None', color=c)
9✔
1943

1944
        # Add arrows
1945
        ax = plt.gca()
9✔
1946
        _add_arrows_to_line2D(
9✔
1947
            ax, p[0], arrow_pos, arrowstyle=arrow_style, dir=1)
1948

1949
        # Plot the mirror image
1950
        if mirror_style is not False:
9✔
1951
            # Plot the regular and scaled segments
1952
            out[idx] += plt.plot(
9✔
1953
                x_reg, -y_reg, mirror_style[0], color=c, **kwargs)
1954
            if x_scl.count() >= 1 and y_scl.count() >= 1:
9✔
1955
                out[idx] += plt.plot(
9✔
1956
                    x_scl * (1 - curve_offset),
1957
                    -y_scl * (1 - curve_offset),
1958
                    mirror_style[1], color=c, **kwargs)
1959
            else:
1960
                out[idx] += [None]
9✔
1961

1962
            # Add the arrows (on top of an invisible contour)
1963
            x, y = resp.real.copy(), resp.imag.copy()
9✔
1964
            x[reg_mask] *= (1 - curve_offset[reg_mask])
9✔
1965
            y[reg_mask] *= (1 - curve_offset[reg_mask])
9✔
1966
            p = plt.plot(x, -y, linestyle='None', color=c, **kwargs)
9✔
1967
            _add_arrows_to_line2D(
9✔
1968
                ax, p[0], arrow_pos, arrowstyle=arrow_style, dir=-1)
1969
        else:
1970
            out[idx] += [None, None]
9✔
1971

1972
        # Mark the start of the curve
1973
        if start_marker:
9✔
1974
            plt.plot(resp[0].real, resp[0].imag, start_marker,
9✔
1975
                     color=c, markersize=start_marker_size)
1976

1977
        # Mark the -1 point
1978
        plt.plot([-1], [0], 'r+')
9✔
1979

1980
        #
1981
        # Draw circles for gain crossover and sensitivity functions
1982
        #
1983
        theta = np.linspace(0, 2*np.pi, 100)
9✔
1984
        cos = np.cos(theta)
9✔
1985
        sin = np.sin(theta)
9✔
1986
        label_pos = 15
9✔
1987

1988
        # Display the unit circle, to read gain crossover frequency
1989
        if unit_circle:
9✔
1990
            plt.plot(cos, sin, **config.defaults['nyquist.circle_style'])
9✔
1991

1992
        # Draw circles for given magnitudes of sensitivity
1993
        if ms_circles is not None:
9✔
1994
            for ms in ms_circles:
9✔
1995
                pos_x = -1 + (1/ms)*cos
9✔
1996
                pos_y = (1/ms)*sin
9✔
1997
                plt.plot(
9✔
1998
                    pos_x, pos_y, **config.defaults['nyquist.circle_style'])
1999
                plt.text(pos_x[label_pos], pos_y[label_pos], ms)
9✔
2000

2001
        # Draw circles for given magnitudes of complementary sensitivity
2002
        if mt_circles is not None:
9✔
2003
            for mt in mt_circles:
9✔
2004
                if mt != 1:
9✔
2005
                    ct = -mt**2/(mt**2-1)  # Mt center
9✔
2006
                    rt = mt/(mt**2-1)  # Mt radius
9✔
2007
                    pos_x = ct+rt*cos
9✔
2008
                    pos_y = rt*sin
9✔
2009
                    plt.plot(
9✔
2010
                        pos_x, pos_y,
2011
                        **config.defaults['nyquist.circle_style'])
2012
                    plt.text(pos_x[label_pos], pos_y[label_pos], mt)
9✔
2013
                else:
2014
                    _, _, ymin, ymax = plt.axis()
9✔
2015
                    pos_y = np.linspace(ymin, ymax, 100)
9✔
2016
                    plt.vlines(
9✔
2017
                        -0.5, ymin=ymin, ymax=ymax,
2018
                        **config.defaults['nyquist.circle_style'])
2019
                    plt.text(-0.5, pos_y[label_pos], 1)
9✔
2020

2021
        # Label the frequencies of the points on the Nyquist curve
2022
        if label_freq:
9✔
2023
            ind = slice(None, None, label_freq)
9✔
2024
            omega_sys = np.imag(splane_contour[np.real(splane_contour) == 0])
9✔
2025
            for xpt, ypt, omegapt in zip(x[ind], y[ind], omega_sys[ind]):
9✔
2026
                # Convert to Hz
2027
                f = omegapt / (2 * np.pi)
9✔
2028

2029
                # Factor out multiples of 1000 and limit the
2030
                # result to the range [-8, 8].
2031
                pow1000 = max(min(get_pow1000(f), 8), -8)
9✔
2032

2033
                # Get the SI prefix.
2034
                prefix = gen_prefix(pow1000)
9✔
2035

2036
                # Apply the text. (Use a space before the text to
2037
                # prevent overlap with the data.)
2038
                #
2039
                # np.round() is used because 0.99... appears
2040
                # instead of 1.0, and this would otherwise be
2041
                # truncated to 0.
2042
                plt.text(xpt, ypt, ' ' +
9✔
2043
                         str(int(np.round(f / 1000 ** pow1000, 0))) + ' ' +
2044
                         prefix + 'Hz')
2045

2046
    # Label the axes
2047
    ax.set_xlabel("Real axis")
9✔
2048
    ax.set_ylabel("Imaginary axis")
9✔
2049
    ax.grid(color="lightgray")
9✔
2050

2051
    # List of systems that are included in this plot
2052
    lines, labels = _get_line_labels(ax)
9✔
2053

2054
    # Add legend if there is more than one system plotted
2055
    if show_legend == True or (show_legend != False and len(labels) > 1):
9✔
2056
        with plt.rc_context(rcParams):
9✔
2057
            legend = ax.legend(lines, labels, loc=legend_loc)
9✔
2058
    else:
2059
        legend = None
9✔
2060

2061
    # Add the title
2062
    sysnames = [response.sysname for response in nyquist_responses]
9✔
2063
    if ax_user is None and title is None:
9✔
2064
        title = "Nyquist plot for " + ", ".join(sysnames)
9✔
2065
        _update_plot_title(
9✔
2066
            title, fig=fig, rcParams=rcParams, frame=title_frame)
2067
    elif ax_user is None:
9✔
2068
        _update_plot_title(
9✔
2069
            title, fig=fig, rcParams=rcParams, frame=title_frame,
2070
            use_existing=False)
2071

2072
    # Legacy return processing
2073
    if plot is True or return_contour is not None:
9✔
2074
        if len(data) == 1:
9✔
2075
            counts, contours = counts[0], contours[0]
9✔
2076

2077
        # Return counts and (optionally) the contour we used
2078
        return (counts, contours) if return_contour else counts
9✔
2079

2080
    return ControlPlot(out, ax, fig, legend=legend)
9✔
2081

2082

2083
#
2084
# Function to compute Nyquist curve offsets
2085
#
2086
# This function computes a smoothly varying offset that starts and ends at
2087
# zero at the ends of a scaled segment.
2088
#
2089
def _compute_curve_offset(resp, mask, max_offset):
9✔
2090
    # Compute the arc length along the curve
2091
    s_curve = np.cumsum(
9✔
2092
        np.sqrt(np.diff(resp.real) ** 2 + np.diff(resp.imag) ** 2))
2093

2094
    # Initialize the offset
2095
    offset = np.zeros(resp.size)
9✔
2096
    arclen = np.zeros(resp.size)
9✔
2097

2098
    # Walk through the response and keep track of each continuous component
2099
    i, nsegs = 0, 0
9✔
2100
    while i < resp.size:
9✔
2101
        # Skip the regular segment
2102
        while i < resp.size and mask[i]:
9✔
2103
            i += 1              # Increment the counter
9✔
2104
            if i == resp.size:
9✔
2105
                break
9✔
2106
            # Keep track of the arclength
2107
            arclen[i] = arclen[i-1] + np.abs(resp[i] - resp[i-1])
9✔
2108

2109
        nsegs += 0.5
9✔
2110
        if i == resp.size:
9✔
2111
            break
9✔
2112

2113
        # Save the starting offset of this segment
2114
        seg_start = i
9✔
2115

2116
        # Walk through the scaled segment
2117
        while i < resp.size and not mask[i]:
9✔
2118
            i += 1
9✔
2119
            if i == resp.size:  # See if we are done with this segment
9✔
2120
                break
9✔
2121
            # Keep track of the arclength
2122
            arclen[i] = arclen[i-1] + np.abs(resp[i] - resp[i-1])
9✔
2123

2124
        nsegs += 0.5
9✔
2125
        if i == resp.size:
9✔
2126
            break
9✔
2127

2128
        # Save the ending offset of this segment
2129
        seg_end = i
9✔
2130

2131
        # Now compute the scaling for this segment
2132
        s_segment = arclen[seg_end-1] - arclen[seg_start]
9✔
2133
        offset[seg_start:seg_end] = max_offset * s_segment/s_curve[-1] * \
9✔
2134
            np.sin(np.pi * (arclen[seg_start:seg_end]
2135
                            - arclen[seg_start])/s_segment)
2136

2137
    return offset
9✔
2138

2139

2140
#
2141
# Gang of Four plot
2142
#
2143
def gangof4_response(
9✔
2144
        P, C, omega=None, omega_limits=None, omega_num=None, Hz=False):
2145
    """Compute response of "Gang of 4" transfer functions.
2146

2147
    Generates a 2x2 frequency response for the "Gang of 4" sensitivity
2148
    functions [T, PS; CS, S].
2149

2150
    Parameters
2151
    ----------
2152
    P, C : LTI
2153
        Linear input/output systems (process and control).
2154
    omega : array
2155
        Range of frequencies (list or bounds) in rad/sec.
2156
    omega_limits : array_like of two values
2157
        Set limits for plotted frequency range. If Hz=True the limits are
2158
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2159
        elements is equivalent to providing `omega_limits`. Ignored if
2160
        data is not a list of systems.
2161
    omega_num : int
2162
        Number of samples to use for the frequency range.  Defaults to
2163
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
2164
        not a list of systems.
2165
    Hz : bool, optional
2166
        If True, when computing frequency limits automatically set
2167
        limits to full decades in Hz instead of rad/s.
2168

2169
    Returns
2170
    -------
2171
    response : `FrequencyResponseData`
2172
        Frequency response with inputs 'r' and 'd' and outputs 'y', and 'u'
2173
        representing the 2x2 matrix of transfer functions in the Gang of 4.
2174

2175
    Examples
2176
    --------
2177
    >>> P = ct.tf([1], [1, 1])
2178
    >>> C = ct.tf([2], [1])
2179
    >>> response = ct.gangof4_response(P, C)
2180
    >>> cplt = response.plot()
2181

2182
    """
2183
    if not P.issiso() or not C.issiso():
9✔
2184
        # TODO: Add MIMO go4 plots.
2185
        raise ControlMIMONotImplemented(
×
2186
            "Gang of four is currently only implemented for SISO systems.")
2187

2188
    # Compute the sensitivity functions
2189
    L = P * C
9✔
2190
    S = feedback(1, L)
9✔
2191
    T = L * S
9✔
2192

2193
    # Select a default range if none is provided
2194
    # TODO: This needs to be made more intelligent
2195
    omega, _ = _determine_omega_vector(
9✔
2196
        [P, C, S], omega, omega_limits, omega_num, Hz=Hz)
2197

2198
    #
2199
    # bode_plot based implementation
2200
    #
2201

2202
    # Compute the response of the Gang of 4
2203
    resp_T = T(1j * omega)
9✔
2204
    resp_PS = (P * S)(1j * omega)
9✔
2205
    resp_CS = (C * S)(1j * omega)
9✔
2206
    resp_S = S(1j * omega)
9✔
2207

2208
    # Create a single frequency response data object with the underlying data
2209
    data = np.empty((2, 2, omega.size), dtype=complex)
9✔
2210
    data[0, 0, :] = resp_T
9✔
2211
    data[0, 1, :] = resp_PS
9✔
2212
    data[1, 0, :] = resp_CS
9✔
2213
    data[1, 1, :] = resp_S
9✔
2214

2215
    return FrequencyResponseData(
9✔
2216
        data, omega, outputs=['y', 'u'], inputs=['r', 'd'],
2217
        title=f"Gang of Four for P={P.name}, C={C.name}",
2218
        sysname=f"P={P.name}, C={C.name}", plot_phase=False)
2219

2220

2221
def gangof4_plot(
9✔
2222
        *args, omega=None, omega_limits=None, omega_num=None,
2223
        Hz=False, **kwargs):
2224
    """gangof4_plot(response) \
2225
    gangof4_plot(P, C, omega)
2226

2227
    Plot response of "Gang of 4" transfer functions.
2228

2229
    Plots a 2x2 frequency response for the "Gang of 4" sensitivity
2230
    functions [T, PS; CS, S].  Can be called in one of two ways:
2231

2232
        gangof4_plot(response[, ...])
2233
        gangof4_plot(P, C[, ...])
2234

2235
    Parameters
2236
    ----------
2237
    response : FrequencyPlotData
2238
        Gang of 4 frequency response from `gangof4_response`.
2239
    P, C : LTI
2240
        Linear input/output systems (process and control).
2241
    omega : array
2242
        Range of frequencies (list or bounds) in rad/sec.
2243
    omega_limits : array_like of two values
2244
        Set limits for plotted frequency range. If Hz=True the limits are
2245
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2246
        elements is equivalent to providing `omega_limits`. Ignored if
2247
        data is not a list of systems.
2248
    omega_num : int
2249
        Number of samples to use for the frequency range.  Defaults to
2250
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
2251
        not a list of systems.
2252
    Hz : bool, optional
2253
        If True, when computing frequency limits automatically set
2254
        limits to full decades in Hz instead of rad/s.
2255

2256
    Returns
2257
    -------
2258
    cplt : `ControlPlot` object
2259
        Object containing the data that were plotted.  See `ControlPlot`
2260
        for more detailed information.
2261
    cplt.lines : 2x2 array of `matplotlib.lines.Line2D`
2262
        Array containing information on each line in the plot.  The value
2263
        of each array entry is a list of Line2D objects in that subplot.
2264
    cplt.axes : 2D array of `matplotlib.axes.Axes`
2265
        Axes for each subplot.
2266
    cplt.figure : `matplotlib.figure.Figure`
2267
        Figure containing the plot.
2268
    cplt.legend : 2D array of `matplotlib.legend.Legend`
2269
        Legend object(s) contained in the plot.
2270

2271
    """
2272
    if len(args) == 1 and isinstance(args[0], FrequencyResponseData):
9✔
2273
        if any([kw is not None
×
2274
                for kw in [omega, omega_limits, omega_num, Hz]]):
2275
            raise ValueError(
×
2276
                "omega, omega_limits, omega_num, Hz not allowed when "
2277
                "given a Gang of 4 response as first argument")
2278
        return args[0].plot(kwargs)
×
2279
    else:
2280
        if len(args) > 3:
9✔
2281
            raise TypeError(
×
2282
                f"expecting 2 or 3 positional arguments; received {len(args)}")
2283
        omega = omega if len(args) < 3 else args[2]
9✔
2284
        args = args[0:2]
9✔
2285
        return gangof4_response(
9✔
2286
            *args, omega=omega, omega_limits=omega_limits,
2287
            omega_num=omega_num, Hz=Hz).plot(**kwargs)
2288

2289

2290
#
2291
# Singular values plot
2292
#
2293
def singular_values_response(
9✔
2294
        sysdata, omega=None, omega_limits=None, omega_num=None, Hz=False):
2295
    """Singular value response for a system.
2296

2297
    Computes the singular values for a system or list of systems over
2298
    a (optional) frequency range.
2299

2300
    Parameters
2301
    ----------
2302
    sysdata : LTI or list of LTI
2303
        List of linear input/output systems (single system is OK).
2304
    omega : array_like
2305
        List of frequencies in rad/sec to be used for frequency response.
2306
    Hz : bool, optional
2307
        If True, when computing frequency limits automatically set
2308
        limits to full decades in Hz instead of rad/s.
2309

2310
    Returns
2311
    -------
2312
    response : `FrequencyResponseData`
2313
        Frequency response with the number of outputs equal to the
2314
        number of singular values in the response, and a single input.
2315

2316
    Other Parameters
2317
    ----------------
2318
    omega_limits : array_like of two values
2319
        Set limits for plotted frequency range. If Hz=True the limits are
2320
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2321
        elements is equivalent to providing `omega_limits`.
2322
    omega_num : int, optional
2323
        Number of samples to use for the frequency range.  Defaults to
2324
        `config.defaults['freqplot.number_of_samples']`.
2325

2326
    See Also
2327
    --------
2328
    singular_values_plot
2329

2330
    Examples
2331
    --------
2332
    >>> omegas = np.logspace(-4, 1, 1000)
2333
    >>> den = [75, 1]
2334
    >>> G = ct.tf([[[87.8], [-86.4]], [[108.2], [-109.6]]],
2335
    ...           [[den, den], [den, den]])
2336
    >>> response = ct.singular_values_response(G, omega=omegas)
2337

2338
    """
2339
    # Convert the first argument to a list
2340
    syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata]
9✔
2341

2342
    if any([not isinstance(sys, LTI) for sys in syslist]):
9✔
2343
        ValueError("singular values can only be computed for LTI systems")
×
2344

2345
    # Compute the frequency responses for the systems
2346
    responses = frequency_response(
9✔
2347
        syslist, omega=omega, omega_limits=omega_limits,
2348
        omega_num=omega_num, Hz=Hz, squeeze=False)
2349

2350
    # Calculate the singular values for each system in the list
2351
    svd_responses = []
9✔
2352
    for response in responses:
9✔
2353
        # Compute the singular values (permute indices to make things work)
2354
        fresp_permuted = response.frdata.transpose((2, 0, 1))
9✔
2355
        sigma = np.linalg.svd(fresp_permuted, compute_uv=False).transpose()
9✔
2356
        sigma_fresp = sigma.reshape(sigma.shape[0], 1, sigma.shape[1])
9✔
2357

2358
        # Save the singular values as an FRD object
2359
        svd_responses.append(
9✔
2360
            FrequencyResponseData(
2361
                sigma_fresp, response.omega, _return_singvals=True,
2362
                outputs=[f'$\\sigma_{{{k+1}}}$' for k in range(sigma.shape[0])],
2363
                inputs='inputs', dt=response.dt, plot_phase=False,
2364
                sysname=response.sysname, plot_type='svplot',
2365
                title=f"Singular values for {response.sysname}"))
2366

2367
    if isinstance(sysdata, (list, tuple)):
9✔
2368
        return FrequencyResponseList(svd_responses)
9✔
2369
    else:
2370
        return svd_responses[0]
9✔
2371

2372

2373
def singular_values_plot(
9✔
2374
        data, omega=None, *fmt, plot=None, omega_limits=None, omega_num=None,
2375
        ax=None, label=None, title=None, **kwargs):
2376
    """Plot the singular values for a system.
2377

2378
    Plot the singular values as a function of frequency for a system or
2379
    list of systems.  If multiple systems are plotted, each system in the
2380
    list is plotted in a different color.
2381

2382
    Parameters
2383
    ----------
2384
    data : list of `FrequencyResponseData`
2385
        List of `FrequencyResponseData` objects.  For backward
2386
        compatibility, a list of LTI systems can also be given.
2387
    omega : array_like
2388
        List of frequencies in rad/sec over to plot over.
2389
    *fmt : `matplotlib.pyplot.plot` format string, optional
2390
        Passed to `matplotlib` as the format string for all lines in the plot.
2391
        The `omega` parameter must be present (use omega=None if needed).
2392
    dB : bool
2393
        If True, plot result in dB.  Default is False.
2394
    Hz : bool
2395
        If True, plot frequency in Hz (omega must be provided in rad/sec).
2396
        Default value (False) set by `config.defaults['freqplot.Hz']`.
2397
    **kwargs : `matplotlib.pyplot.plot` keyword properties, optional
2398
        Additional keywords passed to `matplotlib` to specify line properties.
2399

2400
    Returns
2401
    -------
2402
    cplt : `ControlPlot` object
2403
        Object containing the data that were plotted.  See `ControlPlot`
2404
        for more detailed information.
2405
    cplt.lines : array of `matplotlib.lines.Line2D`
2406
        Array containing information on each line in the plot.  The size of
2407
        the array matches the number of systems and the value of the array
2408
        is a list of Line2D objects for that system.
2409
    cplt.axes : 2D array of `matplotlib.axes.Axes`
2410
        Axes for each subplot.
2411
    cplt.figure : `matplotlib.figure.Figure`
2412
        Figure containing the plot.
2413
    cplt.legend : 2D array of `matplotlib.legend.Legend`
2414
        Legend object(s) contained in the plot.
2415

2416
    Other Parameters
2417
    ----------------
2418
    ax : `matplotlib.axes.Axes`, optional
2419
        The matplotlib axes to draw the figure on.  If not specified and
2420
        the current figure has a single axes, that axes is used.
2421
        Otherwise, a new figure is created.
2422
    color : matplotlib color spec
2423
        Color to use for singular values (or None for matplotlib default).
2424
    grid : bool
2425
        If True, plot grid lines on gain and phase plots.  Default is
2426
        set by `config.defaults['freqplot.grid']`.
2427
    label : str or array_like of str, optional
2428
        If present, replace automatically generated label(s) with the given
2429
        label(s).  If sysdata is a list, strings should be specified for each
2430
        system.
2431
    legend_loc : int or str, optional
2432
        Include a legend in the given location. Default is 'center right',
2433
        with no legend for a single response.  Use False to suppress legend.
2434
    omega_limits : array_like of two values
2435
        Set limits for plotted frequency range. If Hz=True the limits are
2436
        in Hz otherwise in rad/s.  Specifying `omega` as a list of two
2437
        elements is equivalent to providing `omega_limits`.
2438
    omega_num : int, optional
2439
        Number of samples to use for the frequency range.  Defaults to
2440
        `config.defaults['freqplot.number_of_samples']`.  Ignored if data is
2441
        not a list of systems.
2442
    plot : bool, optional
2443
        (legacy) If given, `singular_values_plot` returns the legacy return
2444
        values of magnitude, phase, and frequency.  If False, just return
2445
        the values with no plot.
2446
    rcParams : dict
2447
        Override the default parameters used for generating plots.
2448
        Default is set up `config.defaults['ctrlplot.rcParams']`.
2449
    show_legend : bool, optional
2450
        Force legend to be shown if True or hidden if False.  If
2451
        None, then show legend when there is more than one line on an
2452
        axis or `legend_loc` or `legend_map` has been specified.
2453
    title : str, optional
2454
        Set the title of the plot.  Defaults to plot type and system name(s).
2455
    title_frame : str, optional
2456
        Set the frame of reference used to center the plot title. If set to
2457
        'axes' (default), the horizontal position of the title will
2458
        centered relative to the axes.  If set to 'figure', it will be
2459
        centered with respect to the figure (faster execution).
2460

2461
    See Also
2462
    --------
2463
    singular_values_response
2464

2465
    Notes
2466
    -----
2467
    If `plot` = False, the following legacy values are returned:
2468
       * `mag` : ndarray (or list of ndarray if len(data) > 1))
2469
           Magnitude of the response (deprecated).
2470
       * `phase` : ndarray (or list of ndarray if len(data) > 1))
2471
           Phase in radians of the response (deprecated).
2472
       * `omega` : ndarray (or list of ndarray if len(data) > 1))
2473
           Frequency in rad/sec (deprecated).
2474

2475
    """
2476
    # Keyword processing
2477
    color = kwargs.pop('color', None)
9✔
2478
    dB = config._get_param(
9✔
2479
        'freqplot', 'dB', kwargs, _freqplot_defaults, pop=True)
2480
    Hz = config._get_param(
9✔
2481
        'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True)
2482
    grid = config._get_param(
9✔
2483
        'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True)
2484
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
2485
    title_frame = config._get_param(
9✔
2486
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
2487

2488
    # If argument was a singleton, turn it into a tuple
2489
    data = data if isinstance(data, (list, tuple)) else (data,)
9✔
2490

2491
    # Convert systems into frequency responses
2492
    if any([isinstance(response, (StateSpace, TransferFunction))
9✔
2493
            for response in data]):
2494
        responses = singular_values_response(
9✔
2495
                    data, omega=omega, omega_limits=omega_limits,
2496
                    omega_num=omega_num)
2497
    else:
2498
        # Generate warnings if frequency keywords were given
2499
        if omega_num is not None:
9✔
2500
            warnings.warn("`omega_num` ignored when passed response data")
9✔
2501
        elif omega is not None:
9✔
2502
            warnings.warn("`omega` ignored when passed response data")
9✔
2503

2504
        # Check to make sure omega_limits is sensible
2505
        if omega_limits is not None and \
9✔
2506
           (len(omega_limits) != 2 or omega_limits[1] <= omega_limits[0]):
2507
            raise ValueError(f"invalid limits: {omega_limits=}")
9✔
2508

2509
        responses = data
9✔
2510

2511
    # Process label keyword
2512
    line_labels = _process_line_labels(label, len(data))
9✔
2513

2514
    # Process (legacy) plot keyword
2515
    if plot is not None:
9✔
2516
        warnings.warn(
×
2517
            "`singular_values_plot` return values of sigma, omega is "
2518
            "deprecated; use singular_values_response()", FutureWarning)
2519

2520
    # Warn the user if we got past something that is not real-valued
2521
    if any([not np.allclose(np.imag(response.frdata[:, 0, :]), 0)
9✔
2522
            for response in responses]):
2523
        warnings.warn("data has non-zero imaginary component")
×
2524

2525
    # Extract the data we need for plotting
2526
    sigmas = [np.real(response.frdata[:, 0, :]) for response in responses]
9✔
2527
    omegas = [response.omega for response in responses]
9✔
2528

2529
    # Legacy processing for no plotting case
2530
    if plot is False:
9✔
2531
        if len(data) == 1:
×
2532
            return sigmas[0], omegas[0]
×
2533
        else:
2534
            return sigmas, omegas
×
2535

2536
    fig, ax_sigma = _process_ax_keyword(
9✔
2537
        ax, shape=(1, 1), squeeze=True, rcParams=rcParams)
2538
    ax_sigma.set_label('control-sigma')         # TODO: deprecate?
9✔
2539
    legend_loc, _, show_legend = _process_legend_keywords(
9✔
2540
        kwargs, None, 'center right')
2541

2542
    # Get color offset for first (new) line to be drawn
2543
    color_offset, color_cycle = _get_color_offset(ax_sigma)
9✔
2544

2545
    # Create a list of lines for the output
2546
    out = np.empty(len(data), dtype=object)
9✔
2547

2548
    # Plot the singular values for each response
2549
    for idx_sys, response in enumerate(responses):
9✔
2550
        sigma = sigmas[idx_sys].transpose()     # frequency first for plotting
9✔
2551
        omega = omegas[idx_sys] / (2 * math.pi) if Hz else  omegas[idx_sys]
9✔
2552

2553
        if response.isdtime(strict=True):
9✔
2554
            nyq_freq = (0.5/response.dt) if Hz else (math.pi/response.dt)
9✔
2555
        else:
2556
            nyq_freq = None
9✔
2557

2558
        # Determine the color to use for this response
2559
        color = _get_color(
9✔
2560
            color, fmt=fmt, offset=color_offset + idx_sys,
2561
            color_cycle=color_cycle)
2562

2563
        # To avoid conflict with *fmt, only pass color kw if non-None
2564
        color_arg = {} if color is None else {'color': color}
9✔
2565

2566
        # Decide on the system name
2567
        sysname = response.sysname if response.sysname is not None \
9✔
2568
            else f"Unknown-{idx_sys}"
2569

2570
        # Get the label to use for the line
2571
        label = sysname if line_labels is None else line_labels[idx_sys]
9✔
2572

2573
        # Plot the data
2574
        if dB:
9✔
2575
            out[idx_sys] = ax_sigma.semilogx(
9✔
2576
                omega, 20 * np.log10(sigma), *fmt,
2577
                label=label, **color_arg, **kwargs)
2578
        else:
2579
            out[idx_sys] = ax_sigma.loglog(
9✔
2580
                omega, sigma, label=label, *fmt, **color_arg, **kwargs)
2581

2582
        # Plot the Nyquist frequency
2583
        if nyq_freq is not None:
9✔
2584
            ax_sigma.axvline(
9✔
2585
                nyq_freq, linestyle='--', label='_nyq_freq_' + sysname,
2586
                **color_arg)
2587

2588
    # If specific omega_limits were given, use them
2589
    if omega_limits is not None:
9✔
2590
        ax_sigma.set_xlim(omega_limits)
9✔
2591

2592
    # Add a grid to the plot + labeling
2593
    if grid:
9✔
2594
        ax_sigma.grid(grid, which='both')
9✔
2595

2596
    ax_sigma.set_ylabel(
9✔
2597
        "Singular Values [dB]" if dB else "Singular Values")
2598
    ax_sigma.set_xlabel("Frequency [Hz]" if Hz else "Frequency [rad/sec]")
9✔
2599

2600
    # List of systems that are included in this plot
2601
    lines, labels = _get_line_labels(ax_sigma)
9✔
2602

2603
    # Add legend if there is more than one system plotted
2604
    if show_legend == True or (show_legend != False and len(labels) > 1):
9✔
2605
        with plt.rc_context(rcParams):
9✔
2606
            legend = ax_sigma.legend(lines, labels, loc=legend_loc)
9✔
2607
    else:
2608
        legend = None
9✔
2609

2610
    # Add the title
2611
    if ax is None:
9✔
2612
        if title is None:
9✔
2613
            title = "Singular values for " + ", ".join(labels)
9✔
2614
        _update_plot_title(
9✔
2615
            title, fig=fig, rcParams=rcParams, frame=title_frame,
2616
            use_existing=False)
2617

2618
    # Legacy return processing
2619
    if plot is not None:
9✔
2620
        if len(responses) == 1:
×
2621
            return sigmas[0], omegas[0]
×
2622
        else:
2623
            return sigmas, omegas
×
2624

2625
    return ControlPlot(out, ax_sigma, fig, legend=legend)
9✔
2626

2627
#
2628
# Utility functions
2629
#
2630
# This section of the code contains some utility functions for
2631
# generating frequency domain plots.
2632
#
2633

2634

2635
# Determine the frequency range to be used
2636
def _determine_omega_vector(syslist, omega_in, omega_limits, omega_num,
9✔
2637
                            Hz=None, feature_periphery_decades=None):
2638
    """Determine the frequency range for a frequency-domain plot
2639
    according to a standard logic.
2640

2641
    If `omega_in` and `omega_limits` are both None, then `omega_out` is
2642
    computed on `omega_num` points according to a default logic defined by
2643
    `_default_frequency_range` and tailored for the list of systems
2644
    syslist, and `omega_range_given` is set to False.
2645

2646
    If `omega_in` is None but `omega_limits` is a tuple of 2 elements, then
2647
    `omega_out` is computed with the function `numpy.logspace` on
2648
    `omega_num` points within the interval ``[min, max] = [omega_limits[0],
2649
    omega_limits[1]]``, and `omega_range_given` is set to True.
2650

2651
    If `omega_in` is a tuple of length 2, it is interpreted as a range and
2652
    handled like `omega_limits`.  If `omega_in` is a tuple of length 3, it
2653
    is interpreted a range plus number of points and handled like
2654
    `omega_limits` and `omega_num`.
2655

2656
    If `omega_in` is an array or a list/tuple of length greater than two,
2657
    then `omega_out` is set to `omega_in` (as an array), and
2658
    `omega_range_given` is set to True
2659

2660
    Parameters
2661
    ----------
2662
    syslist : list of LTI
2663
        List of linear input/output systems (single system is OK).
2664
    omega_in : 1D array_like or None
2665
        Frequency range specified by the user.
2666
    omega_limits : 1D array_like or None
2667
        Frequency limits specified by the user.
2668
    omega_num : int
2669
        Number of points to be used for the frequency range (if the
2670
        frequency range is not user-specified).
2671
    Hz : bool, optional
2672
        If True, the limits (first and last value) of the frequencies
2673
        are set to full decades in Hz so it fits plotting with logarithmic
2674
        scale in Hz otherwise in rad/s. Omega is always returned in rad/sec.
2675

2676
    Returns
2677
    -------
2678
    omega_out : 1D array
2679
        Frequency range to be used.
2680
    omega_range_given : bool
2681
        True if the frequency range was specified by the user, either through
2682
        omega_in or through omega_limits. False if both omega_in
2683
        and omega_limits are None.
2684

2685
    """
2686
    # Handle the special case of a range of frequencies
2687
    if omega_in is not None and omega_limits is not None:
9✔
2688
        warnings.warn(
×
2689
            "omega and omega_limits both specified; ignoring limits")
2690
    elif isinstance(omega_in, (list, tuple)) and len(omega_in) == 2:
9✔
2691
        omega_limits = omega_in
9✔
2692
        omega_in = None
9✔
2693

2694
    omega_range_given = True
9✔
2695
    if omega_in is None:
9✔
2696
        if omega_limits is None:
9✔
2697
            omega_range_given = False
9✔
2698
            # Select a default range if none is provided
2699
            omega_out = _default_frequency_range(
9✔
2700
                syslist, number_of_samples=omega_num, Hz=Hz,
2701
                feature_periphery_decades=feature_periphery_decades)
2702
        else:
2703
            omega_limits = np.asarray(omega_limits)
9✔
2704
            if len(omega_limits) != 2:
9✔
2705
                raise ValueError("len(omega_limits) must be 2")
×
2706
            omega_out = np.logspace(np.log10(omega_limits[0]),
9✔
2707
                                    np.log10(omega_limits[1]),
2708
                                    num=omega_num, endpoint=True)
2709
    else:
2710
        omega_out = np.copy(omega_in)
9✔
2711

2712
    return omega_out, omega_range_given
9✔
2713

2714

2715
# Compute reasonable defaults for axes
2716
def _default_frequency_range(syslist, Hz=None, number_of_samples=None,
9✔
2717
                             feature_periphery_decades=None):
2718
    """Compute a default frequency range for frequency domain plots.
2719

2720
    This code looks at the poles and zeros of all of the systems that
2721
    we are plotting and sets the frequency range to be one decade above
2722
    and below the min and max feature frequencies, rounded to the nearest
2723
    integer.  If no features are found, it returns logspace(-1, 1)
2724

2725
    Parameters
2726
    ----------
2727
    syslist : list of LTI
2728
        List of linear input/output systems (single system is OK)
2729
    Hz : bool, optional
2730
        If True, the limits (first and last value) of the frequencies
2731
        are set to full decades in Hz so it fits plotting with logarithmic
2732
        scale in Hz otherwise in rad/s. Omega is always returned in rad/sec.
2733
    number_of_samples : int, optional
2734
        Number of samples to generate.  The default value is read from
2735
        `config.defaults['freqplot.number_of_samples']`.  If None,
2736
        then the default from `numpy.logspace` is used.
2737
    feature_periphery_decades : float, optional
2738
        Defines how many decades shall be included in the frequency range on
2739
        both sides of features (poles, zeros).  The default value is read from
2740
        `config.defaults['freqplot.feature_periphery_decades']`.
2741

2742
    Returns
2743
    -------
2744
    omega : array
2745
        Range of frequencies in rad/sec
2746

2747
    Examples
2748
    --------
2749
    >>> G = ct.ss([[-1, -2], [3, -4]], [[5], [7]], [[6, 8]], [[9]])
2750
    >>> omega = ct._default_frequency_range(G)
2751
    >>> omega.min(), omega.max()
2752
    (0.1, 100.0)
2753

2754
    """
2755
    # Set default values for options
2756
    number_of_samples = config._get_param(
9✔
2757
        'freqplot', 'number_of_samples', number_of_samples)
2758
    feature_periphery_decades = config._get_param(
9✔
2759
        'freqplot', 'feature_periphery_decades', feature_periphery_decades, 1)
2760

2761
    # Find the list of all poles and zeros in the systems
2762
    features = np.array(())
9✔
2763
    freq_interesting = []
9✔
2764

2765
    # detect if single sys passed by checking if it is sequence-like
2766
    if not hasattr(syslist, '__iter__'):
9✔
2767
        syslist = (syslist,)
9✔
2768

2769
    for sys in syslist:
9✔
2770
        # For FRD systems, just use the response frequencies
2771
        if isinstance(sys, FrequencyResponseData):
9✔
2772
            # Add the min and max frequency, minus periphery decades
2773
            # (keeps frequency ranges from artificially expanding)
2774
            features = np.concatenate([features, np.array([
9✔
2775
                np.min(sys.omega) * 10**feature_periphery_decades,
2776
                np.max(sys.omega) / 10**feature_periphery_decades])])
2777
            continue
9✔
2778

2779
        try:
9✔
2780
            # Add new features to the list
2781
            if sys.isctime():
9✔
2782
                features_ = np.concatenate(
9✔
2783
                    (np.abs(sys.poles()), np.abs(sys.zeros())))
2784
                # Get rid of poles and zeros at the origin
2785
                toreplace = np.isclose(features_, 0.0)
9✔
2786
                if np.any(toreplace):
9✔
2787
                    features_ = features_[~toreplace]
9✔
2788
            elif sys.isdtime(strict=True):
9✔
2789
                fn = math.pi / sys.dt
9✔
2790
                # TODO: What distance to the Nyquist frequency is appropriate?
2791
                freq_interesting.append(fn * 0.9)
9✔
2792

2793
                features_ = np.concatenate(
9✔
2794
                    (np.abs(sys.poles()), np.abs(sys.zeros())))
2795
                # Get rid of poles and zeros on the real axis (imag==0)
2796
                # * origin and real < 0
2797
                # * at 1.: would result in omega=0. (logarithmic plot!)
2798
                toreplace = np.isclose(features_.imag, 0.0) & (
9✔
2799
                                    (features_.real <= 0.) |
2800
                                    (np.abs(features_.real - 1.0) < 1.e-10))
2801
                if np.any(toreplace):
9✔
2802
                    features_ = features_[~toreplace]
9✔
2803
                # TODO: improve (mapping pack to continuous time)
2804
                features_ = np.abs(np.log(features_) / (1.j * sys.dt))
9✔
2805
            else:
2806
                # TODO
2807
                raise NotImplementedError(
2808
                    "type of system in not implemented now")
2809
            features = np.concatenate([features, features_])
9✔
2810
        except NotImplementedError:
9✔
2811
            # Don't add any features for anything we don't understand
2812
            pass
9✔
2813

2814
    # Make sure there is at least one point in the range
2815
    if features.shape[0] == 0:
9✔
2816
        features = np.array([1.])
9✔
2817

2818
    if Hz:
9✔
2819
        features /= 2. * math.pi
9✔
2820
    features = np.log10(features)
9✔
2821
    lsp_min = np.rint(np.min(features) - feature_periphery_decades)
9✔
2822
    lsp_max = np.rint(np.max(features) + feature_periphery_decades)
9✔
2823
    if Hz:
9✔
2824
        lsp_min += np.log10(2. * math.pi)
9✔
2825
        lsp_max += np.log10(2. * math.pi)
9✔
2826

2827
    if freq_interesting:
9✔
2828
        lsp_min = min(lsp_min, np.log10(min(freq_interesting)))
9✔
2829
        lsp_max = max(lsp_max, np.log10(max(freq_interesting)))
9✔
2830

2831
    # TODO: Add a check in discrete case to make sure we don't get aliasing
2832
    # (Attention: there is a list of system but only one omega vector)
2833

2834
    # Set the range to be an order of magnitude beyond any features
2835
    if number_of_samples:
9✔
2836
        omega = np.logspace(
9✔
2837
            lsp_min, lsp_max, num=number_of_samples, endpoint=True)
2838
    else:
2839
        omega = np.logspace(lsp_min, lsp_max, endpoint=True)
×
2840
    return omega
9✔
2841

2842

2843
#
2844
# Utility functions to create nice looking labels (KLD 5/23/11)
2845
#
2846

2847
def get_pow1000(num):
9✔
2848
    """Determine exponent for which significance of a number is within the
2849
    range [1, 1000).
2850
    """
2851
    # Based on algorithm from http://www.mail-archive.com/
2852
    # matplotlib-users@lists.sourceforge.net/msg14433.html, accessed 2010/11/7
2853
    # by Jason Heeris 2009/11/18
2854
    from decimal import Decimal
9✔
2855
    from math import floor
9✔
2856
    dnum = Decimal(str(num))
9✔
2857
    if dnum == 0:
9✔
2858
        return 0
9✔
2859
    elif dnum < 0:
9✔
2860
        dnum = -dnum
×
2861
    return int(floor(dnum.log10() / 3))
9✔
2862

2863

2864
def gen_prefix(pow1000):
9✔
2865
    """Return the SI prefix for a power of 1000.
2866
    """
2867
    # Prefixes according to Table 5 of [BIPM 2006] (excluding hecto,
2868
    # deca, deci, and centi).
2869
    if pow1000 < -8 or pow1000 > 8:
9✔
2870
        raise ValueError(
×
2871
            "Value is out of the range covered by the SI prefixes.")
2872
    return ['Y',  # yotta (10^24)
9✔
2873
            'Z',  # zetta (10^21)
2874
            'E',  # exa (10^18)
2875
            'P',  # peta (10^15)
2876
            'T',  # tera (10^12)
2877
            'G',  # giga (10^9)
2878
            'M',  # mega (10^6)
2879
            'k',  # kilo (10^3)
2880
            '',  # (10^0)
2881
            'm',  # milli (10^-3)
2882
            r'$\mu$',  # micro (10^-6)
2883
            'n',  # nano (10^-9)
2884
            'p',  # pico (10^-12)
2885
            'f',  # femto (10^-15)
2886
            'a',  # atto (10^-18)
2887
            'z',  # zepto (10^-21)
2888
            'y'][8 - pow1000]  # yocto (10^-24)
2889

2890

2891
# Function aliases
2892
bode = bode_plot
9✔
2893
nyquist = nyquist_plot
9✔
2894
gangof4 = gangof4_plot
9✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc