• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

openmc-dev / openmc / 12735804991

12 Jan 2025 05:53PM UTC coverage: 82.581% (-2.3%) from 84.868%
12735804991

Pull #3087

github

web-flow
Merge e7a8165f6 into d2edf0ce4
Pull Request #3087: wheel building with scikit build core

106989 of 129556 relevant lines covered (82.58%)

12046402.28 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

97.19
/src/simulation.cpp
1
#include "openmc/simulation.h"
2

3
#include "openmc/bank.h"
4
#include "openmc/capi.h"
5
#include "openmc/container_util.h"
6
#include "openmc/eigenvalue.h"
7
#include "openmc/error.h"
8
#include "openmc/event.h"
9
#include "openmc/geometry_aux.h"
10
#include "openmc/material.h"
11
#include "openmc/mcpl_interface.h"
12
#include "openmc/message_passing.h"
13
#include "openmc/nuclide.h"
14
#include "openmc/output.h"
15
#include "openmc/particle.h"
16
#include "openmc/photon.h"
17
#include "openmc/random_lcg.h"
18
#include "openmc/settings.h"
19
#include "openmc/source.h"
20
#include "openmc/state_point.h"
21
#include "openmc/tallies/derivative.h"
22
#include "openmc/tallies/filter.h"
23
#include "openmc/tallies/tally.h"
24
#include "openmc/tallies/trigger.h"
25
#include "openmc/timer.h"
26
#include "openmc/track_output.h"
27
#include "openmc/weight_windows.h"
28

29
#ifdef _OPENMP
30
#include <omp.h>
31
#endif
32
#include "xtensor/xview.hpp"
33

34
#ifdef OPENMC_MPI
35
#include <mpi.h>
36
#endif
37

38
#include <fmt/format.h>
39

40
#include <algorithm>
41
#include <cmath>
42
#include <string>
43

44
//==============================================================================
45
// C API functions
46
//==============================================================================
47

48
// OPENMC_RUN encompasses all the main logic where iterations are performed
49
// over the batches, generations, and histories in a fixed source or
50
// k-eigenvalue calculation.
51

52
int openmc_run()
4,602✔
53
{
54
  openmc::simulation::time_total.start();
4,602✔
55
  openmc_simulation_init();
4,602✔
56

57
  // Ensure that a batch isn't executed in the case that the maximum number of
58
  // batches has already been run in a restart statepoint file
59
  int status = 0;
4,602✔
60
  if (openmc::simulation::current_batch >= openmc::settings::n_max_batches) {
4,602✔
61
    status = openmc::STATUS_EXIT_MAX_BATCH;
12✔
62
  }
63

64
  int err = 0;
4,602✔
65
  while (status == 0 && err == 0) {
77,813✔
66
    err = openmc_next_batch(&status);
73,225✔
67
  }
68

69
  openmc_simulation_finalize();
4,588✔
70
  openmc::simulation::time_total.stop();
4,588✔
71
  return err;
4,588✔
72
}
73

74
int openmc_simulation_init()
4,993✔
75
{
76
  using namespace openmc;
77

78
  // Skip if simulation has already been initialized
79
  if (simulation::initialized)
4,993✔
80
    return 0;
×
81

82
  // Initialize nuclear data (energy limits, log grid)
83
  if (settings::run_CE) {
4,993✔
84
    initialize_data();
4,075✔
85
  }
86

87
  // Determine how much work each process should do
88
  calculate_work();
4,993✔
89

90
  // Allocate source, fission and surface source banks.
91
  allocate_banks();
4,993✔
92

93
  // Create track file if needed
94
  if (!settings::track_identifiers.empty() || settings::write_all_tracks) {
4,993✔
95
    open_track_file();
102✔
96
  }
97

98
  // If doing an event-based simulation, intialize the particle buffer
99
  // and event queues
100
  if (settings::event_based) {
4,993✔
101
    int64_t event_buffer_length =
102
      std::min(simulation::work_per_rank, settings::max_particles_in_flight);
150✔
103
    init_event_queues(event_buffer_length);
150✔
104
  }
105

106
  // Allocate tally results arrays if they're not allocated yet
107
  for (auto& t : model::tallies) {
29,053✔
108
    t->set_strides();
24,060✔
109
    t->init_results();
24,060✔
110
  }
111

112
  // Set up material nuclide index mapping
113
  for (auto& mat : model::materials) {
13,698✔
114
    mat->init_nuclide_index();
8,705✔
115
  }
116

117
  // Reset global variables -- this is done before loading state point (as that
118
  // will potentially populate k_generation and entropy)
119
  simulation::current_batch = 0;
4,993✔
120
  simulation::ssw_current_file = 1;
4,993✔
121
  simulation::k_generation.clear();
4,993✔
122
  simulation::entropy.clear();
4,993✔
123
  openmc_reset();
4,993✔
124

125
  // If this is a restart run, load the state point data and binary source
126
  // file
127
  if (settings::restart_run) {
4,993✔
128
    load_state_point();
46✔
129
    write_message("Resuming simulation...", 6);
46✔
130
  } else {
131
    // Only initialize primary source bank for eigenvalue simulations
132
    if (settings::run_mode == RunMode::EIGENVALUE &&
4,947✔
133
        settings::solver_type == SolverType::MONTE_CARLO) {
3,178✔
134
      initialize_source();
3,076✔
135
    }
136
  }
137

138
  // Display header
139
  if (mpi::master) {
4,993✔
140
    if (settings::run_mode == RunMode::FIXED_SOURCE) {
4,113✔
141
      if (settings::solver_type == SolverType::MONTE_CARLO) {
1,560✔
142
        header("FIXED SOURCE TRANSPORT SIMULATION", 3);
1,356✔
143
      } else if (settings::solver_type == SolverType::RANDOM_RAY) {
204✔
144
        header("FIXED SOURCE TRANSPORT SIMULATION (RANDOM RAY SOLVER)", 3);
204✔
145
      }
146
    } else if (settings::run_mode == RunMode::EIGENVALUE) {
2,553✔
147
      if (settings::solver_type == SolverType::MONTE_CARLO) {
2,553✔
148
        header("K EIGENVALUE SIMULATION", 3);
2,481✔
149
      } else if (settings::solver_type == SolverType::RANDOM_RAY) {
72✔
150
        header("K EIGENVALUE SIMULATION (RANDOM RAY SOLVER)", 3);
72✔
151
      }
152
      if (settings::verbosity >= 7)
2,553✔
153
        print_columns();
2,517✔
154
    }
155
  }
156

157
  // load weight windows from file
158
  if (!settings::weight_windows_file.empty()) {
4,993✔
159
    openmc_weight_windows_import(settings::weight_windows_file.c_str());
×
160
  }
161

162
  // Set flag indicating initialization is done
163
  simulation::initialized = true;
4,993✔
164
  return 0;
4,993✔
165
}
166

167
int openmc_simulation_finalize()
4,979✔
168
{
169
  using namespace openmc;
170

171
  // Skip if simulation was never run
172
  if (!simulation::initialized)
4,979✔
173
    return 0;
×
174

175
  // Stop active batch timer and start finalization timer
176
  simulation::time_active.stop();
4,979✔
177
  simulation::time_finalize.start();
4,979✔
178

179
  // Clear material nuclide mapping
180
  for (auto& mat : model::materials) {
13,670✔
181
    mat->mat_nuclide_index_.clear();
8,691✔
182
  }
183

184
  // Close track file if open
185
  if (!settings::track_identifiers.empty() || settings::write_all_tracks) {
4,979✔
186
    close_track_file();
102✔
187
  }
188

189
  // Increment total number of generations
190
  simulation::total_gen += simulation::current_batch * settings::gen_per_batch;
4,979✔
191

192
#ifdef OPENMC_MPI
193
  broadcast_results();
2,611✔
194
#endif
195

196
  // Write tally results to tallies.out
197
  if (settings::output_tallies && mpi::master)
4,979✔
198
    write_tallies();
4,087✔
199

200
  // If weight window generators are present in this simulation,
201
  // write a weight windows file
202
  if (variance_reduction::weight_windows_generators.size() > 0) {
4,979✔
203
    openmc_weight_windows_export();
24✔
204
  }
205

206
  // Deactivate all tallies
207
  for (auto& t : model::tallies) {
29,039✔
208
    t->active_ = false;
24,060✔
209
  }
210

211
  // Stop timers and show timing statistics
212
  simulation::time_finalize.stop();
4,979✔
213
  simulation::time_total.stop();
4,979✔
214
  if (mpi::master) {
4,979✔
215
    if (settings::solver_type != SolverType::RANDOM_RAY) {
4,099✔
216
      if (settings::verbosity >= 6)
3,823✔
217
        print_runtime();
3,787✔
218
      if (settings::verbosity >= 4)
3,823✔
219
        print_results();
3,787✔
220
    }
221
  }
222
  if (settings::check_overlaps)
4,979✔
223
    print_overlap_check();
×
224

225
  // Reset flags
226
  simulation::initialized = false;
4,979✔
227
  return 0;
4,979✔
228
}
229

230
int openmc_next_batch(int* status)
73,225✔
231
{
232
  using namespace openmc;
233
  using openmc::simulation::current_gen;
234

235
  // Make sure simulation has been initialized
236
  if (!simulation::initialized) {
73,225✔
237
    set_errmsg("Simulation has not been initialized yet.");
×
238
    return OPENMC_E_ALLOCATE;
×
239
  }
240

241
  initialize_batch();
73,225✔
242

243
  // =======================================================================
244
  // LOOP OVER GENERATIONS
245
  for (current_gen = 1; current_gen <= settings::gen_per_batch; ++current_gen) {
146,674✔
246

247
    initialize_generation();
73,463✔
248

249
    // Start timer for transport
250
    simulation::time_transport.start();
73,463✔
251

252
    // Transport loop
253
    if (settings::event_based) {
73,463✔
254
      transport_event_based();
3,021✔
255
    } else {
256
      transport_history_based();
70,442✔
257
    }
258

259
    // Accumulate time for transport
260
    simulation::time_transport.stop();
73,449✔
261

262
    finalize_generation();
73,449✔
263
  }
264

265
  finalize_batch();
73,211✔
266

267
  // Check simulation ending criteria
268
  if (status) {
73,211✔
269
    if (simulation::current_batch >= settings::n_max_batches) {
73,211✔
270
      *status = STATUS_EXIT_MAX_BATCH;
4,506✔
271
    } else if (simulation::satisfy_triggers) {
68,705✔
272
      *status = STATUS_EXIT_ON_TRIGGER;
70✔
273
    } else {
274
      *status = STATUS_EXIT_NORMAL;
68,635✔
275
    }
276
  }
277
  return 0;
73,211✔
278
}
279

280
bool openmc_is_statepoint_batch()
×
281
{
282
  using namespace openmc;
283
  using openmc::simulation::current_gen;
284

285
  if (!simulation::initialized)
×
286
    return false;
×
287
  else
288
    return contains(settings::statepoint_batch, simulation::current_batch);
×
289
}
290

291
namespace openmc {
292

293
//==============================================================================
294
// Global variables
295
//==============================================================================
296

297
namespace simulation {
298

299
int current_batch;
300
int current_gen;
301
bool initialized {false};
302
double keff {1.0};
303
double keff_std;
304
double k_col_abs {0.0};
305
double k_col_tra {0.0};
306
double k_abs_tra {0.0};
307
double log_spacing;
308
int n_lost_particles {0};
309
bool need_depletion_rx {false};
310
int restart_batch;
311
bool satisfy_triggers {false};
312
int ssw_current_file;
313
int total_gen {0};
314
double total_weight;
315
int64_t work_per_rank;
316

317
const RegularMesh* entropy_mesh {nullptr};
318
const RegularMesh* ufs_mesh {nullptr};
319

320
vector<double> k_generation;
321
vector<int64_t> work_index;
322

323
} // namespace simulation
324

325
//==============================================================================
326
// Non-member functions
327
//==============================================================================
328

329
void allocate_banks()
4,993✔
330
{
331
  if (settings::run_mode == RunMode::EIGENVALUE &&
4,993✔
332
      settings::solver_type == SolverType::MONTE_CARLO) {
3,224✔
333
    // Allocate source bank
334
    simulation::source_bank.resize(simulation::work_per_rank);
3,122✔
335

336
    // Allocate fission bank
337
    init_fission_bank(3 * simulation::work_per_rank);
3,122✔
338
  }
339

340
  if (settings::surf_source_write) {
4,993✔
341
    // Allocate surface source bank
342
    simulation::surf_source_bank.reserve(settings::ssw_max_particles);
377✔
343
  }
344
}
4,993✔
345

346
void initialize_batch()
84,615✔
347
{
348
  // Increment current batch
349
  ++simulation::current_batch;
84,615✔
350
  if (settings::run_mode == RunMode::FIXED_SOURCE) {
84,615✔
351
    if (settings::solver_type == SolverType::RANDOM_RAY &&
20,373✔
352
        simulation::current_batch < settings::n_inactive + 1) {
9,350✔
353
      write_message(
5,950✔
354
        6, "Simulating batch {:<4} (inactive)", simulation::current_batch);
355
    } else {
356
      write_message(6, "Simulating batch {}", simulation::current_batch);
14,423✔
357
    }
358
  }
359

360
  // Reset total starting particle weight used for normalizing tallies
361
  simulation::total_weight = 0.0;
84,615✔
362

363
  // Determine if this batch is the first inactive or active batch.
364
  bool first_inactive = false;
84,615✔
365
  bool first_active = false;
84,615✔
366
  if (!settings::restart_run) {
84,615✔
367
    first_inactive = settings::n_inactive > 0 && simulation::current_batch == 1;
84,462✔
368
    first_active = simulation::current_batch == settings::n_inactive + 1;
84,462✔
369
  } else if (simulation::current_batch == simulation::restart_batch + 1) {
153✔
370
    first_inactive = simulation::restart_batch < settings::n_inactive;
34✔
371
    first_active = !first_inactive;
34✔
372
  }
373

374
  // Manage active/inactive timers and activate tallies if necessary.
375
  if (first_inactive) {
84,615✔
376
    simulation::time_inactive.start();
2,674✔
377
  } else if (first_active) {
81,941✔
378
    simulation::time_inactive.stop();
4,981✔
379
    simulation::time_active.start();
4,981✔
380
    for (auto& t : model::tallies) {
29,017✔
381
      t->active_ = true;
24,036✔
382
    }
383
  }
384

385
  // Add user tallies to active tallies list
386
  setup_active_tallies();
84,615✔
387
}
84,615✔
388

389
void finalize_batch()
84,601✔
390
{
391
  // Reduce tallies onto master process and accumulate
392
  simulation::time_tallies.start();
84,601✔
393
  accumulate_tallies();
84,601✔
394
  simulation::time_tallies.stop();
84,601✔
395

396
  // update weight windows if needed
397
  for (const auto& wwg : variance_reduction::weight_windows_generators) {
84,721✔
398
    wwg->update();
120✔
399
  }
400

401
  // Reset global tally results
402
  if (simulation::current_batch <= settings::n_inactive) {
84,601✔
403
    xt::view(simulation::global_tallies, xt::all()) = 0.0;
17,435✔
404
    simulation::n_realizations = 0;
17,435✔
405
  }
406

407
  // Check_triggers
408
  if (mpi::master)
84,601✔
409
    check_triggers();
65,106✔
410
#ifdef OPENMC_MPI
411
  MPI_Bcast(&simulation::satisfy_triggers, 1, MPI_C_BOOL, 0, mpi::intracomm);
46,764✔
412
#endif
413
  if (simulation::satisfy_triggers ||
84,601✔
414
      (settings::trigger_on &&
2,984✔
415
        simulation::current_batch == settings::n_max_batches)) {
2,984✔
416
    settings::statepoint_batch.insert(simulation::current_batch);
145✔
417
  }
418

419
  // Write out state point if it's been specified for this batch and is not
420
  // a CMFD run instance
421
  if (contains(settings::statepoint_batch, simulation::current_batch) &&
89,808✔
422
      !settings::cmfd_run) {
5,207✔
423
    if (contains(settings::sourcepoint_batch, simulation::current_batch) &&
10,237✔
424
        settings::source_write && !settings::source_separate) {
10,237✔
425
      bool b = (settings::run_mode == RunMode::EIGENVALUE);
4,571✔
426
      openmc_statepoint_write(nullptr, &b);
4,571✔
427
    } else {
428
      bool b = false;
636✔
429
      openmc_statepoint_write(nullptr, &b);
636✔
430
    }
431
  }
432

433
  if (settings::run_mode == RunMode::EIGENVALUE) {
84,601✔
434
    // Write out a separate source point if it's been specified for this batch
435
    if (contains(settings::sourcepoint_batch, simulation::current_batch) &&
67,517✔
436
        settings::source_write && settings::source_separate) {
67,517✔
437

438
      // Determine width for zero padding
439
      int w = std::to_string(settings::n_max_batches).size();
68✔
440
      std::string source_point_filename = fmt::format("{0}source.{1:0{2}}",
441
        settings::path_output, simulation::current_batch, w);
56✔
442
      gsl::span<SourceSite> bankspan(simulation::source_bank);
68✔
443
      write_source_point(source_point_filename, bankspan,
68✔
444
        simulation::work_index, settings::source_mcpl_write);
445
    }
68✔
446

447
    // Write a continously-overwritten source point if requested.
448
    if (settings::source_latest) {
64,242✔
449
      // note: correct file extension appended automatically
450
      auto filename = settings::path_output + "source";
170✔
451
      gsl::span<SourceSite> bankspan(simulation::source_bank);
170✔
452
      write_source_point(filename.c_str(), bankspan, simulation::work_index,
170✔
453
        settings::source_mcpl_write);
454
    }
170✔
455
  }
456

457
  // Write out surface source if requested.
458
  if (settings::surf_source_write &&
84,601✔
459
      simulation::ssw_current_file <= settings::ssw_max_files) {
1,633✔
460
    bool last_batch = (simulation::current_batch == settings::n_batches);
1,278✔
461
    if (simulation::surf_source_bank.full() || last_batch) {
1,278✔
462
      // Determine appropriate filename
463
      auto filename = fmt::format("{}surface_source.{}", settings::path_output,
464
        simulation::current_batch);
343✔
465
      if (settings::ssw_max_files == 1 ||
413✔
466
          (simulation::ssw_current_file == 1 && last_batch)) {
60✔
467
        filename = settings::path_output + "surface_source";
353✔
468
      }
469

470
      // Get span of source bank and calculate parallel index vector
471
      auto surf_work_index = mpi::calculate_parallel_index_vector(
472
        simulation::surf_source_bank.size());
413✔
473
      gsl::span<SourceSite> surfbankspan(simulation::surf_source_bank.begin(),
474
        simulation::surf_source_bank.size());
413✔
475

476
      // Write surface source file
477
      write_source_point(
413✔
478
        filename, surfbankspan, surf_work_index, settings::surf_mcpl_write);
479

480
      // Reset surface source bank and increment counter
481
      simulation::surf_source_bank.clear();
413✔
482
      if (!last_batch && settings::ssw_max_files >= 1) {
413✔
483
        simulation::surf_source_bank.reserve(settings::ssw_max_particles);
212✔
484
      }
485
      ++simulation::ssw_current_file;
413✔
486
    }
413✔
487
  }
488
}
84,601✔
489

490
void initialize_generation()
84,853✔
491
{
492
  if (settings::run_mode == RunMode::EIGENVALUE) {
84,853✔
493
    // Clear out the fission bank
494
    simulation::fission_bank.resize(0);
64,480✔
495

496
    // Count source sites if using uniform fission source weighting
497
    if (settings::ufs_on)
64,480✔
498
      ufs_count_sites();
170✔
499

500
    // Store current value of tracklength k
501
    simulation::keff_generation = simulation::global_tallies(
64,480✔
502
      GlobalTally::K_TRACKLENGTH, TallyResult::VALUE);
503
  }
504
}
84,853✔
505

506
void finalize_generation()
84,839✔
507
{
508
  auto& gt = simulation::global_tallies;
84,839✔
509

510
  // Update global tallies with the accumulation variables
511
  if (settings::run_mode == RunMode::EIGENVALUE) {
84,839✔
512
    gt(GlobalTally::K_COLLISION, TallyResult::VALUE) += global_tally_collision;
64,480✔
513
    gt(GlobalTally::K_ABSORPTION, TallyResult::VALUE) +=
64,480✔
514
      global_tally_absorption;
515
    gt(GlobalTally::K_TRACKLENGTH, TallyResult::VALUE) +=
64,480✔
516
      global_tally_tracklength;
517
  }
518
  gt(GlobalTally::LEAKAGE, TallyResult::VALUE) += global_tally_leakage;
84,839✔
519

520
  // reset tallies
521
  if (settings::run_mode == RunMode::EIGENVALUE) {
84,839✔
522
    global_tally_collision = 0.0;
64,480✔
523
    global_tally_absorption = 0.0;
64,480✔
524
    global_tally_tracklength = 0.0;
64,480✔
525
  }
526
  global_tally_leakage = 0.0;
84,839✔
527

528
  if (settings::run_mode == RunMode::EIGENVALUE &&
84,839✔
529
      settings::solver_type == SolverType::MONTE_CARLO) {
64,480✔
530
    // If using shared memory, stable sort the fission bank (by parent IDs)
531
    // so as to allow for reproducibility regardless of which order particles
532
    // are run in.
533
    sort_fission_bank();
62,440✔
534

535
    // Distribute fission bank across processors evenly
536
    synchronize_bank();
62,440✔
537
  }
538

539
  if (settings::run_mode == RunMode::EIGENVALUE) {
84,839✔
540

541
    // Calculate shannon entropy
542
    if (settings::entropy_on &&
64,480✔
543
        settings::solver_type == SolverType::MONTE_CARLO)
3,410✔
544
      shannon_entropy();
1,370✔
545

546
    // Collect results and statistics
547
    calculate_generation_keff();
64,480✔
548
    calculate_average_keff();
64,480✔
549

550
    // Write generation output
551
    if (mpi::master && settings::verbosity >= 7) {
64,480✔
552
      print_generation();
48,002✔
553
    }
554
  }
555
}
84,839✔
556

557
void initialize_history(Particle& p, int64_t index_source)
148,423,794✔
558
{
559
  // set defaults
560
  if (settings::run_mode == RunMode::EIGENVALUE) {
148,423,794✔
561
    // set defaults for eigenvalue simulations from primary bank
562
    p.from_source(&simulation::source_bank[index_source - 1]);
137,339,800✔
563
  } else if (settings::run_mode == RunMode::FIXED_SOURCE) {
11,083,994✔
564
    // initialize random number seed
565
    int64_t id = (simulation::total_gen + overall_generation() - 1) *
11,083,994✔
566
                   settings::n_particles +
11,083,994✔
567
                 simulation::work_index[mpi::rank] + index_source;
11,083,994✔
568
    uint64_t seed = init_seed(id, STREAM_SOURCE);
11,083,994✔
569
    // sample from external source distribution or custom library then set
570
    auto site = sample_external_source(&seed);
11,083,994✔
571
    p.from_source(&site);
11,083,990✔
572
  }
573
  p.current_work() = index_source;
148,423,790✔
574

575
  // set identifier for particle
576
  p.id() = simulation::work_index[mpi::rank] + index_source;
148,423,790✔
577

578
  // set progeny count to zero
579
  p.n_progeny() = 0;
148,423,790✔
580

581
  // Reset particle event counter
582
  p.n_event() = 0;
148,423,790✔
583

584
  // Reset split counter
585
  p.n_split() = 0;
148,423,790✔
586

587
  // Reset weight window ratio
588
  p.ww_factor() = 0.0;
148,423,790✔
589

590
  // Reset pulse_height_storage
591
  std::fill(p.pht_storage().begin(), p.pht_storage().end(), 0);
148,423,790✔
592

593
  // set random number seed
594
  int64_t particle_seed =
595
    (simulation::total_gen + overall_generation() - 1) * settings::n_particles +
148,423,790✔
596
    p.id();
148,423,790✔
597
  init_particle_seeds(particle_seed, p.seeds());
148,423,790✔
598

599
  // set particle trace
600
  p.trace() = false;
148,423,790✔
601
  if (simulation::current_batch == settings::trace_batch &&
296,859,580✔
602
      simulation::current_gen == settings::trace_gen &&
148,435,790✔
603
      p.id() == settings::trace_particle)
12,000✔
604
    p.trace() = true;
12✔
605

606
  // Set particle track.
607
  p.write_track() = check_track_criteria(p);
148,423,790✔
608

609
  // Display message if high verbosity or trace is on
610
  if (settings::verbosity >= 9 || p.trace()) {
148,423,790✔
611
    write_message("Simulating Particle {}", p.id());
12✔
612
  }
613

614
// Add paricle's starting weight to count for normalizing tallies later
615
#pragma omp atomic
73,952,600✔
616
  simulation::total_weight += p.wgt();
148,423,790✔
617

618
  // Force calculation of cross-sections by setting last energy to zero
619
  if (settings::run_CE) {
148,423,790✔
620
    p.invalidate_neutron_xs();
27,415,790✔
621
  }
622

623
  // Prepare to write out particle track.
624
  if (p.write_track())
148,423,790✔
625
    add_particle_track(p);
1,128✔
626
}
148,423,790✔
627

628
int overall_generation()
159,682,987✔
629
{
630
  using namespace simulation;
631
  return settings::gen_per_batch * (current_batch - 1) + current_gen;
159,682,987✔
632
}
633

634
void calculate_work()
4,993✔
635
{
636
  // Determine minimum amount of particles to simulate on each processor
637
  int64_t min_work = settings::n_particles / mpi::n_procs;
4,993✔
638

639
  // Determine number of processors that have one extra particle
640
  int64_t remainder = settings::n_particles % mpi::n_procs;
4,993✔
641

642
  int64_t i_bank = 0;
4,993✔
643
  simulation::work_index.resize(mpi::n_procs + 1);
4,993✔
644
  simulation::work_index[0] = 0;
4,993✔
645
  for (int i = 0; i < mpi::n_procs; ++i) {
11,745✔
646
    // Number of particles for rank i
647
    int64_t work_i = i < remainder ? min_work + 1 : min_work;
6,752✔
648

649
    // Set number of particles
650
    if (mpi::rank == i)
6,752✔
651
      simulation::work_per_rank = work_i;
4,993✔
652

653
    // Set index into source bank for rank i
654
    i_bank += work_i;
6,752✔
655
    simulation::work_index[i + 1] = i_bank;
6,752✔
656
  }
657
}
4,993✔
658

659
void initialize_data()
4,111✔
660
{
661
  // Determine minimum/maximum energy for incident neutron/photon data
662
  data::energy_max = {INFTY, INFTY};
4,111✔
663
  data::energy_min = {0.0, 0.0};
4,111✔
664
  for (const auto& nuc : data::nuclides) {
20,627✔
665
    if (nuc->grid_.size() >= 1) {
16,516✔
666
      int neutron = static_cast<int>(ParticleType::neutron);
16,516✔
667
      data::energy_min[neutron] =
33,032✔
668
        std::max(data::energy_min[neutron], nuc->grid_[0].energy.front());
16,516✔
669
      data::energy_max[neutron] =
16,516✔
670
        std::min(data::energy_max[neutron], nuc->grid_[0].energy.back());
16,516✔
671
    }
672
  }
673

674
  if (settings::photon_transport) {
4,111✔
675
    for (const auto& elem : data::elements) {
781✔
676
      if (elem->energy_.size() >= 1) {
539✔
677
        int photon = static_cast<int>(ParticleType::photon);
539✔
678
        int n = elem->energy_.size();
539✔
679
        data::energy_min[photon] =
1,078✔
680
          std::max(data::energy_min[photon], std::exp(elem->energy_(1)));
539✔
681
        data::energy_max[photon] =
1,078✔
682
          std::min(data::energy_max[photon], std::exp(elem->energy_(n - 1)));
539✔
683
      }
684
    }
685

686
    if (settings::electron_treatment == ElectronTreatment::TTB) {
242✔
687
      // Determine if minimum/maximum energy for bremsstrahlung is greater/less
688
      // than the current minimum/maximum
689
      if (data::ttb_e_grid.size() >= 1) {
242✔
690
        int photon = static_cast<int>(ParticleType::photon);
242✔
691
        int n_e = data::ttb_e_grid.size();
242✔
692
        data::energy_min[photon] =
484✔
693
          std::max(data::energy_min[photon], std::exp(data::ttb_e_grid(1)));
242✔
694
        data::energy_max[photon] = std::min(
242✔
695
          data::energy_max[photon], std::exp(data::ttb_e_grid(n_e - 1)));
484✔
696
      }
697
    }
698
  }
699

700
  // Show which nuclide results in lowest energy for neutron transport
701
  for (const auto& nuc : data::nuclides) {
5,065✔
702
    // If a nuclide is present in a material that's not used in the model, its
703
    // grid has not been allocated
704
    if (nuc->grid_.size() > 0) {
4,623✔
705
      double max_E = nuc->grid_[0].energy.back();
4,623✔
706
      int neutron = static_cast<int>(ParticleType::neutron);
4,623✔
707
      if (max_E == data::energy_max[neutron]) {
4,623✔
708
        write_message(7, "Maximum neutron transport energy: {} eV for {}",
3,669✔
709
          data::energy_max[neutron], nuc->name_);
3,669✔
710
        if (mpi::master && data::energy_max[neutron] < 20.0e6) {
3,669✔
711
          warning("Maximum neutron energy is below 20 MeV. This may bias "
×
712
                  "the results.");
713
        }
714
        break;
3,669✔
715
      }
716
    }
717
  }
718

719
  // Set up logarithmic grid for nuclides
720
  for (auto& nuc : data::nuclides) {
20,627✔
721
    nuc->init_grid();
16,516✔
722
  }
723
  int neutron = static_cast<int>(ParticleType::neutron);
4,111✔
724
  simulation::log_spacing =
4,111✔
725
    std::log(data::energy_max[neutron] / data::energy_min[neutron]) /
4,111✔
726
    settings::n_log_bins;
727
}
4,111✔
728

729
#ifdef OPENMC_MPI
730
void broadcast_results()
2,611✔
731
{
732
  // Broadcast tally results so that each process has access to results
733
  for (auto& t : model::tallies) {
16,482✔
734
    // Create a new datatype that consists of all values for a given filter
735
    // bin and then use that to broadcast. This is done to minimize the
736
    // chance of the 'count' argument of MPI_BCAST exceeding 2**31
737
    auto& results = t->results_;
13,871✔
738

739
    auto shape = results.shape();
13,871✔
740
    int count_per_filter = shape[1] * shape[2];
13,871✔
741
    MPI_Datatype result_block;
742
    MPI_Type_contiguous(count_per_filter, MPI_DOUBLE, &result_block);
13,871✔
743
    MPI_Type_commit(&result_block);
13,871✔
744
    MPI_Bcast(results.data(), shape[0], result_block, 0, mpi::intracomm);
13,871✔
745
    MPI_Type_free(&result_block);
13,871✔
746
  }
747

748
  // Also broadcast global tally results
749
  auto& gt = simulation::global_tallies;
2,611✔
750
  MPI_Bcast(gt.data(), gt.size(), MPI_DOUBLE, 0, mpi::intracomm);
2,611✔
751

752
  // These guys are needed so that non-master processes can calculate the
753
  // combined estimate of k-effective
754
  double temp[] {
755
    simulation::k_col_abs, simulation::k_col_tra, simulation::k_abs_tra};
2,611✔
756
  MPI_Bcast(temp, 3, MPI_DOUBLE, 0, mpi::intracomm);
2,611✔
757
  simulation::k_col_abs = temp[0];
2,611✔
758
  simulation::k_col_tra = temp[1];
2,611✔
759
  simulation::k_abs_tra = temp[2];
2,611✔
760
}
2,611✔
761

762
#endif
763

764
void free_memory_simulation()
5,361✔
765
{
766
  simulation::k_generation.clear();
5,361✔
767
  simulation::entropy.clear();
5,361✔
768
}
5,361✔
769

770
void transport_history_based_single_particle(Particle& p)
137,410,426✔
771
{
772
  while (p.alive()) {
2,147,483,647✔
773
    p.event_calculate_xs();
2,147,483,647✔
774
    if (p.alive()) {
2,147,483,647✔
775
      p.event_advance();
2,147,483,647✔
776
    }
777
    if (p.alive()) {
2,147,483,647✔
778
      if (p.collision_distance() > p.boundary().distance) {
2,147,483,647✔
779
        p.event_cross_surface();
654,477,542✔
780
      } else if (p.alive()) {
2,147,483,647✔
781
        p.event_collide();
2,147,483,647✔
782
      }
783
    }
784
    p.event_revive_from_secondary();
2,147,483,647✔
785
  }
786
  p.event_death();
137,410,416✔
787
}
137,410,416✔
788

789
void transport_history_based()
70,442✔
790
{
791
#pragma omp parallel for schedule(runtime)
792
  for (int64_t i_work = 1; i_work <= simulation::work_per_rank; ++i_work) {
74,655,812✔
793
    Particle p;
74,620,862✔
794
    initialize_history(p, i_work);
74,620,862✔
795
    transport_history_based_single_particle(p);
74,620,858✔
796
  }
74,620,852✔
797
}
70,432✔
798

799
void transport_event_based()
3,021✔
800
{
801
  int64_t remaining_work = simulation::work_per_rank;
3,021✔
802
  int64_t source_offset = 0;
3,021✔
803

804
  // To cap the total amount of memory used to store particle object data, the
805
  // number of particles in flight at any point in time can bet set. In the case
806
  // that the maximum in flight particle count is lower than the total number
807
  // of particles that need to be run this iteration, the event-based transport
808
  // loop is executed multiple times until all particles have been completed.
809
  while (remaining_work > 0) {
6,042✔
810
    // Figure out # of particles to run for this subiteration
811
    int64_t n_particles =
812
      std::min(remaining_work, settings::max_particles_in_flight);
3,021✔
813

814
    // Initialize all particle histories for this subiteration
815
    process_init_events(n_particles, source_offset);
3,021✔
816

817
    // Event-based transport loop
818
    while (true) {
819
      // Determine which event kernel has the longest queue
820
      int64_t max = std::max({simulation::calculate_fuel_xs_queue.size(),
4,733,276✔
821
        simulation::calculate_nonfuel_xs_queue.size(),
2,366,638✔
822
        simulation::advance_particle_queue.size(),
2,366,638✔
823
        simulation::surface_crossing_queue.size(),
2,366,638✔
824
        simulation::collision_queue.size()});
2,366,638✔
825

826
      // Execute event with the longest queue
827
      if (max == 0) {
2,366,638✔
828
        break;
3,021✔
829
      } else if (max == simulation::calculate_fuel_xs_queue.size()) {
2,363,617✔
830
        process_calculate_xs_events(simulation::calculate_fuel_xs_queue);
422,129✔
831
      } else if (max == simulation::calculate_nonfuel_xs_queue.size()) {
1,941,488✔
832
        process_calculate_xs_events(simulation::calculate_nonfuel_xs_queue);
362,878✔
833
      } else if (max == simulation::advance_particle_queue.size()) {
1,578,610✔
834
        process_advance_particle_events();
780,156✔
835
      } else if (max == simulation::surface_crossing_queue.size()) {
798,454✔
836
        process_surface_crossing_events();
255,969✔
837
      } else if (max == simulation::collision_queue.size()) {
542,485✔
838
        process_collision_events();
542,485✔
839
      }
840
    }
2,363,617✔
841

842
    // Execute death event for all particles
843
    process_death_events(n_particles);
3,021✔
844

845
    // Adjust remaining work and source offset variables
846
    remaining_work -= n_particles;
3,021✔
847
    source_offset += n_particles;
3,021✔
848
  }
849
}
3,021✔
850

851
} // namespace openmc
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc