• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

deepset-ai / haystack / 12712969950

10 Jan 2025 04:04PM UTC coverage: 91.26% (+0.2%) from 91.1%
12712969950

Pull #8605

github

web-flow
Merge 89b7ad1ba into 741ce5df5
Pull Request #8605: feat: add `RecursiveSplitter` component for `Document` preprocessing

8844 of 9691 relevant lines covered (91.26%)

0.91 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

53.62
haystack/components/embedders/azure_document_embedder.py
1
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
2
#
3
# SPDX-License-Identifier: Apache-2.0
4

5
import os
1✔
6
from typing import Any, Dict, List, Optional, Tuple
1✔
7

8
from openai.lib.azure import AzureOpenAI
1✔
9
from tqdm import tqdm
1✔
10

11
from haystack import Document, component, default_from_dict, default_to_dict
1✔
12
from haystack.utils import Secret, deserialize_secrets_inplace
1✔
13

14

15
@component
1✔
16
class AzureOpenAIDocumentEmbedder:
1✔
17
    """
18
    Calculates document embeddings using OpenAI models deployed on Azure.
19

20
    ### Usage example
21

22
    ```python
23
    from haystack import Document
24
    from haystack.components.embedders import AzureOpenAIDocumentEmbedder
25

26
    doc = Document(content="I love pizza!")
27

28
    document_embedder = AzureOpenAIDocumentEmbedder()
29

30
    result = document_embedder.run([doc])
31
    print(result['documents'][0].embedding)
32

33
    # [0.017020374536514282, -0.023255806416273117, ...]
34
    ```
35
    """
36

37
    def __init__(  # noqa: PLR0913 (too-many-arguments) # pylint: disable=too-many-positional-arguments
1✔
38
        self,
39
        azure_endpoint: Optional[str] = None,
40
        api_version: Optional[str] = "2023-05-15",
41
        azure_deployment: str = "text-embedding-ada-002",
42
        dimensions: Optional[int] = None,
43
        api_key: Optional[Secret] = Secret.from_env_var("AZURE_OPENAI_API_KEY", strict=False),
44
        azure_ad_token: Optional[Secret] = Secret.from_env_var("AZURE_OPENAI_AD_TOKEN", strict=False),
45
        organization: Optional[str] = None,
46
        prefix: str = "",
47
        suffix: str = "",
48
        batch_size: int = 32,
49
        progress_bar: bool = True,
50
        meta_fields_to_embed: Optional[List[str]] = None,
51
        embedding_separator: str = "\n",
52
        timeout: Optional[float] = None,
53
        max_retries: Optional[int] = None,
54
    ):
55
        """
56
        Creates an AzureOpenAIDocumentEmbedder component.
57

58
        :param azure_endpoint:
59
            The endpoint of the model deployed on Azure.
60
        :param api_version:
61
            The version of the API to use.
62
        :param azure_deployment:
63
            The name of the model deployed on Azure. The default model is text-embedding-ada-002.
64
        :param dimensions:
65
            The number of dimensions of the resulting embeddings. Only supported in text-embedding-3
66
            and later models.
67
        :param api_key:
68
            The Azure OpenAI API key.
69
            You can set it with an environment variable `AZURE_OPENAI_API_KEY`, or pass with this
70
            parameter during initialization.
71
        :param azure_ad_token:
72
            Microsoft Entra ID token, see Microsoft's
73
            [Entra ID](https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id)
74
            documentation for more information. You can set it with an environment variable
75
            `AZURE_OPENAI_AD_TOKEN`, or pass with this parameter during initialization.
76
            Previously called Azure Active Directory.
77
        :param organization:
78
            Your organization ID. See OpenAI's
79
            [Setting Up Your Organization](https://platform.openai.com/docs/guides/production-best-practices/setting-up-your-organization)
80
            for more information.
81
        :param prefix:
82
            A string to add at the beginning of each text.
83
        :param suffix:
84
            A string to add at the end of each text.
85
        :param batch_size:
86
            Number of documents to embed at once.
87
        :param progress_bar:
88
            If `True`, shows a progress bar when running.
89
        :param meta_fields_to_embed:
90
            List of metadata fields to embed along with the document text.
91
        :param embedding_separator:
92
            Separator used to concatenate the metadata fields to the document text.
93
        :param timeout: The timeout for `AzureOpenAI` client calls, in seconds.
94
            If not set, defaults to either the
95
            `OPENAI_TIMEOUT` environment variable, or 30 seconds.
96
        :param max_retries: Maximum number of retries to contact AzureOpenAI after an internal error.
97
            If not set, defaults to either the `OPENAI_MAX_RETRIES` environment variable or to 5 retries.
98
        """
99
        # if not provided as a parameter, azure_endpoint is read from the env var AZURE_OPENAI_ENDPOINT
100
        azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
1✔
101
        if not azure_endpoint:
1✔
102
            raise ValueError("Please provide an Azure endpoint or set the environment variable AZURE_OPENAI_ENDPOINT.")
×
103

104
        if api_key is None and azure_ad_token is None:
1✔
105
            raise ValueError("Please provide an API key or an Azure Active Directory token.")
×
106

107
        self.api_key = api_key
1✔
108
        self.azure_ad_token = azure_ad_token
1✔
109
        self.api_version = api_version
1✔
110
        self.azure_endpoint = azure_endpoint
1✔
111
        self.azure_deployment = azure_deployment
1✔
112
        self.dimensions = dimensions
1✔
113
        self.organization = organization
1✔
114
        self.prefix = prefix
1✔
115
        self.suffix = suffix
1✔
116
        self.batch_size = batch_size
1✔
117
        self.progress_bar = progress_bar
1✔
118
        self.meta_fields_to_embed = meta_fields_to_embed or []
1✔
119
        self.embedding_separator = embedding_separator
1✔
120
        self.timeout = timeout or float(os.environ.get("OPENAI_TIMEOUT", 30.0))
1✔
121
        self.max_retries = max_retries or int(os.environ.get("OPENAI_MAX_RETRIES", 5))
1✔
122

123
        self._client = AzureOpenAI(
1✔
124
            api_version=api_version,
125
            azure_endpoint=azure_endpoint,
126
            azure_deployment=azure_deployment,
127
            api_key=api_key.resolve_value() if api_key is not None else None,
128
            azure_ad_token=azure_ad_token.resolve_value() if azure_ad_token is not None else None,
129
            organization=organization,
130
            timeout=self.timeout,
131
            max_retries=self.max_retries,
132
        )
133

134
    def _get_telemetry_data(self) -> Dict[str, Any]:
1✔
135
        """
136
        Data that is sent to Posthog for usage analytics.
137
        """
138
        return {"model": self.azure_deployment}
×
139

140
    def to_dict(self) -> Dict[str, Any]:
1✔
141
        """
142
        Serializes the component to a dictionary.
143

144
        :returns:
145
            Dictionary with serialized data.
146
        """
147
        return default_to_dict(
1✔
148
            self,
149
            azure_endpoint=self.azure_endpoint,
150
            azure_deployment=self.azure_deployment,
151
            dimensions=self.dimensions,
152
            organization=self.organization,
153
            api_version=self.api_version,
154
            prefix=self.prefix,
155
            suffix=self.suffix,
156
            batch_size=self.batch_size,
157
            progress_bar=self.progress_bar,
158
            meta_fields_to_embed=self.meta_fields_to_embed,
159
            embedding_separator=self.embedding_separator,
160
            api_key=self.api_key.to_dict() if self.api_key is not None else None,
161
            azure_ad_token=self.azure_ad_token.to_dict() if self.azure_ad_token is not None else None,
162
            timeout=self.timeout,
163
            max_retries=self.max_retries,
164
        )
165

166
    @classmethod
1✔
167
    def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAIDocumentEmbedder":
1✔
168
        """
169
        Deserializes the component from a dictionary.
170

171
        :param data:
172
            Dictionary to deserialize from.
173
        :returns:
174
            Deserialized component.
175
        """
176
        deserialize_secrets_inplace(data["init_parameters"], keys=["api_key", "azure_ad_token"])
×
177
        return default_from_dict(cls, data)
×
178

179
    def _prepare_texts_to_embed(self, documents: List[Document]) -> List[str]:
1✔
180
        """
181
        Prepare the texts to embed by concatenating the Document text with the metadata fields to embed.
182
        """
183
        texts_to_embed = []
×
184
        for doc in documents:
×
185
            meta_values_to_embed = [
×
186
                str(doc.meta[key]) for key in self.meta_fields_to_embed if key in doc.meta and doc.meta[key] is not None
187
            ]
188

189
            text_to_embed = (
×
190
                self.prefix + self.embedding_separator.join(meta_values_to_embed + [doc.content or ""]) + self.suffix
191
            ).replace("\n", " ")
192

193
            texts_to_embed.append(text_to_embed)
×
194
        return texts_to_embed
×
195

196
    def _embed_batch(self, texts_to_embed: List[str], batch_size: int) -> Tuple[List[List[float]], Dict[str, Any]]:
1✔
197
        """
198
        Embed a list of texts in batches.
199
        """
200

201
        all_embeddings: List[List[float]] = []
×
202
        meta: Dict[str, Any] = {"model": "", "usage": {"prompt_tokens": 0, "total_tokens": 0}}
×
203
        for i in tqdm(range(0, len(texts_to_embed), batch_size), desc="Embedding Texts"):
×
204
            batch = texts_to_embed[i : i + batch_size]
×
205
            if self.dimensions is not None:
×
206
                response = self._client.embeddings.create(
×
207
                    model=self.azure_deployment, dimensions=self.dimensions, input=batch
208
                )
209
            else:
210
                response = self._client.embeddings.create(model=self.azure_deployment, input=batch)
×
211

212
            # Append embeddings to the list
213
            all_embeddings.extend(el.embedding for el in response.data)
×
214

215
            # Update the meta information only once if it's empty
216
            if not meta["model"]:
×
217
                meta["model"] = response.model
×
218
                meta["usage"] = dict(response.usage)
×
219
            else:
220
                # Update the usage tokens
221
                meta["usage"]["prompt_tokens"] += response.usage.prompt_tokens
×
222
                meta["usage"]["total_tokens"] += response.usage.total_tokens
×
223

224
        return all_embeddings, meta
×
225

226
    @component.output_types(documents=List[Document], meta=Dict[str, Any])
1✔
227
    def run(self, documents: List[Document]) -> Dict[str, Any]:
1✔
228
        """
229
        Embeds a list of documents.
230

231
        :param documents:
232
            Documents to embed.
233

234
        :returns:
235
            A dictionary with the following keys:
236
            - `documents`: A list of documents with embeddings.
237
            - `meta`: Information about the usage of the model.
238
        """
239
        if not (isinstance(documents, list) and all(isinstance(doc, Document) for doc in documents)):
×
240
            raise TypeError("Input must be a list of Document instances. For strings, use AzureOpenAITextEmbedder.")
×
241

242
        texts_to_embed = self._prepare_texts_to_embed(documents=documents)
×
243
        embeddings, meta = self._embed_batch(texts_to_embed=texts_to_embed, batch_size=self.batch_size)
×
244

245
        # Assign the corresponding embeddings to each document
246
        for doc, emb in zip(documents, embeddings):
×
247
            doc.embedding = emb
×
248

249
        return {"documents": documents, "meta": meta}
×
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc