• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

randombit / botan / 12053952280

27 Nov 2024 03:48PM UTC coverage: 91.247% (+0.002%) from 91.245%
12053952280

push

github

web-flow
Merge pull request #4447 from randombit/jack/config-ct-barrier

Add configure logic for choosing how to perform CT value barriers

93266 of 102213 relevant lines covered (91.25%)

11321618.02 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

99.66
/src/tests/test_utils_bitvector.cpp
1
/*
2
 * (C) 2023-2024 Jack Lloyd
3
 * (C) 2023-2024 René Meusel, Rohde & Schwarz Cybersecurity
4
 *
5
 * Botan is released under the Simplified BSD License (see license.txt)
6
 */
7

8
#include "tests.h"
9

10
#include <botan/internal/bitvector.h>
11
#include <botan/internal/fmt.h>
12

13
#include <algorithm>
14
#include <numeric>
15

16
namespace Botan_Tests {
17

18
namespace {
19

20
/// Returns a random number in the range [min, max)
21
size_t rand_in_range(Botan::RandomNumberGenerator& rng, size_t min, size_t max) {
106✔
22
   if(min == max) {
106✔
23
      return min;
24
   }
25

26
   size_t val = Botan::load_le<size_t>(rng.random_array<sizeof(size_t)>());
106✔
27
   return min + (val % (max - min));
106✔
28
}
29

30
/// Returns @p n integers smaller than @p upper_bound in random order
31
std::vector<size_t> rand_indices(Botan::RandomNumberGenerator& rng, size_t n, size_t upper_bound) {
3✔
32
   auto shuffle = [&](std::vector<size_t>& v) {
6✔
33
      // Fisher-Yates shuffle
34
      if(v.size() < 2) {
3✔
35
         return;
36
      }
37
      for(size_t i = 0; i < v.size() - 1; ++i) {
103✔
38
         auto j = rand_in_range(rng, i, v.size());
100✔
39
         std::swap(v[i], v[j]);
100✔
40
      }
41
   };
3✔
42

43
   std::vector<size_t> indices(upper_bound);
3✔
44
   std::iota(indices.begin(), indices.end(), 0);
3✔
45
   shuffle(indices);
3✔
46
   indices.resize(n);
3✔
47
   return indices;
3✔
48
}
×
49

50
/// Create an empty bitvector of random size and chose a random number of points of interests
51
std::pair<Botan::bitvector, std::set<size_t>> rnd_bitvector_with_rnd_pois(Botan::RandomNumberGenerator& rng) {
3✔
52
   Botan::bitvector bv(rand_in_range(rng, 0, 65));
3✔
53
   size_t no_poi = rand_in_range(rng, 0, bv.size());
3✔
54
   auto points_of_interest = rand_indices(rng, no_poi, bv.size());
3✔
55

56
   return {bv, {points_of_interest.begin(), points_of_interest.end()}};
6✔
57
}
6✔
58

59
template <size_t mod>
60
auto pattern_generator(size_t offset = 0) {
79✔
61
   return [i = offset]() mutable -> bool {
5,209✔
62
      const bool result = (i % mod) != 0;
5,209✔
63
      ++i;
5,209✔
64
      return result;
65
   };
66
}
67

68
std::vector<Test::Result> test_bitvector_bitwise_accessors(Botan::RandomNumberGenerator& rng) {
1✔
69
   return {
1✔
70
      CHECK("default constructed bitvector",
71
            [](auto& result) {
1✔
72
               Botan::bitvector bv;
1✔
73
               result.confirm("default constructed bitvector is empty", bv.empty());
2✔
74
               result.test_eq("default constructed bitvector has zero size", bv.size(), size_t(0));
2✔
75
            }),
1✔
76

77
      CHECK("preallocated construction of bitvector",
78
            [](auto& result) {
1✔
79
               Botan::bitvector bv(10);
1✔
80
               result.confirm("allocated bitvector is not empty", !bv.empty());
2✔
81
               result.test_eq("allocated bitvector has allocated size", bv.size(), size_t(10));
1✔
82
               for(size_t i = 0; i < 10; ++i) {
11✔
83
                  result.confirm("bit not set yet", !bv.at(i));
20✔
84
               }
85
            }),
1✔
86

87
      CHECK("setting bits",
88
            [&](auto& result) {
1✔
89
               auto [bv, ones] = rnd_bitvector_with_rnd_pois(rng);
1✔
90

91
               for(size_t i : ones) {
2✔
92
                  if(rng.next_byte() % 2 == 0) {
1✔
93
                     bv.set(i);
×
94
                  } else {
95
                     bv.at(i) = true;
1✔
96
                  }
97
               }
98
               for(size_t i = 0; i < bv.size(); ++i) {
7✔
99
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == ones.contains(i));
18✔
100
               }
101
            }),
1✔
102

103
      CHECK("unsetting bits",
104
            [&](auto& result) {
1✔
105
               auto [bv, zeros] = rnd_bitvector_with_rnd_pois(rng);
1✔
106
               for(auto b : bv) {
43✔
107
                  b.set();
41✔
108
               }
109

110
               for(size_t i : zeros) {
39✔
111
                  if(rng.next_byte() % 2 == 0) {
38✔
112
                     bv.unset(i);
23✔
113
                  } else {
114
                     bv.at(i) = false;
15✔
115
                  }
116
               }
117
               for(size_t i = 0; i < bv.size(); ++i) {
42✔
118
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == !zeros.contains(i));
123✔
119
               }
120
            }),
1✔
121

122
      CHECK("flipping bits",
123
            [&](auto& result) {
1✔
124
               auto [bv, ones] = rnd_bitvector_with_rnd_pois(rng);
1✔
125

126
               for(size_t i = 0; i < bv.size(); ++i) {
57✔
127
                  if(std::find(ones.begin(), ones.end(), i) == ones.end()) {
112✔
128
                     bv.set(i);
45✔
129
                  }
130
                  bv.flip(i);
56✔
131
               }
132
               for(size_t i = 0; i < bv.size(); ++i) {
57✔
133
                  result.confirm(Botan::fmt("bit {} in expected state", i), bv.at(i) == ones.contains(i));
168✔
134
               }
135
            }),
1✔
136

137
      CHECK("accessors validate offsets",
138
            [](auto& result) {
1✔
139
               Botan::bitvector bv(10);
1✔
140
               result.template test_throws<Botan::Invalid_Argument>(
2✔
141
                  ".at() const out of range", [&] { const_cast<const decltype(bv)&>(bv).at(10); });
2✔
142
               result.template test_throws<Botan::Invalid_Argument>(".at() out of range", [&] { bv.at(10); });
3✔
143
               result.template test_throws<Botan::Invalid_Argument>(".set() out of range", [&] { bv.set(10); });
3✔
144
               result.template test_throws<Botan::Invalid_Argument>(".unset() out of range", [&] { bv.unset(10); });
3✔
145
               result.template test_throws<Botan::Invalid_Argument>(".flip() out of range", [&] { bv.flip(10); });
4✔
146
            }),
1✔
147

148
      CHECK("multiblock handling",
149
            [](auto& result) {
1✔
150
               Botan::bitvector bv(128);
1✔
151
               result.test_eq("has more than 64 bits", bv.size(), 128);
2✔
152
               bv.set(1).set(63).set(64).set(127);
1✔
153
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
154
                  bool expected = (i == 1 || i == 63 || i == 64 || i == 127);
128✔
155
                  result.test_eq(Botan::fmt("bit {} in expected state", i), bv.at(i), expected);
256✔
156
               }
157
            }),
1✔
158

159
      CHECK("subscript operator",
160
            [](auto& result) {
1✔
161
               Botan::bitvector bv(128);
1✔
162
               bv[0].set();
1✔
163
               bv[1] = true;
1✔
164
               bv[2].flip();
1✔
165
               bv[64] = true;
1✔
166
               bv[80] = true;
1✔
167
               result.confirm("bit 0", bv[0]);
2✔
168
               result.confirm("bit 1", bv[1]);
2✔
169
               result.confirm("bit 2", bv[2]);
2✔
170
               result.confirm("bit 3", !bv[3]);
2✔
171
               result.confirm("bit 64", bv[64]);
2✔
172
               result.confirm("bit 80", bv[80]);
2✔
173
            }),
1✔
174

175
      CHECK("subscript operator does not validate offsets",
176
            [](auto& result) {
1✔
177
               Botan::bitvector bv(10);
1✔
178
               result.template test_throws<Botan::Invalid_Argument>(".at() out of range", [&] { bv.at(10); });
3✔
179
               // Technically the next line is undefined behaviour.
180
               // Though, the current implementation detail won't
181
               // cause issues, which might change!
182
               result.test_no_throw("subscript out of range", [&] { bv[10]; });
3✔
183
            }),
1✔
184

185
      CHECK("bitwise assignment modifiers",
186
            [](auto& result) {
1✔
187
               Botan::bitvector bv(4);
1✔
188

189
               result.require("precondition", !bv[0] && !bv[1]);
2✔
190
               bv[0] &= 1;  // NOLINT(*-use-bool-literals)
1✔
191
               result.confirm("bv[0] still 0", !bv[0]);
2✔
192
               bv[0].set();
1✔
193
               bv[0] &= 1;  // NOLINT(*-use-bool-literals)
1✔
194
               result.confirm("bv[0] still 1", bv[0]);
2✔
195
               bv[0] &= false;
1✔
196
               result.confirm("bv[0] now 0 again", !bv[0]);
2✔
197
               bv[0] &= !bv[1];
1✔
198
               result.confirm("bv[0] still 0 once more", !bv[0]);
2✔
199

200
               result.require("precondition 2", !bv[1] && !bv[2]);
2✔
201
               bv[1] |= 1;  // NOLINT(modernize-use-bool-literals)
1✔
202
               result.confirm("bv[1] is now 1", bv[1]);
2✔
203
               bv[1] |= 0;  // NOLINT(modernize-use-bool-literals)
1✔
204
               result.confirm("bv[1] is still 1", bv[1]);
2✔
205
               bv[1].unset();
1✔
206
               bv[1] |= false;
1✔
207
               result.confirm("bv[1] is 0", !bv[1]);
2✔
208
               bv[1] |= !bv[2];
1✔
209
               result.confirm("bv[1] is 1 again", bv[1]);
2✔
210

211
               result.require("precondition 3", !bv[2] && !bv[3]);
2✔
212
               bv[2] ^= 0;  // NOLINT(modernize-use-bool-literals)
1✔
213
               result.confirm("bv[2] is still 0", !bv[2]);
2✔
214
               bv[2] ^= true;
1✔
215
               result.confirm("bv[2] is now 1", bv[2]);
2✔
216
               bv[2] ^= !bv[3];
1✔
217
               result.confirm("bv[2] is 0 again", !bv[2]);
2✔
218
            }),
1✔
219
   };
11✔
220
}
1✔
221

222
std::vector<Test::Result> test_bitvector_capacity(Botan::RandomNumberGenerator&) {
1✔
223
   return {
1✔
224
      CHECK("default constructed bitvector",
225
            [](auto& result) {
1✔
226
               Botan::bitvector bv;
1✔
227
               result.confirm("empty", bv.empty());
2✔
228
               result.test_eq("no size", bv.size(), size_t(0));
2✔
229
               result.test_eq("no capacity", bv.capacity(), size_t(0));
2✔
230
            }),
1✔
231

232
      CHECK("allocated bitvector has capacity",
233
            [](auto& result) {
1✔
234
               Botan::bitvector bv(1);
1✔
235
               result.confirm("empty", !bv.empty());
2✔
236
               result.test_eq("small size", bv.size(), size_t(1));
2✔
237
               result.test_gte("a little capacity", bv.capacity(), size_t(8));
2✔
238
            }),
1✔
239

240
      CHECK("reserved bitvector has capacity",
241
            [](auto& result) {
1✔
242
               Botan::bitvector bv;
1✔
243
               result.test_eq("no size", bv.size(), size_t(0));
2✔
244
               result.test_eq("no capacity", bv.capacity(), size_t(0));
2✔
245

246
               bv.reserve(64);
1✔
247
               result.test_eq("no size", bv.size(), size_t(0));
2✔
248
               result.test_gte("no capacity", bv.capacity(), size_t(64));
2✔
249

250
               bv.reserve(128);
1✔
251
               result.test_eq("no size", bv.size(), size_t(0));
2✔
252
               result.test_gte("no capacity", bv.capacity(), size_t(128));
2✔
253
            }),
1✔
254

255
      CHECK("push_back() extends bitvector",
256
            [](Test::Result& result) {
1✔
257
               Botan::bitvector bv;
1✔
258
               result.confirm("empty", bv.empty());
2✔
259
               result.test_eq("no size", bv.size(), size_t(0));
1✔
260

261
               bv.push_back(true);
1✔
262
               bv.push_back(false);
1✔
263
               bv.push_back(true);
1✔
264
               bv.push_back(false);
1✔
265

266
               result.confirm("not empty", !bv.empty());
2✔
267
               result.test_eq("some size", bv.size(), size_t(4));
1✔
268
               result.test_gte("capacity is typically bigger than size", bv.capacity(), size_t(8));
1✔
269

270
               result.confirm("bit 0", bv.at(0));
2✔
271
               result.confirm("bit 1", !bv.at(1));
2✔
272
               result.confirm("bit 2", bv.at(2));
2✔
273
               result.confirm("bit 3", !bv.at(3));
2✔
274

275
               result.test_throws("bit 4 is not yet allocated", [&] { bv.at(4); });
4✔
276
            }),
1✔
277

278
      CHECK("pop_back() shortens bitvector",
279
            [](Test::Result& result) {
1✔
280
               Botan::bitvector bv;
1✔
281
               bv.push_back(true);
1✔
282
               bv.push_back(false);
1✔
283
               bv.push_back(true);
1✔
284
               bv.push_back(false);
1✔
285
               result.confirm("last is false", !bv.back());
2✔
286

287
               bv.pop_back();
1✔
288
               result.test_eq("size() == 3", bv.size(), 3);
1✔
289
               result.confirm("last is true", bv.back());
2✔
290

291
               bv.pop_back();
1✔
292
               result.test_eq("size() == 2", bv.size(), 2);
1✔
293
               result.confirm("last is false", !bv.back());
2✔
294

295
               bv.pop_back();
1✔
296
               result.test_eq("size() == 1", bv.size(), 1);
1✔
297
               result.confirm("last is true", bv.back());
2✔
298
               result.confirm("first is true", bv.front());
2✔
299

300
               bv.pop_back();
1✔
301
               result.confirm("empty", bv.empty());
2✔
302

303
               result.test_throws("bit 4 is not yet allocated", [&] { bv.at(4); });
4✔
304
            }),
1✔
305

306
      CHECK("resize()",
307
            [](auto& result) {
1✔
308
               Botan::bitvector bv(10);
1✔
309
               bv[0] = true;
1✔
310
               bv[5] = true;
1✔
311
               bv[9] = true;
1✔
312

313
               bv.resize(8);
1✔
314
               result.test_eq("size is reduced", bv.size(), size_t(8));
1✔
315

316
               for(size_t i = 0; i < bv.size(); ++i) {
9✔
317
                  const bool expected = (i == 0 || i == 5);
8✔
318
                  result.test_eq(Botan::fmt("{} is as expected", i), bv[i], expected);
16✔
319
               }
320

321
               bv.resize(0);
1✔
322
               result.confirm("resize(0) empties buffer", bv.empty());
2✔
323

324
               bv.resize(8);
1✔
325
               result.confirm("0 is false", !bv[0]);
2✔
326
               result.confirm("5 is false", !bv[5]);
2✔
327
            }),
1✔
328
   };
7✔
329
}
1✔
330

331
std::vector<Test::Result> test_bitvector_subvector(Botan::RandomNumberGenerator&) {
1✔
332
   auto make_bitpattern = [&]<typename T>(T& bitvector, size_t pattern_offset = 0) {
21✔
333
      auto next = pattern_generator<3>(pattern_offset);
20✔
334

335
      if constexpr(std::unsigned_integral<T>) {
336
         for(size_t i = 0; i < sizeof(T) * 8; ++i) {
316✔
337
            bitvector |= static_cast<T>(next()) << i;
304✔
338
         }
339
      } else {
340
         for(auto& i : bitvector) {
1,616✔
341
            i = next();
800✔
342
         }
343
      }
344
   };
8✔
345

346
   auto bitpattern_at = [&]<std::unsigned_integral T>(T /* ignored */, size_t pattern_offset) -> T {
13✔
347
      T bitvector = 0;
12✔
348
      make_bitpattern(bitvector, pattern_offset);
24✔
349
      return bitvector;
350
   };
1✔
351

352
   auto check_bitpattern = [&](auto& result, auto& bitvector, size_t offset = 0) {
44✔
353
      using bv_t = std::remove_cvref_t<decltype(bitvector)>;
354
      auto next = pattern_generator<3>(offset);
43✔
355

356
      if constexpr(std::unsigned_integral<bv_t>) {
357
         for(size_t i = 0; i < sizeof(bv_t) * 8; ++i) {
496✔
358
            result.confirm(Botan::fmt("{} is as expected", i), (bitvector & (bv_t(1) << i)) != 0, next());
960✔
359
         }
360
      } else {
361
         for(size_t i = 0; i < bitvector.size(); ++i) {
2,056✔
362
            result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], next());
4,058✔
363
         }
364
      }
365
   };
43✔
366

367
   auto check_bitpattern_with_zero_region = [&](auto& result, auto& bitvector, std::pair<size_t, size_t> zero_region) {
13✔
368
      auto next = pattern_generator<3>();
12✔
369
      for(size_t i = 0; i < bitvector.size(); ++i) {
1,212✔
370
         const bool i_in_range = (zero_region.first <= i && i < zero_region.second);
1,200✔
371
         const bool expected = next();
1,200✔
372
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], !i_in_range && expected);
2,400✔
373
      }
374
   };
12✔
375

376
   return {
1✔
377
      CHECK("range errors are caught",
378
            [&](auto& result) {
1✔
379
               Botan::bitvector bv(100);
1✔
380
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(0, 101); });
3✔
381
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(90, 11); });
3✔
382
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(100, 1); });
3✔
383
               result.template test_throws<Botan::Invalid_Argument>("out of range", [&] { bv.subvector(101, 0); });
4✔
384
            }),
1✔
385

386
      CHECK("empty copy is allowed",
387
            [&](auto& result) {
1✔
388
               Botan::bitvector bv1(100);
1✔
389
               auto bv2 = bv1.subvector(0, 0);
1✔
390
               result.test_eq("empty at 0", bv2.size(), size_t(0));
1✔
391
               auto bv3 = bv1.subvector(10, 0);
1✔
392
               result.test_eq("empty at 10", bv3.size(), size_t(0));
1✔
393
               auto bv4 = bv1.subvector(100, 0);
1✔
394
               result.test_eq("empty at 100", bv3.size(), size_t(0));
2✔
395
            }),
2✔
396

397
      CHECK("byte-aligned copy",
398
            [&](auto& result) {
1✔
399
               Botan::bitvector bv1(100);
1✔
400
               make_bitpattern(bv1);
1✔
401

402
               auto bv2 = bv1.subvector(16, 58);
1✔
403
               result.test_eq("size is as requested", bv2.size(), size_t(58));
1✔
404
               check_bitpattern(result, bv2, 16);
1✔
405

406
               auto bv3 = bv1.subvector(32);  // copy until the end
1✔
407
               result.test_eq("size is as expected", bv3.size(), size_t(68));
1✔
408
               check_bitpattern(result, bv3, 32);
1✔
409
            }),
3✔
410

411
      CHECK("byte-aligned 2",
412
            [&](auto& result) {
1✔
413
               Botan::bitvector bv1(100);
1✔
414
               make_bitpattern(bv1);
1✔
415

416
               auto bv2 = bv1.subvector(8, 91);
1✔
417
               result.test_eq("size is as expected", bv2.size(), size_t(91));
1✔
418
               check_bitpattern(result, bv2, 8);
1✔
419

420
               auto bv3 = bv1.subvector(16, 58);
1✔
421
               result.test_eq("size is as requested", bv3.size(), size_t(58));
1✔
422
               check_bitpattern(result, bv3, 16);
1✔
423

424
               auto bv4 = bv1.subvector(24);  // copy until the end
1✔
425
               result.test_eq("size is as expected", bv4.size(), size_t(100 - 24));
1✔
426
               check_bitpattern(result, bv4, 24);
1✔
427

428
               auto bv5 = bv1.subvector(32);  // copy until the end
1✔
429
               result.test_eq("size is as expected", bv5.size(), size_t(100 - 32));
1✔
430
               check_bitpattern(result, bv5, 32);
1✔
431

432
               auto bv6 = bv1.subvector(48, 51);  // copy until the end
1✔
433
               result.test_eq("size is as expected", bv6.size(), size_t(51));
1✔
434
               check_bitpattern(result, bv6, 48);
1✔
435
            }),
6✔
436

437
      CHECK("byte-aligned copy must zero-out unused bits",
438
            [&](auto& result) {
1✔
439
               Botan::bitvector bv1(100);
1✔
440
               make_bitpattern(bv1);
1✔
441

442
               auto bv2 = bv1.subvector(16, 17);
1✔
443
               result.test_eq("size is as requested", bv2.size(), size_t(17));
1✔
444
               check_bitpattern(result, bv2, 16);
1✔
445

446
               bv2.resize(32);
1✔
447
               for(size_t i = 17; i < bv2.size(); ++i) {
16✔
448
                  result.confirm("tail is zero", !bv2[i]);
30✔
449
               }
450
            }),
2✔
451

452
      CHECK("unaligned copy",
453
            [&](auto& result) {
1✔
454
               Botan::bitvector bv1(100);
1✔
455
               make_bitpattern(bv1);
1✔
456

457
               auto bv2 = bv1.subvector(19, 69);
1✔
458
               result.test_eq("size is as requested", bv2.size(), size_t(69));
1✔
459
               check_bitpattern(result, bv2, 19);
1✔
460

461
               auto bv3 = bv1.subvector(21);  // copy until the end
1✔
462
               result.test_eq("size is as expected", bv3.size(), size_t(79));
1✔
463
               check_bitpattern(result, bv3, 21);
1✔
464

465
               auto bv4 = bv1.subvector(1, 16);
1✔
466
               result.test_eq("size is as expected", bv4.size(), size_t(16));
1✔
467
               check_bitpattern(result, bv4, 1);
1✔
468

469
               auto bv5 = bv1.subvector(1, 32);
1✔
470
               result.test_eq("size is as expected", bv5.size(), size_t(32));
1✔
471
               check_bitpattern(result, bv5, 1);
1✔
472

473
               auto bv6 = bv5.subvector(1, 12);
1✔
474
               result.test_eq("size is as expected", bv6.size(), size_t(12));
1✔
475
               check_bitpattern(result, bv6, 1 + 1);
1✔
476

477
               auto bv7 = bv1.subvector(17, 67);
1✔
478
               result.test_eq("size is as expected", bv7.size(), size_t(67));
1✔
479
               check_bitpattern(result, bv7, 17);
1✔
480

481
               auto bv8 = bv1.subvector(33);  // copy until the end
1✔
482
               result.test_eq("size is as expected", bv8.size(), size_t(67));
1✔
483
               check_bitpattern(result, bv8, 33);
1✔
484
            }),
8✔
485

486
      CHECK("byte-aligned unsigned integer subvector",
487
            [&](auto& result) {
1✔
488
               Botan::bitvector bv1(100);
1✔
489
               make_bitpattern(bv1);
1✔
490

491
               const auto u8_0 = bv1.subvector<uint8_t>(0);
1✔
492
               const auto u8_32 = bv1.subvector<uint8_t>(32);
1✔
493
               check_bitpattern(result, u8_0, 0);
1✔
494
               check_bitpattern(result, u8_32, 32);
1✔
495

496
               const auto u16_0 = bv1.subvector<uint16_t>(0);
1✔
497
               const auto u16_56 = bv1.subvector<uint16_t>(56);
1✔
498
               check_bitpattern(result, u16_0, 0);
1✔
499
               check_bitpattern(result, u16_56, 56);
1✔
500

501
               const auto u32_0 = bv1.subvector<uint32_t>(0);
1✔
502
               const auto u32_48 = bv1.subvector<uint32_t>(48);
1✔
503
               check_bitpattern(result, u32_0, 0);
1✔
504
               check_bitpattern(result, u32_48, 48);
1✔
505

506
               const auto u64_0 = bv1.subvector<uint64_t>(0);
1✔
507
               const auto u64_32 = bv1.subvector<uint64_t>(32);
1✔
508
               check_bitpattern(result, u64_0, 0);
1✔
509
               check_bitpattern(result, u64_32, 32);
1✔
510

511
               result.test_throws("out of range (uint8_t)", [&] { bv1.subvector<uint8_t>(93); });
3✔
512
               result.test_throws("out of range (uint16_t)", [&] { bv1.subvector<uint16_t>(85); });
3✔
513
               result.test_throws("out of range (uint32_t)", [&] { bv1.subvector<uint32_t>(69); });
3✔
514
               result.test_throws("out of range (uint64_t)", [&] { bv1.subvector<uint64_t>(37); });
4✔
515
            }),
1✔
516

517
      CHECK("unaligned unsigned integer subvector",
518
            [&](Test::Result& result) {
1✔
519
               Botan::bitvector bv1(100);
1✔
520
               make_bitpattern(bv1);
1✔
521

522
               const auto u8_3 = bv1.subvector<uint8_t>(3);
1✔
523
               const auto u8_92 = bv1.subvector<uint8_t>(92);
1✔
524
               check_bitpattern(result, u8_3, 3);
1✔
525
               check_bitpattern(result, u8_92, 92);
1✔
526

527
               const auto u16_7 = bv1.subvector<uint16_t>(7);
1✔
528
               const auto u16_84 = bv1.subvector<uint16_t>(84);
1✔
529
               check_bitpattern(result, u16_7, 7);
1✔
530
               check_bitpattern(result, u16_84, 84);
1✔
531

532
               const auto u32_11 = bv1.subvector<uint32_t>(11);
1✔
533
               const auto u32_68 = bv1.subvector<uint32_t>(68);
1✔
534
               check_bitpattern(result, u32_11, 11);
1✔
535
               check_bitpattern(result, u32_68, 68);
1✔
536

537
               const auto u64_21 = bv1.subvector<uint64_t>(21);
1✔
538
               const auto u64_36 = bv1.subvector<uint64_t>(36);
1✔
539
               check_bitpattern(result, u64_21, 21);
1✔
540
               check_bitpattern(result, u64_36, 36);
1✔
541
            }),
1✔
542

543
      CHECK("byte-aligned unsigned integer subvector replacement",
544
            [&](auto& result) {
1✔
545
               Botan::bitvector bv1(100);
1✔
546
               make_bitpattern(bv1);
1✔
547

548
               bv1.subvector_replace(0, uint8_t(0));
1✔
549
               check_bitpattern_with_zero_region(result, bv1, {0, 8});
1✔
550
               bv1.subvector_replace(0, bitpattern_at(uint8_t(0), 0));
2✔
551
               check_bitpattern(result, bv1);
1✔
552

553
               bv1.subvector_replace(32, uint8_t(0));
1✔
554
               check_bitpattern_with_zero_region(result, bv1, {32, 32 + 8});
1✔
555
               bv1.subvector_replace(32, bitpattern_at(uint8_t(0), 32));
2✔
556
               check_bitpattern(result, bv1);
1✔
557

558
               bv1.subvector_replace(56, uint16_t(0));
1✔
559
               check_bitpattern_with_zero_region(result, bv1, {56, 56 + 16});
1✔
560
               bv1.subvector_replace(56, bitpattern_at(uint16_t(0), 56));
2✔
561
               check_bitpattern(result, bv1);
1✔
562

563
               bv1.subvector_replace(48, uint32_t(0));
1✔
564
               check_bitpattern_with_zero_region(result, bv1, {48, 48 + 32});
1✔
565
               bv1.subvector_replace(48, bitpattern_at(uint32_t(0), 48));
2✔
566
               check_bitpattern(result, bv1);
1✔
567

568
               bv1.subvector_replace(16, uint64_t(0));
1✔
569
               check_bitpattern_with_zero_region(result, bv1, {16, 16 + 64});
1✔
570
               bv1.subvector_replace(16, bitpattern_at(uint64_t(0), 16));
2✔
571
               check_bitpattern(result, bv1);
1✔
572

573
               result.test_throws("out of range (uint8_t)", [&] { bv1.subvector_replace<uint8_t>(93, 42); });
3✔
574
               result.test_throws("out of range (uint16_t)", [&] { bv1.subvector_replace<uint16_t>(85, 42); });
3✔
575
               result.test_throws("out of range (uint32_t)", [&] { bv1.subvector_replace<uint32_t>(69, 42); });
3✔
576
               result.test_throws("out of range (uint64_t)", [&] { bv1.subvector_replace<uint64_t>(37, 42); });
4✔
577
            }),
1✔
578

579
      CHECK("unaligned unsigned integer subvector replacement",
580
            [&](auto& result) {
1✔
581
               Botan::bitvector bv1(100);
1✔
582
               make_bitpattern(bv1);
1✔
583

584
               bv1.subvector_replace(3, uint8_t(0));
1✔
585
               check_bitpattern_with_zero_region(result, bv1, {3, 3 + 8});
1✔
586
               bv1.subvector_replace(3, bitpattern_at(uint8_t(0), 3));
2✔
587
               check_bitpattern(result, bv1);
1✔
588

589
               bv1.subvector_replace(92, uint8_t(0));
1✔
590
               check_bitpattern_with_zero_region(result, bv1, {92, 92 + 8});
1✔
591
               bv1.subvector_replace(92, bitpattern_at(uint8_t(0), 92));
2✔
592
               check_bitpattern(result, bv1);
1✔
593

594
               bv1.subvector_replace(7, uint16_t(0));
1✔
595
               check_bitpattern_with_zero_region(result, bv1, {7, 7 + 16});
1✔
596
               bv1.subvector_replace(7, bitpattern_at(uint16_t(0), 7));
2✔
597
               check_bitpattern(result, bv1);
1✔
598

599
               bv1.subvector_replace(84, uint16_t(0));
1✔
600
               check_bitpattern_with_zero_region(result, bv1, {84, 84 + 16});
1✔
601
               bv1.subvector_replace(84, bitpattern_at(uint16_t(0), 84));
2✔
602
               check_bitpattern(result, bv1);
1✔
603

604
               bv1.subvector_replace(11, uint32_t(0));
1✔
605
               check_bitpattern_with_zero_region(result, bv1, {11, 11 + 32});
1✔
606
               bv1.subvector_replace(11, bitpattern_at(uint32_t(0), 11));
2✔
607
               check_bitpattern(result, bv1);
1✔
608

609
               bv1.subvector_replace(68, uint32_t(0));
1✔
610
               check_bitpattern_with_zero_region(result, bv1, {68, 68 + 32});
1✔
611
               bv1.subvector_replace(68, bitpattern_at(uint32_t(0), 68));
2✔
612
               check_bitpattern(result, bv1);
1✔
613

614
               bv1.subvector_replace(21, uint64_t(0));
1✔
615
               check_bitpattern_with_zero_region(result, bv1, {21, 21 + 64});
1✔
616
               bv1.subvector_replace(21, bitpattern_at(uint64_t(0), 21));
2✔
617
               check_bitpattern(result, bv1);
1✔
618
            }),
1✔
619
   };
11✔
620
}
1✔
621

622
std::vector<Test::Result> test_bitvector_global_modifiers_and_predicates(Botan::RandomNumberGenerator&) {
1✔
623
   auto make_bitpattern = [](auto& bitvector) {
3✔
624
      auto next = pattern_generator<5>();
2✔
625
      for(auto& i : bitvector) {
400✔
626
         i = next();
198✔
627
      }
628
   };
2✔
629

630
   auto check_bitpattern = [](auto& result, auto& bitvector) {
2✔
631
      auto next = pattern_generator<5>();
1✔
632
      for(size_t i = 0; i < bitvector.size(); ++i) {
100✔
633
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], next());
198✔
634
      }
635
   };
1✔
636

637
   auto check_flipped_bitpattern = [](auto& result, auto& bitvector) {
2✔
638
      auto next = pattern_generator<5>();
1✔
639
      for(size_t i = 0; i < bitvector.size(); ++i) {
100✔
640
         result.confirm(Botan::fmt("{} is as expected", i), bitvector[i], !next());
198✔
641
      }
642
   };
1✔
643

644
   return {
1✔
645
      CHECK("one bit",
646
            [](auto& result) {
1✔
647
               Botan::bitvector bv;
1✔
648
               bv.push_back(true);
1✔
649

650
               bv.flip();
1✔
651
               result.confirm("bit is flipped", !bv[0]);
2✔
652

653
               // check that unused bits aren't flipped
654
               bv.resize(8);
1✔
655
               for(size_t i = 0; i < bv.size(); ++i) {
9✔
656
                  result.confirm("all bits are false", !bv[i]);
16✔
657
               }
658
               bv.resize(1);
1✔
659

660
               bv.flip();
1✔
661
               result.confirm("bit is flipped again", bv[0]);
2✔
662
            }),
1✔
663

664
      CHECK("bits in many blocks",
665
            [&](auto& result) {
1✔
666
               Botan::bitvector bv(99);
1✔
667

668
               make_bitpattern(bv);
1✔
669
               bv.flip();
1✔
670
               check_flipped_bitpattern(result, bv);
1✔
671

672
               bv = ~bv;
2✔
673
               check_bitpattern(result, bv);
1✔
674

675
               bv.resize(112);
1✔
676
               for(size_t i = 99; i < bv.size(); ++i) {
14✔
677
                  result.confirm("just-allocated bit is not set", !bv[i]);
26✔
678
               }
679
            }),
1✔
680

681
      CHECK("set and unset",
682
            [&](auto& result) {
1✔
683
               Botan::bitvector bv(99);
1✔
684

685
               make_bitpattern(bv);
1✔
686
               bv.set();
1✔
687
               bv.resize(128);
1✔
688
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
689
                  const bool expected = (i < 99);
128✔
690
                  result.test_eq("only set bits are set", bv[i], expected);
256✔
691
               }
692

693
               bv.unset();
1✔
694
               for(size_t i = 0; i < bv.size(); ++i) {
129✔
695
                  result.confirm("bit is not set", !bv[i]);
256✔
696
               }
697
            }),
1✔
698

699
      CHECK("any, none and all",
700
            [&](auto& result) {
1✔
701
               Botan::bitvector bv(99);
1✔
702

703
               result.confirm("default construction yields all-zero", bv.none_vartime());
2✔
704
               result.confirm("default construction yields all-zero 2", !bv.any_vartime());
2✔
705
               result.confirm("default construction yields all-zero 3", !bv.all_vartime());
2✔
706
               result.confirm("default construction yields all-zero 4", bv.none());
2✔
707
               result.confirm("default construction yields all-zero 5", !bv.any());
2✔
708
               result.confirm("default construction yields all-zero 6", !bv.all());
2✔
709

710
               bv.set(42);
1✔
711
               result.confirm("setting a bit means there's a bit set", !bv.none_vartime());
2✔
712
               result.confirm("setting a bit means there's a bit set 2", bv.any_vartime());
2✔
713
               result.confirm("setting a bit means there's not all bits set", !bv.all_vartime());
2✔
714
               result.confirm("setting a bit means there's a bit set 3", !bv.none());
2✔
715
               result.confirm("setting a bit means there's a bit set 4", bv.any());
2✔
716
               result.confirm("setting a bit means there's not all bits set 2", !bv.all());
2✔
717

718
               bv.set();
1✔
719
               result.confirm("setting all bits means there's a bit set", !bv.none_vartime());
2✔
720
               result.confirm("setting all bits means there's a bit set 2", bv.any_vartime());
2✔
721
               result.confirm("setting all bits means all bits are set", bv.all_vartime());
2✔
722
               result.confirm("setting all bits means there's a bit set 3", !bv.none());
2✔
723
               result.confirm("setting all bits means there's a bit set 4", bv.any());
2✔
724
               result.confirm("setting all bits means all bits are set 2", bv.all());
2✔
725

726
               bv.unset(97);
1✔
727
               result.confirm("a single 0 at the end means that there's a bit set", !bv.none_vartime());
2✔
728
               result.confirm("a single 0 at the end means that there are bits set", bv.any_vartime());
2✔
729
               result.confirm("a single 0 at the end means that there are not all bits set", !bv.all_vartime());
2✔
730
               result.confirm("a single 0 at the end means that there's a bit set 2", !bv.none());
2✔
731
               result.confirm("a single 0 at the end means that there are bits set 2", bv.any());
2✔
732
               result.confirm("a single 0 at the end means that there are not all bits set 2", !bv.all());
2✔
733

734
               bv.unset();
1✔
735
               result.confirm("unsetting all bits means there's no bit set", bv.none_vartime());
2✔
736
               result.confirm("unsetting all bits means there's no bit set 2", !bv.any_vartime());
2✔
737
               result.confirm("unsetting all bits means there's not all bits set", !bv.all_vartime());
2✔
738
               result.confirm("unsetting all bits means there's no bit set 3", bv.none());
2✔
739
               result.confirm("unsetting all bits means there's no bit set 4", !bv.any());
2✔
740
               result.confirm("unsetting all bits means there's not all bits set 2", !bv.all());
2✔
741
            }),
1✔
742

743
      CHECK("hamming weight oddness",
744
            [](auto& result) {
1✔
745
               const auto evn = Botan::hex_decode("FE3410CB0278E4D26602");
1✔
746
               const auto odd = Botan::hex_decode("BB2418C2B4F288921203");
1✔
747

748
               result.confirm("odd hamming", Botan::bitvector(odd).has_odd_hamming_weight().as_bool());
3✔
749
               result.confirm("even hamming", !Botan::bitvector(evn).has_odd_hamming_weight().as_bool());
3✔
750
            }),
2✔
751

752
      CHECK("hamming weight",
753
            [](auto& result) {
1✔
754
               auto naive_count = [](auto& v) {
5✔
755
                  size_t weight = 0;
5✔
756
                  for(const auto& bit : v) {
440✔
757
                     weight += bit.template as<size_t>();
430✔
758
                  }
759
                  return weight;
5✔
760
               };
761

762
               // the last three bits of this bitvector are set, then there's a gap
763
               auto bv = Botan::bitvector(Botan::hex_decode("FE3410CB0278E4D26602E0"));
2✔
764
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(37));
1✔
765
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
766

767
               bv.pop_back();
1✔
768
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(36));
1✔
769
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
770

771
               bv.pop_back();
1✔
772
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(35));
1✔
773
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
774

775
               bv.pop_back();
1✔
776
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(34));
1✔
777
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
778

779
               bv.pop_back();
1✔
780
               result.test_eq("hamming weight", bv.hamming_weight(), size_t(34));
1✔
781
               result.test_eq("hamming weight", bv.hamming_weight(), naive_count(bv));
2✔
782
            }),
1✔
783
   };
7✔
784
}
1✔
785

786
std::vector<Test::Result> test_bitvector_binary_operators(Botan::RandomNumberGenerator&) {
1✔
787
   auto check_set = [](auto& result, auto bits, std::vector<size_t> set_bits) {
13✔
788
      for(size_t i = 0; i < bits.size(); ++i) {
252✔
789
         const auto should_be_set = std::find(set_bits.begin(), set_bits.end(), i) != set_bits.end();
240✔
790
         result.test_eq(Botan::fmt("{} should {}be set", i, (!should_be_set ? "not " : "")), bits[i], should_be_set);
661✔
791
      }
792
   };
12✔
793

794
   auto is_secure_allocator = []<template <typename> typename AllocatorT>(auto& result,
7✔
795
                                                                          const Botan::bitvector_base<AllocatorT>&) {
796
      result.confirm("allocator is Botan::secure_allocator<>",
12✔
797
                     std::same_as<Botan::secure_allocator<uint8_t>, AllocatorT<uint8_t>>);
798
   };
6✔
799

800
   auto is_standard_allocator = []<template <typename> typename AllocatorT>(auto& result,
4✔
801
                                                                            const Botan::bitvector_base<AllocatorT>&) {
802
      result.confirm("allocator is std::allocator<>", std::same_as<std::allocator<uint8_t>, AllocatorT<uint8_t>>);
6✔
803
   };
3✔
804

805
   return {
1✔
806
      CHECK("bitwise_equals",
807
            [&](auto& result) {
1✔
808
               Botan::bitvector lhs(20);
1✔
809
               lhs.set(0).set(4).set(15).set(16).set(19);
1✔
810
               Botan::bitvector rhs(20);
1✔
811
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
812

813
               result.test_eq("Not equal bitvectors", lhs.equals_vartime(rhs), false);
1✔
814
               result.test_eq("Not equal bitvectors 2", lhs.equals(rhs), false);
2✔
815

816
               lhs.unset().set(13);
1✔
817
               rhs.unset().set(13);
1✔
818

819
               result.test_eq("equal bitvectors", lhs.equals_vartime(rhs), true);
1✔
820
               result.test_eq("equal bitvectors 2", lhs.equals(rhs), true);
2✔
821
            }),
2✔
822

823
      CHECK("bitwise OR",
824
            [&](auto& result) {
1✔
825
               Botan::bitvector lhs(20);
1✔
826
               lhs.set(0).set(4).set(15).set(16).set(19);
1✔
827
               Botan::bitvector rhs(20);
1✔
828
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
829
               Botan::bitvector unary(20);
1✔
830
               unary.set(8);
1✔
831

832
               Botan::bitvector res = lhs | rhs;
1✔
833
               check_set(result, res, {0, 1, 4, 15, 16, 17, 18, 19});
4✔
834

835
               res |= unary;
1✔
836
               check_set(result, res, {0, 1, 4, 8, 15, 16, 17, 18, 19});
3✔
837

838
               is_standard_allocator(result, res);
1✔
839
            }),
4✔
840

841
      CHECK("bitwise AND",
842
            [&](auto& result) {
1✔
843
               Botan::bitvector lhs(20);
1✔
844
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
845
               Botan::bitvector rhs(20);
1✔
846
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
847
               Botan::bitvector unary(20);
1✔
848
               unary.set(8).set(16);
1✔
849

850
               Botan::bitvector res = lhs & rhs;
1✔
851
               check_set(result, res, {4, 16, 18});
4✔
852

853
               res &= unary;
1✔
854
               check_set(result, res, {16});
3✔
855

856
               is_standard_allocator(result, res);
1✔
857
            }),
4✔
858

859
      CHECK("bitwise XOR",
860
            [&](auto& result) {
1✔
861
               Botan::bitvector lhs(20);
1✔
862
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
863
               Botan::bitvector rhs(20);
1✔
864
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
865
               Botan::bitvector unary(20);
1✔
866
               unary.set(8).set(16);
1✔
867

868
               Botan::bitvector res = lhs ^ rhs;
1✔
869
               check_set(result, res, {0, 1, 15, 17});
4✔
870

871
               res ^= unary;
1✔
872
               check_set(result, res, {0, 1, 8, 15, 16, 17});
3✔
873

874
               is_standard_allocator(result, res);
1✔
875
            }),
4✔
876

877
      CHECK("bitwise operators with heterogeneous allocators",
878
            [&](auto& result) {
1✔
879
               Botan::bitvector lhs(20);
1✔
880
               lhs.set(0).set(4).set(15).set(16).set(18);
1✔
881
               Botan::secure_bitvector rhs(20);
1✔
882
               rhs.set(1).set(4).set(16).set(17).set(18);
1✔
883
               Botan::bitvector unary(20);
1✔
884
               unary.set(8).set(16);
1✔
885

886
               auto res1 = lhs | rhs;
1✔
887
               is_secure_allocator(result, res1);
1✔
888
               check_set(result, res1, {0, 1, 4, 15, 16, 17, 18, 20});
3✔
889

890
               auto res2 = rhs | lhs;
1✔
891
               is_secure_allocator(result, res2);
1✔
892
               check_set(result, res2, {0, 1, 4, 15, 16, 17, 18, 20});
3✔
893

894
               auto res3 = lhs & rhs;
1✔
895
               is_secure_allocator(result, res3);
1✔
896
               check_set(result, res3, {4, 16, 18});
3✔
897

898
               auto res4 = rhs & lhs;
1✔
899
               is_secure_allocator(result, res4);
1✔
900
               check_set(result, res4, {4, 16, 18});
3✔
901

902
               auto res5 = lhs ^ rhs;
1✔
903
               is_secure_allocator(result, res5);
1✔
904
               check_set(result, res5, {0, 1, 15, 17});
3✔
905

906
               auto res6 = rhs ^ lhs;
1✔
907
               is_secure_allocator(result, res6);
1✔
908
               check_set(result, res6, {0, 1, 15, 17});
4✔
909
            }),
8✔
910
   };
6✔
911
}
1✔
912

913
std::vector<Test::Result> test_bitvector_serialization(Botan::RandomNumberGenerator&) {
1✔
914
   constexpr uint8_t outlen = 64;
1✔
915
   const auto bytearray = [] {
1✔
916
      std::array<uint8_t, outlen> out;
917
      for(uint8_t i = 0; i < outlen; ++i) {
918
         out[i] = i;
919
      }
920
      return out;
921
   }();
922

923
   auto validate_bytewise = [](auto& result, const auto& bv, std::span<const uint8_t> bytes) {
3✔
924
      for(size_t i = 0; i < bytes.size(); ++i) {
129✔
925
         const uint8_t b = (static_cast<uint8_t>(bv[0 + i * 8]) << 0) | (static_cast<uint8_t>(bv[1 + i * 8]) << 1) |
127✔
926
                           (static_cast<uint8_t>(bv[2 + i * 8]) << 2) | (static_cast<uint8_t>(bv[3 + i * 8]) << 3) |
127✔
927
                           (static_cast<uint8_t>(bv[4 + i * 8]) << 4) | (static_cast<uint8_t>(bv[5 + i * 8]) << 5) |
127✔
928
                           (static_cast<uint8_t>(bv[6 + i * 8]) << 6) | (static_cast<uint8_t>(bv[7 + i * 8]) << 7);
127✔
929

930
         result.test_eq(Botan::fmt("byte {} is as expected", i), static_cast<size_t>(b), static_cast<size_t>(bytes[i]));
254✔
931
      }
932
   };
2✔
933

934
   return {
1✔
935
      CHECK("empty byte-array",
936
            [](auto& result) {
1✔
937
               std::vector<uint8_t> bytes;
1✔
938
               result.require("empty buffer", bytes.empty());
2✔
939

940
               Botan::bitvector bv(bytes);
1✔
941
               result.confirm("empty bit vector", bv.empty());
2✔
942

943
               auto rendered = bv.to_bytes();
1✔
944
               result.confirm("empty bit vector renders an empty buffer", rendered.empty());
2✔
945
            }),
1✔
946

947
      CHECK("to_bytes() uses secure_allocator if necessary",
948
            [](auto& result) {
1✔
949
               Botan::bitvector bv;
1✔
950
               Botan::secure_bitvector sbv;
1✔
951

952
               auto rbv = bv.to_bytes();
1✔
953
               auto rsbv = sbv.to_bytes();
1✔
954

955
               result.confirm("ordinary bitvector uses ordinary std::vector",
2✔
956
                              std::is_same_v<std::vector<uint8_t>, decltype(rbv)>);
957
               result.confirm("secure bitvector uses secure_vector",
2✔
958
                              std::is_same_v<Botan::secure_vector<uint8_t>, decltype(rsbv)>);
959
            }),
1✔
960

961
      CHECK("load all bits from byte-array (aligned data)",
962
            [&](auto& result) {
1✔
963
               Botan::bitvector bv(bytearray);
1✔
964
               validate_bytewise(result, bv, bytearray);
1✔
965

966
               const auto rbv = bv.to_bytes();
1✔
967
               result.confirm("uint8_t rendered correctly", std::ranges::equal(bytearray, rbv));
3✔
968
            }),
2✔
969

970
      CHECK("load all bits from byte-array (unaligned blocks)",
971
            [&](auto& result) {
1✔
972
               std::array<uint8_t, 63> unaligned_bytearray;
973
               Botan::copy_mem(unaligned_bytearray, std::span{bytearray}.first<unaligned_bytearray.size()>());
1✔
974

975
               Botan::bitvector bv(unaligned_bytearray);
1✔
976
               validate_bytewise(result, bv, unaligned_bytearray);
1✔
977

978
               const auto rbv = bv.to_bytes();
1✔
979
               result.confirm("uint8_t rendered correctly", std::ranges::equal(unaligned_bytearray, rbv));
2✔
980
            }),
3✔
981

982
      CHECK("load bits from byte-array (unaligned data)",
983
            [&](auto& result) {
1✔
984
               constexpr size_t bits_to_load = 31;
1✔
985
               constexpr size_t bytes_to_load = Botan::ceil_tobytes(bits_to_load);
1✔
986

987
               Botan::bitvector bv(bytearray, bits_to_load);
1✔
988

989
               for(size_t i = 0; i < bits_to_load; ++i) {
32✔
990
                  const bool expected = (i == 8) || (i == 17) || (i == 24) || (i == 25);
31✔
991
                  result.test_eq(Botan::fmt("bit {} is correct", i), bv.at(i), expected);
62✔
992
               }
993

994
               const auto rbv = bv.to_bytes();
1✔
995
               std::array<uint8_t, bytes_to_load> expected_bytes;
996
               Botan::copy_mem(expected_bytes, std::span{bytearray}.first<bytes_to_load>());
1✔
997
               expected_bytes.back() &= (uint8_t(1) << (bits_to_load % 8)) - 1;
1✔
998
               result.confirm("uint8_t rendered correctly", std::ranges::equal(expected_bytes, rbv));
2✔
999
            }),
2✔
1000
   };
6✔
1001
}
1✔
1002

1003
std::vector<Test::Result> test_bitvector_constant_time_operations(Botan::RandomNumberGenerator&) {
1✔
1004
   constexpr Botan::CT::Choice yes = Botan::CT::Choice::yes();
1✔
1005
   constexpr Botan::CT::Choice no = Botan::CT::Choice::no();
1✔
1006

1007
   return {
1✔
1008
      CHECK("conditional XOR, block aligned",
1009
            [&](auto& result) {
1✔
1010
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF"));
2✔
1011
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F"));
2✔
1012
               const auto initial_bv1 = bv1;
1✔
1013
               const auto xor_result = bv1 ^ bv2;
1✔
1014

1015
               bv1.ct_conditional_xor(no, bv2);
1✔
1016
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1017

1018
               bv1.ct_conditional_xor(yes, bv2);
1✔
1019
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1020
            }),
4✔
1021

1022
      CHECK("conditional XOR, byte aligned",
1023
            [&](auto& result) {
1✔
1024
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF42"));
2✔
1025
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F13"));
2✔
1026
               const auto initial_bv1 = bv1;
1✔
1027
               const auto xor_result = bv1 ^ bv2;
1✔
1028

1029
               bv1.ct_conditional_xor(no, bv2);
1✔
1030
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1031

1032
               bv1.ct_conditional_xor(yes, bv2);
1✔
1033
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1034
            }),
4✔
1035

1036
      CHECK("conditional XOR, no alignment",
1037
            [&](auto& result) {
1✔
1038
               Botan::bitvector bv1(Botan::hex_decode("BAADF00DCAFEBEEF42"));
1✔
1039
               bv1.push_back(true);
1✔
1040
               bv1.push_back(false);
1✔
1041
               Botan::secure_bitvector bv2(Botan::hex_decode("CAFEBEEFC001B33F13"));
1✔
1042
               bv2.push_back(false);
1✔
1043
               bv2.push_back(false);
1✔
1044

1045
               const auto initial_bv1 = bv1;
1✔
1046
               const auto xor_result = bv1 ^ bv2;
1✔
1047

1048
               bv1.ct_conditional_xor(no, bv2);
1✔
1049
               result.confirm("no change after false condition", bv1 == initial_bv1);
2✔
1050

1051
               bv1.ct_conditional_xor(yes, bv2);
1✔
1052
               result.confirm("XORed if condition was true", bv1 == xor_result);
2✔
1053
            }),
4✔
1054
   };
4✔
1055
}
1✔
1056

1057
std::vector<Test::Result> test_bitvector_conditional_xor_workload(Botan::RandomNumberGenerator&) {
1✔
1058
   Test::Result res("Conditional XOR, Gauss Workload");
1✔
1059

1060
   auto rng = Test::new_rng("Conditional XOR, Gauss Workload");
1✔
1061

1062
   const size_t matrix_rows = 1664;
1✔
1063
   const size_t matrix_columns = 8192;
1✔
1064

1065
   std::vector<Botan::bitvector> bitvec_vec;
1✔
1066
   bitvec_vec.reserve(matrix_rows);
1✔
1067
   for(size_t i = 0; i < matrix_rows; ++i) {
1,665✔
1068
      bitvec_vec.push_back(Botan::bitvector(rng->random_vec(matrix_columns / 8)));
4,992✔
1069
   }
1070

1071
   // Simulate #ops of Gaussian Elimination
1072
   const size_t total_iter = matrix_rows * (3 * matrix_rows - 1) / 2;
1✔
1073
   const auto start = Test::timestamp();
1✔
1074
   for(size_t i = 0; i < total_iter; ++i) {
4,152,513✔
1075
      const auto choice = Botan::CT::Choice::from_int(static_cast<uint8_t>(rng->next_byte() % 2));
4,152,512✔
1076
      bitvec_vec.at(i % matrix_rows).ct_conditional_xor(choice, bitvec_vec.at(rng->next_byte() % matrix_rows));
4,152,512✔
1077
   }
1078
   res.set_ns_consumed(Test::timestamp() - start);
1✔
1079

1080
   res.confirm("Prevent compiler from optimizing away",
3✔
1081
               bitvec_vec.at(0).any_vartime() || bitvec_vec.at(0).none_vartime());
1✔
1082
   return {res};
3✔
1083
}
3✔
1084

1085
std::vector<Test::Result> test_bitvector_iterators(Botan::RandomNumberGenerator&) {
1✔
1086
   return {
1✔
1087
      CHECK("Iterators: range-based for loop",
1088
            [](auto& result) {
1✔
1089
               Botan::bitvector bv(6);
1✔
1090
               bv.set(0).set(3).set(4);
1✔
1091

1092
               for(size_t i = 0; auto& ref : bv) {
8✔
1093
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1094
                  result.test_eq(Botan::fmt("bit {} is as expected", i), ref, expected);
6✔
1095
                  ++i;
6✔
1096
               }
1097

1098
               for(size_t i = 0; const auto& ref : bv) {
8✔
1099
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1100
                  result.test_eq(Botan::fmt("const bit {} is as expected", i), ref, expected);
6✔
1101
                  ++i;
6✔
1102
               }
1103

1104
               for(auto ref : bv) {
14✔
1105
                  ref = true;
6✔
1106
               }
1107

1108
               result.confirm("all bits are set", bv.all_vartime());
2✔
1109
            }),
1✔
1110

1111
      CHECK("Iterators: bare usage",
1112
            [](auto& result) {
1✔
1113
               Botan::bitvector bv(6);
1✔
1114
               bv.set(0).set(3).set(4);
1✔
1115

1116
               size_t i = 0;
1✔
1117
               for(auto itr = bv.begin(); itr != bv.end(); ++itr, ++i) {
7✔
1118
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1119
                  result.test_eq(Botan::fmt("bit {} is as expected", i), *itr, expected);
12✔
1120
               }
1121

1122
               i = 0;
1✔
1123
               for(auto itr = bv.cbegin(); itr != bv.cend(); itr++, ++i) {
7✔
1124
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1125
                  result.test_eq(Botan::fmt("const bit {} is as expected", i), itr->is_set(), expected);
12✔
1126
               }
1127

1128
               i = 6;
1✔
1129
               auto ritr = bv.end();
1✔
1130
               do {
1131
                  --ritr;
6✔
1132
                  --i;
6✔
1133
                  const bool expected = i == 0 || i == 3 || i == 4;
6✔
1134
                  result.test_eq(Botan::fmt("reverse bit {} is as expected", i), *ritr, expected);
6✔
1135
               } while(ritr != bv.begin());
11✔
1136

1137
               for(auto itr = bv.begin(); itr != bv.end(); ++itr) {
7✔
1138
                  itr->flip();
6✔
1139
               }
1140

1141
               i = 0;
1✔
1142
               for(auto itr = bv.begin(); itr != bv.end(); ++itr, ++i) {
7✔
1143
                  const bool expected = i == 1 || i == 2 || i == 5;
6✔
1144
                  result.test_eq(Botan::fmt("flipped bit {} is as expected", i), *itr, expected);
12✔
1145
               }
1146
            }),
1✔
1147

1148
      CHECK("Iterators: std::distance and std::advance",
1149
            [](auto& result) {
1✔
1150
               Botan::bitvector bv(6);
1✔
1151
               using signed_size_t = std::make_signed_t<size_t>;
1152

1153
               result.test_is_eq("distance", std::distance(bv.begin(), bv.end()), signed_size_t(6));
2✔
1154
               result.test_is_eq("const distance", std::distance(bv.cbegin(), bv.cend()), signed_size_t(6));
3✔
1155

1156
               auto b = bv.begin();
1✔
1157
               std::advance(b, 3);
1✔
1158
               result.test_is_eq("half distance", std::distance(bv.begin(), b), signed_size_t(3));
3✔
1159
            }),
1✔
1160

1161
      CHECK("Iterators: large bitvector",
1162
            [](auto& result) {
1✔
1163
               Botan::bitvector bv(500);
1✔
1164

1165
               for(auto itr = bv.begin(); itr != bv.end(); ++itr) {
1,001✔
1166
                  if(std::distance(bv.begin(), itr) % 2 == 0) {
1,000✔
1167
                     itr->set();
250✔
1168
                  }
1169
                  if(std::distance(bv.begin(), itr) % 3 == 0) {
1,000✔
1170
                     *itr = true;
167✔
1171
                  }
1172
               }
1173

1174
               for(size_t i = 0; const auto& bit : bv) {
502✔
1175
                  const bool expected = (i % 2 == 0) || (i % 3 == 0);
500✔
1176
                  result.test_eq(Botan::fmt("bit {} is as expected", i), bit, expected);
500✔
1177
                  ++i;
500✔
1178
               }
1179
            }),
1✔
1180

1181
      CHECK("Iterators: satiesfies C++20 concepts",
1182
            [](auto& result) {
1✔
1183
               Botan::secure_bitvector bv(42);
1✔
1184
               auto ro_itr = bv.cbegin();
1✔
1185
               auto rw_itr = bv.begin();
1✔
1186

1187
               using ro = decltype(ro_itr);
1188
               using rw = decltype(rw_itr);
1189

1190
               result.confirm("ro input iterator", std::input_iterator<ro>);
2✔
1191
               result.confirm("rw input iterator", std::input_iterator<rw>);
2✔
1192
               result.confirm("ro is not an output iterator", !std::output_iterator<ro, bool>);
2✔
1193
               result.confirm("rw output iterator", std::output_iterator<rw, bool>);
2✔
1194
               result.confirm("ro bidirectional iterator", std::bidirectional_iterator<ro>);
2✔
1195
               result.confirm("rw bidirectional iterator", std::bidirectional_iterator<rw>);
2✔
1196
               result.confirm("ro not a contiguous iterator", !std::contiguous_iterator<ro>);
2✔
1197
               result.confirm("rw not a contiguous iterator", !std::contiguous_iterator<rw>);
2✔
1198
            }),
1✔
1199
   };
6✔
1200
}
1✔
1201

1202
using TestBitvector = Botan::Strong<Botan::bitvector, struct TestBitvector_>;
1203
using TestSecureBitvector = Botan::Strong<Botan::secure_bitvector, struct TestBitvector_>;
1204
using TestUInt32 = Botan::Strong<uint32_t, struct TestUInt32_>;
1205

1206
std::vector<Test::Result> test_bitvector_strongtype_adapter(Botan::RandomNumberGenerator&) {
1✔
1207
   Test::Result result("Bitvector in strong type");
1✔
1208

1209
   TestBitvector bv1(33);
1✔
1210

1211
   result.confirm("bv1 is not empty", !bv1.empty());
2✔
1212
   result.test_eq("bv1 has size 33", bv1.size(), size_t(33));
1✔
1213

1214
   bv1[0] = true;
1✔
1215
   bv1.at(1) = true;
1✔
1216
   bv1.set(2);
2✔
1217
   bv1.unset(3);
2✔
1218
   bv1.flip(4);
2✔
1219
   bv1.push_back(true);
1✔
1220
   bv1.push_back(false);
1✔
1221
   bv1.pop_back();
1✔
1222

1223
   result.confirm("bv1 front is set", bv1.front());
2✔
1224
   result.confirm("bv1 back is set", bv1.back());
2✔
1225
   result.confirm("bv1 has some one bits", bv1.any_vartime());
2✔
1226
   result.confirm("bv1 is not all zero", !bv1.none_vartime());
2✔
1227
   result.confirm("bv1 is not all one", !bv1.all_vartime());
2✔
1228

1229
   result.confirm("hamming weight of bv1", bv1.has_odd_hamming_weight().as_bool());
2✔
1230

1231
   for(size_t i = 0; auto bit : bv1) {
36✔
1232
      const bool expected = (i == 0 || i == 1 || i == 2 || i == 4 || i == 33);
34✔
1233
      result.confirm(Botan::fmt("bv1 bit {} is set", i), bit == expected);
68✔
1234
      ++i;
34✔
1235
   }
1236

1237
   bv1.flip();
2✔
1238

1239
   for(size_t i = 0; auto bit : bv1) {
36✔
1240
      const bool expected = (i == 0 || i == 1 || i == 2 || i == 4 || i == 33);
34✔
1241
      result.confirm(Botan::fmt("bv1 bit {} is set", i), bit != expected);
68✔
1242
      ++i;
34✔
1243
   }
1244

1245
   auto bv2 = bv1.as<TestSecureBitvector>();
1✔
1246

1247
   auto bv3 = bv1 | bv2;
1✔
1248
   result.confirm("bv3 is a secure_bitvector", std::same_as<Botan::secure_bitvector, decltype(bv3)>);
2✔
1249

1250
   auto bv4 = bv2.subvector<TestSecureBitvector>(0, 5);
1✔
1251
   result.confirm("bv4 is a TestSecureBitvector", std::same_as<TestSecureBitvector, decltype(bv4)>);
2✔
1252

1253
   auto bv5 = bv2.subvector<TestUInt32>(1);
1✔
1254
   result.confirm("bv5 is a TestUInt32", std::same_as<TestUInt32, decltype(bv5)>);
2✔
1255
   result.test_is_eq<TestUInt32::wrapped_type>("bv5 has expected value", bv5.get(), 0xFFFFFFF4);
1✔
1256

1257
   const auto str = bv4.to_string();
1✔
1258
   result.test_eq("bv4 to_string", str, "00010");
2✔
1259

1260
   return {result};
3✔
1261
}
6✔
1262

1263
}  // namespace
1264

1265
class BitVector_Tests final : public Test {
×
1266
   public:
1267
      std::vector<Test::Result> run() override {
1✔
1268
         std::vector<Test::Result> results;
1✔
1269
         auto& rng = Test::rng();
1✔
1270

1271
         std::vector<std::function<std::vector<Test::Result>(Botan::RandomNumberGenerator&)>> funcs{
1✔
1272
            test_bitvector_bitwise_accessors,
1273
            test_bitvector_capacity,
1274
            test_bitvector_subvector,
1275
            test_bitvector_global_modifiers_and_predicates,
1276
            test_bitvector_binary_operators,
1277
            test_bitvector_serialization,
1278
            test_bitvector_constant_time_operations,
1279
            test_bitvector_conditional_xor_workload,
1280
            test_bitvector_iterators,
1281
            test_bitvector_strongtype_adapter,
1282
         };
11✔
1283

1284
         for(const auto& test_func : funcs) {
11✔
1285
            auto fn_results = test_func(rng);
10✔
1286
            results.insert(results.end(), fn_results.begin(), fn_results.end());
10✔
1287
         }
10✔
1288

1289
         return results;
1✔
1290
      }
2✔
1291
};
1292

1293
BOTAN_REGISTER_TEST("utils", "bitvector", BitVector_Tests);
1294

1295
}  // namespace Botan_Tests
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc