• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

Pablo1990 / pyVertexModel / 11858895593

15 Nov 2024 03:23PM UTC coverage: 0.783% (-0.006%) from 0.789%
11858895593

push

github

Pablo1990
Wound indentation and create video

0 of 1025 branches covered (0.0%)

Branch coverage included in aggregate %.

0 of 39 new or added lines in 3 files covered. (0.0%)

58 existing lines in 2 files now uncovered.

51 of 5490 relevant lines covered (0.93%)

0.01 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

0.0
/src/pyVertexModel/analysis/analyse_simulation.py
1
import os
×
2
import pickle
×
3
import cv2
×
4

5
import numpy as np
×
6
import pandas as pd
×
7
from matplotlib import pyplot as plt
×
8
from scipy.optimize import curve_fit
×
9

10
from src.pyVertexModel.algorithm.vertexModel import VertexModel, logger
×
11
from src.pyVertexModel.util.utils import load_state, load_variables, save_variables
×
12

13

14
def analyse_simulation(folder):
×
15
    """
16
    Analyse the simulation results
17
    :param folder:
18
    :return:
19
    """
20

21
    # Check if the pkl file exists
22
    if not os.path.exists(os.path.join(folder, 'features_per_time.pkl')):
×
23
        # return None, None, None, None
24
        vModel = VertexModel(create_output_folder=False)
×
25

26
        features_per_time = []
×
27
        features_per_time_all_cells = []
×
28

29
        # Go through all the files in the folder
30
        all_files = os.listdir(folder)
×
31

32
        # Sort files by date
33
        all_files = sorted(all_files, key=lambda x: os.path.getmtime(os.path.join(folder, x)))
×
34

35
        # if all_files has less than 20 files, return None
36
        if len(all_files) < 20:
×
37
            return None, None, None, None
×
38

39
        for file_id, file in enumerate(all_files):
×
40
            if file.endswith('.pkl') and not file.__contains__('data_step_before_remodelling') and not file.__contains__('recoil'):
×
41
                # Load the state of the model
42
                load_state(vModel, os.path.join(folder, file))
×
43

44
                # Analyse the simulation
45
                all_cells, avg_cells = vModel.analyse_vertex_model()
×
46
                features_per_time_all_cells.append(all_cells)
×
47
                features_per_time.append(avg_cells)
×
48

49
                # # Create a temporary directory to store the images
50
                # temp_dir = os.path.join(folder, 'images')
51
                # if not os.path.exists(temp_dir):
52
                #     os.mkdir(temp_dir)
53
                # vModel.screenshot(temp_dir)
54

55
                # temp_dir = os.path.join(folder, 'images_wound_edge')
56
                # if not os.path.exists(temp_dir):
57
                #     os.mkdir(temp_dir)
58
                # _, debris_cells = vModel.geo.compute_wound_centre()
59
                # list_of_cell_distances_top = vModel.geo.compute_cell_distance_to_wound(debris_cells, location_filter=0)
60
                # alive_cells = [cell.ID for cell in vModel.geo.Cells if cell.AliveStatus == 1]
61
                # wound_edge_cells = []
62
                # for cell_num, cell_id in enumerate(alive_cells):
63
                #     if list_of_cell_distances_top[cell_num] == 1:
64
                #         wound_edge_cells.append(cell_id)
65
                # vModel.screenshot(temp_dir, wound_edge_cells)
66

67
        if not features_per_time:
×
68
            return None, None, None, None
×
69

70
        # Export to xlsx
71
        features_per_time_all_cells_df = pd.DataFrame(np.concatenate(features_per_time_all_cells),
×
72
                                                      columns=features_per_time_all_cells[0].columns)
73
        features_per_time_all_cells_df.sort_values(by='time', inplace=True)
×
74
        features_per_time_all_cells_df.to_excel(os.path.join(folder, 'features_per_time_all_cells.xlsx'))
×
75

76
        features_per_time_df = pd.DataFrame(features_per_time)
×
77
        features_per_time_df.sort_values(by='time', inplace=True)
×
78
        features_per_time_df.to_excel(os.path.join(folder, 'features_per_time.xlsx'))
×
79

80
        # Obtain pre-wound features
81
        try:
×
82
            pre_wound_features = features_per_time_df['time'][features_per_time_df['time'] < vModel.set.TInitAblation]
×
83
            pre_wound_features = features_per_time_df[features_per_time_df['time'] ==
×
84
                                                      pre_wound_features.iloc[-1]]
85
        except Exception as e:
×
86
            pre_wound_features = features_per_time_df.iloc[0]
×
87

88
        # Obtain post-wound features
89
        post_wound_features = features_per_time_df[features_per_time_df['time'] >= vModel.set.TInitAblation]
×
90

91
        if not post_wound_features.empty:
×
92
            # Reset time to ablation time.
93
            post_wound_features.loc[:, 'time'] = post_wound_features['time'] - vModel.set.TInitAblation
×
94

95
            # Compare post-wound features with pre-wound features in percentage
96
            for feature in post_wound_features.columns:
×
97
                if np.any(np.isnan(pre_wound_features[feature])) or np.any(np.isnan(post_wound_features[feature])):
×
98
                    continue
×
99

100
                if feature == 'time':
×
101
                    continue
×
102
                post_wound_features.loc[:, feature] = (post_wound_features[feature] / np.array(
×
103
                    pre_wound_features[feature])) * 100
104

105
            # Export to xlsx
106
            post_wound_features.to_excel(os.path.join(folder, 'post_wound_features.xlsx'))
×
107

108
            important_features = calculate_important_features(post_wound_features)
×
109
        else:
110
            important_features = {
×
111
                'max_recoiling_top': np.nan,
112
                'max_recoiling_time_top': np.nan,
113
                'min_height_change': np.nan,
114
                'min_height_change_time': np.nan,
115
            }
116

117
        # Export to xlsx
118
        df = pd.DataFrame([important_features])
×
119
        df.to_excel(os.path.join(folder, 'important_features.xlsx'))
×
120

121
        # Save dataframes to a single pkl
122
        with open(os.path.join(folder, 'features_per_time.pkl'), 'wb') as f:
×
123
            pickle.dump(features_per_time_df, f)
×
124
            pickle.dump(important_features, f)
×
125
            pickle.dump(post_wound_features, f)
×
126
            pickle.dump(features_per_time_all_cells_df, f)
×
127

128
    else:
129
        # Load dataframes from pkl
130
        with open(os.path.join(folder, 'features_per_time.pkl'), 'rb') as f:
×
131
            features_per_time_df = pickle.load(f)
×
132
            important_features = pickle.load(f)
×
133
            post_wound_features = pickle.load(f)
×
134
            features_per_time_all_cells_df = pickle.load(f)
×
135

136
        important_features = calculate_important_features(post_wound_features)
×
137

138
    # Plot wound area top evolution over time and save it to a file
139
    plot_feature(folder, post_wound_features, name='wound_area_top')
×
140
    plot_feature(folder, post_wound_features, name='num_cells_wound_edge_top')
×
NEW
141
    plot_feature(folder, post_wound_features, name='wound_indentation_top')
×
NEW
142
    plot_feature(folder, post_wound_features, name='wound_indentation_bottom')
×
143

144
    return features_per_time_df, post_wound_features, important_features, features_per_time_all_cells_df
×
145

146

147
def plot_feature(folder, post_wound_features, name='wound_area_top'):
×
148
    """
149
    Plot a feature and save it to a file
150
    :param folder:
151
    :param post_wound_features:
152
    :param name:
153
    :return:
154
    """
155
    plt.figure()
×
156
    plt.plot(post_wound_features['time'], post_wound_features[name])
×
157
    plt.xlabel('Time (h)')
×
158
    plt.ylabel(name)
×
159
    # Change axis limits
160
    if np.max(post_wound_features['time']) > 60:
×
161
        plt.xlim([0, np.max(post_wound_features['time'])])
×
162
    else:
163
        plt.xlim([0, 60])
×
164
    plt.ylim([0, 250])
×
165
    plt.savefig(os.path.join(folder, name + '.png'))
×
166
    plt.close()
×
167

168

169
def calculate_important_features(post_wound_features):
×
170
    """
171
    Calculate important features from the post-wound features
172
    :param post_wound_features:
173
    :return:
174
    """
175
    # Obtain important features for post-wound
176
    if not post_wound_features['wound_area_top'].empty and post_wound_features['time'].iloc[-1] > 4:
×
177
        important_features = {
×
178
            'max_recoiling_top': np.max(post_wound_features['wound_area_top']),
179
            'max_recoiling_time_top': np.array(post_wound_features['time'])[
180
                np.argmax(post_wound_features['wound_area_top'])],
181
            'min_recoiling_top': np.min(post_wound_features['wound_area_top']),
182
            'min_recoiling_time_top': np.array(post_wound_features['time'])[
183
                np.argmin(post_wound_features['wound_area_top'])],
184
            'min_height_change': np.min(post_wound_features['wound_height']),
185
            'min_height_change_time': np.array(post_wound_features['time'])[
186
                np.argmin(post_wound_features['wound_height'])],
187
            'last_area_top': post_wound_features['wound_area_top'].iloc[-1],
188
            'last_area_time_top': post_wound_features['time'].iloc[-1],
189
        }
190

191
        # Extrapolate features to a given time
192
        times_to_extrapolate = {3.0, 6.0, 9.0, 12.0, 15.0, 21.0, 30.0, 36.0, 45.0, 51.0, 60.0}
×
193
        columns_to_extrapolate = {'wound_area_top', 'wound_height'}  # post_wound_features.columns
×
194
        for feature in columns_to_extrapolate:
×
195
            for time in times_to_extrapolate:
×
196
                # Extrapolate results to a given time
197
                important_features[feature + '_extrapolated_' + str(time)] = np.interp(time,
×
198
                                                                                       post_wound_features['time'],
199
                                                                                       post_wound_features[feature])
200

201
        # # Get ratio from area the first time to the other times
202
        # for time in times_to_extrapolate:
203
        #     if time != 6.0:
204
        #         important_features['ratio_area_top_' + str(time)] = (
205
        #                 important_features['wound_area_top_extrapolated_' + str(time)] /
206
        #                 important_features['wound_area_top_extrapolated_6.0'])
207

208
    else:
209
        important_features = {
×
210
            'max_recoiling_top': np.nan,
211
            'max_recoiling_time_top': np.nan,
212
            'min_height_change': np.nan,
213
            'min_height_change_time': np.nan,
214
        }
215

216
    return important_features
×
217

218

219
def analyse_edge_recoil(file_name_v_model, type_of_ablation='recoil_edge_info_apical', n_ablations=2, location_filter=0, t_end=0.5):
×
220
    """
221
    Analyse how much an edge recoil if we ablate an edge of a cell
222
    :param type_of_ablation:
223
    :param t_end: Time to iterate after the ablation
224
    :param file_name_v_model: file nae of the Vertex model
225
    :param n_ablations: Number of ablations to perform
226
    :param location_filter: Location filter
227
    :return:
228
    """
229

230
    v_model = VertexModel(create_output_folder=False)
×
231
    load_state(v_model, file_name_v_model)
×
232

233
    # Cells to ablate
234
    # cell_to_ablate = np.random.choice(possible_cells_to_ablate, 1)
235
    cell_to_ablate = [v_model.geo.Cells[0]]
×
236

237
    #Pick the neighbouring cell to ablate
238
    neighbours = cell_to_ablate[0].compute_neighbours(location_filter)
×
239

240
    # Random order of neighbours
241
    np.random.seed(0)
×
242
    np.random.shuffle(neighbours)
×
243

244
    list_of_dicts_to_save = []
×
245
    for num_ablation in range(n_ablations):
×
246
        load_state(v_model, file_name_v_model)
×
247
        try:
×
248
            vars = load_variables(file_name_v_model.replace('before_ablation.pkl', type_of_ablation + '.pkl'))
×
249
            list_of_dicts_to_save_loaded = vars['recoiling_info_df_apical']
×
250

251
            cell_to_ablate_ID = list_of_dicts_to_save_loaded['cell_to_ablate'][num_ablation]
×
252
            neighbour_to_ablate_ID = list_of_dicts_to_save_loaded['neighbour_to_ablate'][num_ablation]
×
253
            edge_length_init = list_of_dicts_to_save_loaded['edge_length_init'][num_ablation]
×
254
            edge_length_final = list_of_dicts_to_save_loaded['edge_length_final'][num_ablation]
×
255
            if 'edge_length_final_normalized' in list_of_dicts_to_save_loaded:
×
256
                edge_length_final_normalized = list_of_dicts_to_save_loaded['edge_length_final_normalized'][
×
257
                    num_ablation]
258
            else:
259
                edge_length_final_normalized = (edge_length_final - edge_length_init) / edge_length_init
×
260

261
            initial_recoil = list_of_dicts_to_save_loaded['initial_recoil_in_s'][num_ablation]
×
262
            K = list_of_dicts_to_save_loaded['K'][num_ablation]
×
263
            scutoid_face = list_of_dicts_to_save_loaded['scutoid_face'][num_ablation]
×
264
            distance_to_centre = list_of_dicts_to_save_loaded['distance_to_centre'][num_ablation]
×
265
            if 'time_steps' in list_of_dicts_to_save_loaded:
×
266
                time_steps = list_of_dicts_to_save_loaded['time_steps'][num_ablation]
×
267
            else:
268
                time_steps = np.arange(0, len(edge_length_final)) * 6
×
269

270
            if edge_length_final[0] == 0:
×
271
                # Remove the first element
272
                edge_length_final = edge_length_final[1:]
×
273
                time_steps = time_steps[1:]
×
274
        except Exception as e:
×
275
            logger.info('Performing the analysis...' + str(e))
×
276
            # Change name of folder and create it
277
            if type_of_ablation == 'recoil_info_apical':
×
278
                v_model.set.OutputFolder = v_model.set.OutputFolder + '_ablation_' + str(num_ablation)
×
279
            else:
280
                v_model.set.OutputFolder = v_model.set.OutputFolder + '_ablation_edge_' + str(num_ablation)
×
281

282
            if not os.path.exists(v_model.set.OutputFolder):
×
283
                os.mkdir(v_model.set.OutputFolder)
×
284

285
            neighbour_to_ablate = [neighbours[num_ablation]]
×
286

287
            # Calculate if the cell is neighbour on both sides
288
            scutoid_face = None
×
289
            neighbours_other_side = []
×
290
            if location_filter == 0:
×
291
                neighbours_other_side = cell_to_ablate[0].compute_neighbours(location_filter=2)
×
292
                scutoid_face = np.nan
×
293
            elif location_filter == 2:
×
294
                neighbours_other_side = cell_to_ablate[0].compute_neighbours(location_filter=0)
×
295
                scutoid_face = np.nan
×
296

297
            if scutoid_face is not None:
×
298
                if neighbour_to_ablate[0] in neighbours_other_side:
×
299
                    scutoid_face = True
×
300
                else:
301
                    scutoid_face = False
×
302

303
            # Get the centre of the tissue
304
            centre_of_tissue = v_model.geo.compute_centre_of_tissue()
×
305
            neighbour_to_ablate_cell = [cell for cell in v_model.geo.Cells if cell.ID == neighbour_to_ablate[0]][0]
×
306
            distance_to_centre = np.mean([cell_to_ablate[0].compute_distance_to_centre(centre_of_tissue),
×
307
                                          neighbour_to_ablate_cell.compute_distance_to_centre(centre_of_tissue)])
308

309
            # Pick the neighbour and put it in the list
310
            cells_to_ablate = [cell_to_ablate[0].ID, neighbour_to_ablate[0]]
×
311

312
            # Get the edge that share both cells
313
            edge_length_init = v_model.geo.get_edge_length(cells_to_ablate, location_filter)
×
314

315
            # Ablate the edge
316
            v_model.set.ablation = True
×
317
            v_model.geo.cellsToAblate = cells_to_ablate
×
318
            v_model.set.TInitAblation = v_model.t
×
319
            if type_of_ablation == 'recoil_info_apical':
×
320
                v_model.geo.ablate_cells(v_model.set, v_model.t, combine_cells=False)
×
321
                v_model.geo.y_ablated = []
×
322
            elif type_of_ablation == 'recoil_edge_info_apical':
×
323
                v_model.geo.y_ablated = v_model.geo.ablate_edge(v_model.set, v_model.t, domain=location_filter,
×
324
                                                                adjacent_surface=False)
325

326
            # Relax the system
327
            initial_time = v_model.t
×
328
            v_model.set.tend = v_model.t + t_end
×
329
            if type_of_ablation == 'recoil_info_apical':
×
330
                v_model.set.dt = 0.005
×
331
            elif type_of_ablation == 'recoil_edge_info_apical':
×
332
                v_model.set.dt = 0.005
×
333

334
            v_model.set.Remodelling = False
×
335

336
            v_model.set.dt0 = v_model.set.dt
×
337
            if type_of_ablation == 'recoil_edge_info_apical':
×
338
                v_model.set.RemodelingFrequency = 0.05
×
339
            else:
340
                v_model.set.RemodelingFrequency = 100
×
341
            v_model.set.ablation = False
×
342
            v_model.set.export_images = True
×
343
            if v_model.set.export_images and not os.path.exists(v_model.set.OutputFolder + '/images'):
×
344
                os.mkdir(v_model.set.OutputFolder + '/images')
×
345
            edge_length_final_normalized = []
×
346
            edge_length_final = []
×
347
            recoil_speed = []
×
348
            time_steps = []
×
349

350
            # if os.path.exists(v_model.set.OutputFolder):
351
            #     list_of_files = os.listdir(v_model.set.OutputFolder)
352
            #     # Get file modification times and sort files by date
353
            #     files_with_dates = [(file, os.path.getmtime(os.path.join(v_model.set.OutputFolder, file))) for file in
354
            #                         list_of_files]
355
            #     files_with_dates.sort(key=lambda x: x[1])
356
            #     for file in files_with_dates:
357
            #         load_state(v_model, os.path.join(v_model.set.OutputFolder, file[0]))
358
            #         compute_edge_length_v_model(cells_to_ablate, edge_length_final, edge_length_final_normalized,
359
            #                                     edge_length_init, initial_time, location_filter, recoil_speed,
360
            #                                     time_steps,
361
            #                                     v_model)
362

363
            while v_model.t <= v_model.set.tend and not v_model.didNotConverge:
×
364
                gr = v_model.single_iteration()
×
365

366
                compute_edge_length_v_model(cells_to_ablate, edge_length_final, edge_length_final_normalized,
×
367
                                            edge_length_init, initial_time, location_filter, recoil_speed, time_steps,
368
                                            v_model)
369

370
                if np.isnan(gr):
×
371
                    break
×
372

373
            cell_to_ablate_ID = cell_to_ablate[0].ID
×
374
            neighbour_to_ablate_ID = neighbour_to_ablate[0]
×
375

376
        K, initial_recoil, error_bars = fit_ablation_equation(edge_length_final, time_steps)
×
377

378
        # Generate a plot with the edge length final and the fit for each ablation
379
        plt.figure()
×
380
        plt.plot(time_steps, edge_length_final_normalized, 'o')
×
381
        # Plot fit line of the Kelvin-Voigt model
382
        plt.plot(time_steps, recoil_model(np.array(time_steps), initial_recoil, K), 'r')
×
383
        plt.xlabel('Time (s)')
×
384
        plt.ylabel('Edge length final')
×
385
        plt.title('Ablation fit - ' + str(cell_to_ablate_ID) + ' ' + str(neighbour_to_ablate_ID))
×
386

387
        # Save plot
388
        if type_of_ablation == 'recoil_info_apical':
×
389
            plt.savefig(
×
390
                os.path.join(file_name_v_model.replace('before_ablation.pkl', 'ablation_fit_' + str(num_ablation) + '.png'))
391
            )
392
        elif type_of_ablation == 'recoil_edge_info_apical':
×
393
            plt.savefig(
×
394
                os.path.join(file_name_v_model.replace('before_ablation.pkl', 'ablation_edge_fit_' + str(num_ablation) + '.png'))
395
            )
396
        plt.close()
×
397

398
        # Save the results
399
        dict_to_save = {
×
400
            'cell_to_ablate': cell_to_ablate_ID,
401
            'neighbour_to_ablate': neighbour_to_ablate_ID,
402
            'edge_length_init': edge_length_init,
403
            'edge_length_final': edge_length_final,
404
            'edge_length_final_normalized': edge_length_final_normalized,
405
            'initial_recoil_in_s': initial_recoil,
406
            'K': K,
407
            'scutoid_face': scutoid_face,
408
            'location_filter': location_filter,
409
            'distance_to_centre': distance_to_centre,
410
            'time_steps': time_steps,
411
        }
412
        list_of_dicts_to_save.append(dict_to_save)
×
413

414
    recoiling_info_df_apical = pd.DataFrame(list_of_dicts_to_save)
×
415
    recoiling_info_df_apical.to_excel(file_name_v_model.replace('before_ablation.pkl', type_of_ablation+'.xlsx'))
×
416
    save_variables({'recoiling_info_df_apical': recoiling_info_df_apical},
×
417
                   file_name_v_model.replace('before_ablation.pkl', type_of_ablation+'.pkl'))
418

419
    return list_of_dicts_to_save
×
420

421

422
def recoil_model(x, initial_recoil, K):
×
423
    """
424
    Model of the recoil based on a Kelvin-Voigt model
425
    :param x:
426
    :param initial_recoil:
427
    :param K:
428
    :return:   Recoil
429
    """
430
    return (initial_recoil / K) * (1 - np.exp(-K * x))
×
431

432

433
def fit_ablation_equation(edge_length_final_normalized, time_steps):
×
434
    """
435
    Fit the ablation equation. Thanks to Veronika Lachina.
436
    :param edge_length_final_normalized:
437
    :param time_steps:
438
    :return:    K, initial_recoil
439
    """
440

441
    # Normalize the edge length
442
    edge_length_init = edge_length_final_normalized[0]
×
443
    edge_length_final_normalized = (edge_length_final_normalized - edge_length_init) / edge_length_init
×
444

445
    # Fit the model to the data
446
    [params, covariance] = curve_fit(recoil_model, time_steps, edge_length_final_normalized,
×
447
                                     p0=[0.00001, 3], bounds=(0, np.inf))
448

449
    # Get the error
450
    error_bars = np.sqrt(np.diag(covariance))
×
451

452
    initial_recoil, K = params
×
453
    return K, initial_recoil, error_bars
×
454

455

456
def compute_edge_length_v_model(cells_to_ablate, edge_length_final, edge_length_final_normalized, edge_length_init,
×
457
                                initial_time, location_filter, recoil_speed, time_steps, v_model):
458
    """
459
    Compute the edge length of the edge that share the cells_to_ablate
460
    :param cells_to_ablate:
461
    :param edge_length_final:
462
    :param edge_length_final_normalized:
463
    :param edge_length_init:
464
    :param initial_time:
465
    :param location_filter:
466
    :param recoil_speed:
467
    :param time_steps:
468
    :param v_model:
469
    :return:
470
    """
471
    if v_model.t == initial_time:
×
472
        return
×
473
    # Get the edge length
474
    edge_length_final.append(v_model.geo.get_edge_length(cells_to_ablate, location_filter))
×
475
    edge_length_final_normalized.append((edge_length_final[-1] - edge_length_init) / edge_length_init)
×
476
    print('Edge length final: ', edge_length_final[-1])
×
477
    # In seconds. 1 t = 1 minute = 60 seconds
478
    time_steps.append((v_model.t - initial_time) * 60)
×
479
    # Calculate the recoil
480
    recoil_speed.append(edge_length_final_normalized[-1] / time_steps[-1])
×
481

482
def create_video(folder, name_containing_images='top_'):
×
483
    """
484
    Create a video of the images in the folder
485
    :param folder:
486
    :return:
487
    """
488

489
    # Get the images
490
    images = [img for img in os.listdir(folder) if img.endswith(".png") and name_containing_images in img]
×
491
    images.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
×
492

493
    # Determine the width and height from the first image
494
    image_path = os.path.join(folder, images[0])
×
495
    frame = cv2.imread(image_path)
×
496
    height, width, layers = frame.shape
×
497

498
    # Define the codec and create VideoWriter object
499
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Use 'mp4v' for MP4
×
500
    video = cv2.VideoWriter(os.path.join(folder, name_containing_images + 'video.mp4'), fourcc, 7, (width, height))
×
501

502
    for image in images:
×
503
        video.write(cv2.imread(os.path.join(folder, image)))
×
504

505
    cv2.destroyAllWindows()
×
506
    video.release()
×
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc