• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

tarantool / luajit / 11774765987

11 Nov 2024 08:22AM UTC coverage: 92.931% (-0.008%) from 92.939%
11774765987

push

github

mandesero
tmp commit for ci check

5694 of 6033 branches covered (94.38%)

Branch coverage included in aggregate %.

21704 of 23449 relevant lines covered (92.56%)

2961521.92 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

92.41
/src/lj_opt_narrow.c
1
/*
2
** NARROW: Narrowing of numbers to integers (double to int32_t).
3
** STRIPOV: Stripping of overflow checks.
4
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
5
*/
6

7
#define lj_opt_narrow_c
8
#define LUA_CORE
9

10
#include "lj_obj.h"
11

12
#if LJ_HASJIT
13

14
#include "lj_bc.h"
15
#include "lj_ir.h"
16
#include "lj_jit.h"
17
#include "lj_iropt.h"
18
#include "lj_trace.h"
19
#include "lj_vm.h"
20
#include "lj_strscan.h"
21

22
/* Rationale for narrowing optimizations:
23
**
24
** Lua has only a single number type and this is a FP double by default.
25
** Narrowing doubles to integers does not pay off for the interpreter on a
26
** current-generation x86/x64 machine. Most FP operations need the same
27
** amount of execution resources as their integer counterparts, except
28
** with slightly longer latencies. Longer latencies are a non-issue for
29
** the interpreter, since they are usually hidden by other overhead.
30
**
31
** The total CPU execution bandwidth is the sum of the bandwidth of the FP
32
** and the integer units, because they execute in parallel. The FP units
33
** have an equal or higher bandwidth than the integer units. Not using
34
** them means losing execution bandwidth. Moving work away from them to
35
** the already quite busy integer units is a losing proposition.
36
**
37
** The situation for JIT-compiled code is a bit different: the higher code
38
** density makes the extra latencies much more visible. Tight loops expose
39
** the latencies for updating the induction variables. Array indexing
40
** requires narrowing conversions with high latencies and additional
41
** guards (to check that the index is really an integer). And many common
42
** optimizations only work on integers.
43
**
44
** One solution would be speculative, eager narrowing of all number loads.
45
** This causes many problems, like losing -0 or the need to resolve type
46
** mismatches between traces. It also effectively forces the integer type
47
** to have overflow-checking semantics. This impedes many basic
48
** optimizations and requires adding overflow checks to all integer
49
** arithmetic operations (whereas FP arithmetics can do without).
50
**
51
** Always replacing an FP op with an integer op plus an overflow check is
52
** counter-productive on a current-generation super-scalar CPU. Although
53
** the overflow check branches are highly predictable, they will clog the
54
** execution port for the branch unit and tie up reorder buffers. This is
55
** turning a pure data-flow dependency into a different data-flow
56
** dependency (with slightly lower latency) *plus* a control dependency.
57
** In general, you don't want to do this since latencies due to data-flow
58
** dependencies can be well hidden by out-of-order execution.
59
**
60
** A better solution is to keep all numbers as FP values and only narrow
61
** when it's beneficial to do so. LuaJIT uses predictive narrowing for
62
** induction variables and demand-driven narrowing for index expressions,
63
** integer arguments and bit operations. Additionally it can eliminate or
64
** hoist most of the resulting overflow checks. Regular arithmetic
65
** computations are never narrowed to integers.
66
**
67
** The integer type in the IR has convenient wrap-around semantics and
68
** ignores overflow. Extra operations have been added for
69
** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type.
70
** Apart from reducing overall complexity of the compiler, this also
71
** nicely solves the problem where you want to apply algebraic
72
** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can
73
** use lea instead of an add for integer ADD, but not for ADDOV (lea does
74
** not affect the flags, but it helps to avoid register moves).
75
**
76
**
77
** All of the above has to be reconsidered for architectures with slow FP
78
** operations or without a hardware FPU. The dual-number mode of LuaJIT
79
** addresses this issue. Arithmetic operations are performed on integers
80
** as far as possible and overflow checks are added as needed.
81
**
82
** This implies that narrowing for integer arguments and bit operations
83
** should also strip overflow checks, e.g. replace ADDOV with ADD. The
84
** original overflow guards are weak and can be eliminated by DCE, if
85
** there's no other use.
86
**
87
** A slight twist is that it's usually beneficial to use overflow-checked
88
** integer arithmetics if all inputs are already integers. This is the only
89
** change that affects the single-number mode, too.
90
*/
91

92
/* Some local macros to save typing. Undef'd at the end. */
93
#define IR(ref)                        (&J->cur.ir[(ref)])
94
#define fins                        (&J->fold.ins)
95

96
/* Pass IR on to next optimization in chain (FOLD). */
97
#define emitir(ot, a, b)        (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
98

99
#define emitir_raw(ot, a, b)        (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J))
100

101
/* -- Elimination of narrowing type conversions --------------------------- */
102

103
/* Narrowing of index expressions and bit operations is demand-driven. The
104
** trace recorder emits a narrowing type conversion (CONV.int.num or TOBIT)
105
** in all of these cases (e.g. array indexing or string indexing). FOLD
106
** already takes care of eliminating simple redundant conversions like
107
** CONV.int.num(CONV.num.int(x)) ==> x.
108
**
109
** But the surrounding code is FP-heavy and arithmetic operations are
110
** performed on FP numbers (for the single-number mode). Consider a common
111
** example such as 'x=t[i+1]', with 'i' already an integer (due to induction
112
** variable narrowing). The index expression would be recorded as
113
**   CONV.int.num(ADD(CONV.num.int(i), 1))
114
** which is clearly suboptimal.
115
**
116
** One can do better by recursively backpropagating the narrowing type
117
** conversion across FP arithmetic operations. This turns FP ops into
118
** their corresponding integer counterparts. Depending on the semantics of
119
** the conversion they also need to check for overflow. Currently only ADD
120
** and SUB are supported.
121
**
122
** The above example can be rewritten as
123
**   ADDOV(CONV.int.num(CONV.num.int(i)), 1)
124
** and then into ADDOV(i, 1) after folding of the conversions. The original
125
** FP ops remain in the IR and are eliminated by DCE since all references to
126
** them are gone.
127
**
128
** [In dual-number mode the trace recorder already emits ADDOV etc., but
129
** this can be further reduced. See below.]
130
**
131
** Special care has to be taken to avoid narrowing across an operation
132
** which is potentially operating on non-integral operands. One obvious
133
** case is when an expression contains a non-integral constant, but ends
134
** up as an integer index at runtime (like t[x+1.5] with x=0.5).
135
**
136
** Operations with two non-constant operands illustrate a similar problem
137
** (like t[a+b] with a=1.5 and b=2.5). Backpropagation has to stop there,
138
** unless it can be proven that either operand is integral (e.g. by CSEing
139
** a previous conversion). As a not-so-obvious corollary this logic also
140
** applies for a whole expression tree (e.g. t[(a+1)+(b+1)]).
141
**
142
** Correctness of the transformation is guaranteed by avoiding to expand
143
** the tree by adding more conversions than the one we would need to emit
144
** if not backpropagating. TOBIT employs a more optimistic rule, because
145
** the conversion has special semantics, designed to make the life of the
146
** compiler writer easier. ;-)
147
**
148
** Using on-the-fly backpropagation of an expression tree doesn't work
149
** because it's unknown whether the transform is correct until the end.
150
** This either requires IR rollback and cache invalidation for every
151
** subtree or a two-pass algorithm. The former didn't work out too well,
152
** so the code now combines a recursive collector with a stack-based
153
** emitter.
154
**
155
** [A recursive backpropagation algorithm with backtracking, employing
156
** skip-list lookup and round-robin caching, emitting stack operations
157
** on-the-fly for a stack-based interpreter -- and all of that in a meager
158
** kilobyte? Yep, compilers are a great treasure chest. Throw away your
159
** textbooks and read the codebase of a compiler today!]
160
**
161
** There's another optimization opportunity for array indexing: it's
162
** always accompanied by an array bounds-check. The outermost overflow
163
** check may be delegated to the ABC operation. This works because ABC is
164
** an unsigned comparison and wrap-around due to overflow creates negative
165
** numbers.
166
**
167
** But this optimization is only valid for constants that cannot overflow
168
** an int32_t into the range of valid array indexes [0..2^27+1). A check
169
** for +-2^30 is safe since -2^31 - 2^30 wraps to 2^30 and 2^31-1 + 2^30
170
** wraps to -2^30-1.
171
**
172
** It's also good enough in practice, since e.g. t[i+1] or t[i-10] are
173
** quite common. So the above example finally ends up as ADD(i, 1)!
174
**
175
** Later on, the assembler is able to fuse the whole array reference and
176
** the ADD into the memory operands of loads and other instructions. This
177
** is why LuaJIT is able to generate very pretty (and fast) machine code
178
** for array indexing. And that, my dear, concludes another story about
179
** one of the hidden secrets of LuaJIT ...
180
*/
181

182
/* Maximum backpropagation depth and maximum stack size. */
183
#define NARROW_MAX_BACKPROP        100
184
#define NARROW_MAX_STACK        256
185

186
/* The stack machine has a 32 bit instruction format: [IROpT | IRRef1]
187
** The lower 16 bits hold a reference (or 0). The upper 16 bits hold
188
** the IR opcode + type or one of the following special opcodes:
189
*/
190
enum {
191
  NARROW_REF,                /* Push ref. */
192
  NARROW_CONV,                /* Push conversion of ref. */
193
  NARROW_SEXT,                /* Push sign-extension of ref. */
194
  NARROW_INT                /* Push KINT ref. The next code holds an int32_t. */
195
};
196

197
typedef uint32_t NarrowIns;
198

199
#define NARROWINS(op, ref)        (((op) << 16) + (ref))
200
#define narrow_op(ins)                ((IROpT)((ins) >> 16))
201
#define narrow_ref(ins)                ((IRRef1)(ins))
202

203
/* Context used for narrowing of type conversions. */
204
typedef struct NarrowConv {
205
  jit_State *J;                /* JIT compiler state. */
206
  NarrowIns *sp;        /* Current stack pointer. */
207
  NarrowIns *maxsp;        /* Maximum stack pointer minus redzone. */
208
  IRRef mode;                /* Conversion mode (IRCONV_*). */
209
  IRType t;                /* Destination type: IRT_INT or IRT_I64. */
210
  NarrowIns stack[NARROW_MAX_STACK];  /* Stack holding stack-machine code. */
211
} NarrowConv;
212

213
/* Lookup a reference in the backpropagation cache. */
214
static BPropEntry *narrow_bpc_get(jit_State *J, IRRef1 key, IRRef mode)
16,983✔
215
{
216
  ptrdiff_t i;
16,983✔
217
  for (i = 0; i < BPROP_SLOTS; i++) {
365,195✔
218
    BPropEntry *bp = &J->bpropcache[i];
355,754✔
219
    /* Stronger checks are ok, too. */
220
    if (bp->key == key && bp->mode >= mode &&
355,754✔
221
        ((bp->mode ^ mode) & IRCONV_MODEMASK) == 0)
7,542✔
222
      return bp;
223
  }
224
  return NULL;
225
}
226

227
/* Add an entry to the backpropagation cache. */
228
static void narrow_bpc_set(jit_State *J, IRRef1 key, IRRef1 val, IRRef mode)
8,951✔
229
{
230
  uint32_t slot = J->bpropslot;
8,951✔
231
  BPropEntry *bp = &J->bpropcache[slot];
8,951✔
232
  J->bpropslot = (slot + 1) & (BPROP_SLOTS-1);
8,951✔
233
  bp->key = key;
8,951✔
234
  bp->val = val;
8,951✔
235
  bp->mode = mode;
8,951✔
236
}
8,951✔
237

238
/* Backpropagate overflow stripping. */
239
static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth)
36✔
240
{
241
  jit_State *J = nc->J;
36✔
242
  IRIns *ir = IR(ref);
36✔
243
  if (ir->o == IR_ADDOV || ir->o == IR_SUBOV ||
36✔
244
      (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) {
×
245
    BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT);
×
246
    if (bp) {
×
247
      ref = bp->val;
×
248
    } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
×
249
      NarrowIns *savesp = nc->sp;
×
250
      narrow_stripov_backprop(nc, ir->op1, depth);
×
251
      if (nc->sp < nc->maxsp) {
×
252
        narrow_stripov_backprop(nc, ir->op2, depth);
×
253
        if (nc->sp < nc->maxsp) {
×
254
          *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref);
×
255
          return;
×
256
        }
257
      }
258
      nc->sp = savesp;  /* Path too deep, need to backtrack. */
×
259
    }
260
  }
261
  *nc->sp++ = NARROWINS(NARROW_REF, ref);
36✔
262
}
263

264
/* Backpropagate narrowing conversion. Return number of needed conversions. */
265
static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth)
27,944✔
266
{
267
  jit_State *J = nc->J;
27,944✔
268
  IRIns *ir = IR(ref);
27,944✔
269
  IRRef cref;
27,944✔
270

271
  if (nc->sp >= nc->maxsp) return 10;  /* Path too deep. */
27,944✔
272

273
  /* Check the easy cases first. */
274
  if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) {
27,944✔
275
    if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY)
40✔
276
      narrow_stripov_backprop(nc, ir->op1, depth+1);
36✔
277
    else
278
      *nc->sp++ = NARROWINS(NARROW_REF, ir->op1);  /* Undo conversion. */
4✔
279
    if (nc->t == IRT_I64)
40✔
280
      *nc->sp++ = NARROWINS(NARROW_SEXT, 0);  /* Sign-extend integer. */
2✔
281
    return 0;
40✔
282
  } else if (ir->o == IR_KNUM) {  /* Narrow FP constant. */
27,904✔
283
    lua_Number n = ir_knum(ir)->n;
9,201✔
284
    if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) {
9,201✔
285
      /* Allows a wider range of constants. */
286
      int64_t k64 = (int64_t)n;
18✔
287
      if (n == (lua_Number)k64) {  /* Only if const doesn't lose precision. */
18✔
288
        *nc->sp++ = NARROWINS(NARROW_INT, 0);
18✔
289
        *nc->sp++ = (NarrowIns)k64;  /* But always truncate to 32 bits. */
18✔
290
        return 0;
18✔
291
      }
292
    } else {
293
      int32_t k = lj_num2int(n);
9,183✔
294
      /* Only if constant is a small integer. */
295
      if (checki16(k) && n == (lua_Number)k) {
9,183✔
296
        *nc->sp++ = NARROWINS(NARROW_INT, 0);
9,182✔
297
        *nc->sp++ = (NarrowIns)k;
9,182✔
298
        return 0;
9,182✔
299
      }
300
    }
301
    return 10;  /* Never narrow other FP constants (this is rare). */
302
  }
303

304
  /* Try to CSE the conversion. Stronger checks are ok, too. */
305
  cref = J->chain[fins->o];
18,703✔
306
  while (cref > ref) {
74,912✔
307
    IRIns *cr = IR(cref);
57,484✔
308
    if (cr->op1 == ref &&
57,484✔
309
        (fins->o == IR_TOBIT ||
17,421✔
310
         ((cr->op2 & IRCONV_MODEMASK) == (nc->mode & IRCONV_MODEMASK) &&
17,421✔
311
          irt_isguard(cr->t) >= irt_isguard(fins->t)))) {
1,275✔
312
      *nc->sp++ = NARROWINS(NARROW_REF, cref);
1,275✔
313
      return 0;  /* Already there, no additional conversion needed. */
1,275✔
314
    }
315
    cref = cr->prev;
56,209✔
316
  }
317

318
  /* Backpropagate across ADD/SUB. */
319
  if (ir->o == IR_ADD || ir->o == IR_SUB) {
17,428✔
320
    /* Try cache lookup first. */
321
    IRRef mode = nc->mode;
16,983✔
322
    BPropEntry *bp;
16,983✔
323
    /* Inner conversions need a stronger check. */
324
    if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX && depth > 0)
16,983✔
325
      mode += IRCONV_CHECK-IRCONV_INDEX;
13✔
326
    bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
16,983✔
327
    if (bp) {
16,983✔
328
      *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
7,541✔
329
      return 0;
7,541✔
330
    } else if (nc->t == IRT_I64) {
9,442✔
331
      /* Try sign-extending from an existing (checked) conversion to int. */
332
      mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX;
148,563✔
333
      bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
148,563✔
334
      if (bp) {
8,739✔
335
        *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
×
336
        *nc->sp++ = NARROWINS(NARROW_SEXT, 0);
×
337
        return 0;
×
338
      }
339
    }
340
    if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
9,442✔
341
      NarrowIns *savesp = nc->sp;
9,442✔
342
      int count = narrow_conv_backprop(nc, ir->op1, depth);
9,442✔
343
      count += narrow_conv_backprop(nc, ir->op2, depth);
9,442✔
344
      /* Limit total number of conversions. */
345
      if (count <= 1 && nc->sp < nc->maxsp) {
9,442✔
346
        *nc->sp++ = NARROWINS(IRT(ir->o, nc->t), ref);
9,238✔
347
        return count;
9,238✔
348
      }
349
      nc->sp = savesp;  /* Too many conversions, need to backtrack. */
204✔
350
    }
351
  }
352

353
  /* Otherwise add a conversion. */
354
  *nc->sp++ = NARROWINS(NARROW_CONV, ref);
649✔
355
  return 1;
649✔
356
}
357

358
/* Emit the conversions collected during backpropagation. */
359
static IRRef narrow_conv_emit(jit_State *J, NarrowConv *nc)
9,060✔
360
{
361
  /* The fins fields must be saved now -- emitir() overwrites them. */
362
  IROpT guardot = irt_isguard(fins->t) ? IRTG(IR_ADDOV-IR_ADD, 0) : 0;
9,060✔
363
  IROpT convot = fins->ot;
9,060✔
364
  IRRef1 convop2 = fins->op2;
9,060✔
365
  NarrowIns *next = nc->stack;  /* List of instructions from backpropagation. */
9,060✔
366
  NarrowIns *last = nc->sp;
9,060✔
367
  NarrowIns *sp = nc->stack;  /* Recycle the stack to store operands. */
9,060✔
368
  while (next < last) {  /* Simple stack machine to process the ins. list. */
9,060✔
369
    NarrowIns ref = *next++;
26,817✔
370
    IROpT op = narrow_op(ref);
26,817✔
371
    if (op == NARROW_REF) {
26,817✔
372
      *sp++ = ref;
8,855✔
373
    } else if (op == NARROW_CONV) {
17,962✔
374
      *sp++ = emitir_raw(convot, ref, convop2);  /* Raw emit avoids a loop. */
243✔
375
    } else if (op == NARROW_SEXT) {
17,719✔
376
      lj_assertJ(sp >= nc->stack+1, "stack underflow");
1✔
377
      sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1],
1✔
378
                      (IRT_I64<<5)|IRT_INT|IRCONV_SEXT);
379
    } else if (op == NARROW_INT) {
17,718✔
380
      lj_assertJ(next < last, "missing arg to NARROW_INT");
8,840✔
381
      *sp++ = nc->t == IRT_I64 ?
8,840✔
382
              lj_ir_kint64(J, (int64_t)(int32_t)*next++) :
8,840✔
383
              lj_ir_kint(J, *next++);
103✔
384
    } else {  /* Regular IROpT. Pops two operands and pushes one result. */
385
      IRRef mode = nc->mode;
8,878✔
386
      lj_assertJ(sp >= nc->stack+2, "stack underflow");
8,878✔
387
      sp--;
8,878✔
388
      /* Omit some overflow checks for array indexing. See comments above. */
389
      if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) {
8,878✔
390
        if (next == last && irref_isk(narrow_ref(sp[0])) &&
37✔
391
          (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u)
26✔
392
          guardot = 0;
393
        else  /* Otherwise cache a stronger check. */
394
          mode += IRCONV_CHECK-IRCONV_INDEX;
11✔
395
      }
396
      sp[-1] = emitir(op+guardot, sp[-1], sp[0]);
8,878✔
397
      /* Add to cache. */
398
      if (narrow_ref(ref))
8,878✔
399
        narrow_bpc_set(J, narrow_ref(ref), narrow_ref(sp[-1]), mode);
44,755✔
400
    }
401
  }
402
  lj_assertJ(sp == nc->stack+1, "stack misalignment");
9,060✔
403
  return nc->stack[0];
9,060✔
404
}
405

406
/* Narrow a type conversion of an arithmetic operation. */
407
TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J)
9,060✔
408
{
409
  if ((J->flags & JIT_F_OPT_NARROW)) {
9,060✔
410
    NarrowConv nc;
9,060✔
411
    nc.J = J;
9,060✔
412
    nc.sp = nc.stack;
9,060✔
413
    nc.maxsp = &nc.stack[NARROW_MAX_STACK-4];
9,060✔
414
    nc.t = irt_type(fins->t);
9,060✔
415
    if (fins->o == IR_TOBIT) {
9,060✔
416
      nc.mode = IRCONV_TOBIT;  /* Used only in the backpropagation cache. */
19✔
417
    } else {
418
      nc.mode = fins->op2;
9,041✔
419
    }
420
    if (narrow_conv_backprop(&nc, fins->op1, 0) <= 1)
9,060✔
421
      return narrow_conv_emit(J, &nc);
9,060✔
422
  }
423
  return NEXTFOLD;
424
}
425

426
/* -- Narrowing of implicit conversions ----------------------------------- */
427

428
/* Recursively strip overflow checks. */
429
static TRef narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode)
91,200✔
430
{
431
  IRRef ref = tref_ref(tr);
91,200✔
432
  IRIns *ir = IR(ref);
91,200✔
433
  int op = ir->o;
91,200✔
434
  if (op >= IR_ADDOV && op <= lastop) {
91,200✔
435
    BPropEntry *bp = narrow_bpc_get(J, ref, mode);
1,247✔
436
    if (bp) {
74✔
437
      return TREF(bp->val, irt_t(IR(bp->val)->t));
1✔
438
    } else {
439
      IRRef op1 = ir->op1, op2 = ir->op2;  /* The IR may be reallocated. */
73✔
440
      op1 = narrow_stripov(J, op1, lastop, mode);
73✔
441
      op2 = narrow_stripov(J, op2, lastop, mode);
73✔
442
      tr = emitir(IRT(op - IR_ADDOV + IR_ADD,
73✔
443
                      ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2);
444
      narrow_bpc_set(J, ref, tref_ref(tr), mode);
73✔
445
    }
446
  } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) {
91,126✔
447
    tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode);
257✔
448
  }
449
  return tr;
450
}
451

452
/* Narrow array index. */
453
TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr)
32,652✔
454
{
455
  IRIns *ir;
32,652✔
456
  lj_assertJ(tref_isnumber(tr), "expected number type");
32,652✔
457
  if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
32,652✔
458
    return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX);
169✔
459
  /* Omit some overflow checks for array indexing. See comments above. */
460
  ir = IR(tref_ref(tr));
32,483✔
461
  if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) &&
32,483✔
462
      (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u)
50✔
463
    return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2);
50✔
464
  return tr;
465
}
466

467
/* Narrow conversion to integer operand (overflow undefined). */
468
TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr)
1,143✔
469
{
470
  if (tref_isstr(tr))
1,143✔
471
    tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
3✔
472
  if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
1,143✔
473
    return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY);
399✔
474
  if (!tref_isinteger(tr))
744✔
475
    lj_trace_err(J, LJ_TRERR_BADTYPE);
×
476
  /*
477
  ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV.
478
  ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same.
479
  */
480
  return narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
744✔
481
}
482

483
/* Narrow conversion to bitop operand (overflow wrapped). */
484
TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr)
90,179✔
485
{
486
  if (tref_isstr(tr))
90,179✔
487
    tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
×
488
  if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
90,179✔
489
    return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J));
110✔
490
  if (!tref_isinteger(tr))
90,069✔
491
    lj_trace_err(J, LJ_TRERR_BADTYPE);
1✔
492
  /*
493
  ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV.
494
  ** MULOV cannot be stripped due to precision widening.
495
  */
496
  return narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
90,068✔
497
}
498

499
#if LJ_HASFFI
500
/* Narrow C array index (overflow undefined). */
501
TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr)
22,795✔
502
{
503
  lj_assertJ(tref_isnumber(tr), "expected number type");
22,795✔
504
  if (tref_isnum(tr))
22,795✔
505
    return emitir(IRT(IR_CONV, IRT_INTP), tr, (IRT_INTP<<5)|IRT_NUM|IRCONV_ANY);
22,553✔
506
  /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */
507
  return narrow_stripov(J, tr, IR_MULOV,
242✔
508
                        LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) :
509
                                ((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT));
510
}
511
#endif
512

513
/* -- Narrowing of arithmetic operators ----------------------------------- */
514

515
/* Check whether a number fits into an int32_t (-0 is ok, too). */
516
static int numisint(lua_Number n)
19,139✔
517
{
518
  return (n == (lua_Number)lj_num2int(n));
19,139✔
519
}
520

521
/* Convert string to number. Error out for non-numeric string values. */
522
static TRef conv_str_tonum(jit_State *J, TRef tr, TValue *o)
687,832✔
523
{
524
  if (tref_isstr(tr)) {
687,832✔
525
    tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
5✔
526
    /* Would need an inverted STRTO for this rare and useless case. */
527
    if (!lj_strscan_num(strV(o), o))  /* Convert in-place. Value used below. */
5✔
528
      lj_trace_err(J, LJ_TRERR_BADTYPE);  /* Punt if non-numeric. */
×
529
  }
530
  return tr;
687,832✔
531
}
532

533
/* Narrowing of arithmetic operations. */
534
TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc,
343,793✔
535
                         TValue *vb, TValue *vc, IROp op)
536
{
537
  rb = conv_str_tonum(J, rb, vb);
343,793✔
538
  rc = conv_str_tonum(J, rc, vc);
343,793✔
539
  /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */
540
  if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) &&
343,793✔
541
      tref_isinteger(rb) && tref_isinteger(rc) &&
312,991✔
542
      numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc),
12,954✔
543
                               (int)op - (int)IR_ADD)))
12,954✔
544
    return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc);
12,952✔
545
  if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT);
330,841✔
546
  if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
330,841✔
547
  return emitir(IRTN(op), rb, rc);
330,841✔
548
}
549

550
/* Narrowing of unary minus operator. */
551
TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc)
22✔
552
{
553
  rc = conv_str_tonum(J, rc, vc);
22✔
554
  if (tref_isinteger(rc)) {
22✔
555
    uint32_t k = (uint32_t)numberVint(vc);
20✔
556
    if ((LJ_DUALNUM || k != 0) && k != 0x80000000u) {
20✔
557
      TRef zero = lj_ir_kint(J, 0);
8✔
558
      if (!LJ_DUALNUM)
8✔
559
        emitir(IRTGI(IR_NE), rc, zero);
8✔
560
      return emitir(IRTGI(IR_SUBOV), zero, rc);
8✔
561
    }
562
    rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
12✔
563
  }
564
  return emitir(IRTN(IR_NEG), rc, lj_ir_ksimd(J, LJ_KSIMD_NEG));
14✔
565
}
566

567
/* Narrowing of modulo operator. */
568
TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc)
112✔
569
{
570
  TRef tmp;
112✔
571
  rb = conv_str_tonum(J, rb, vb);
112✔
572
  rc = conv_str_tonum(J, rc, vc);
112✔
573
  if ((LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) &&
112✔
574
      tref_isinteger(rb) && tref_isinteger(rc) &&
112✔
575
      (tvisint(vc) ? intV(vc) != 0 : !tviszero(vc))) {
44✔
576
    emitir(IRTGI(IR_NE), rc, lj_ir_kint(J, 0));
44✔
577
    return emitir(IRTI(IR_MOD), rb, rc);
44✔
578
  }
579
  /* b % c ==> b - floor(b/c)*c */
580
  rb = lj_ir_tonum(J, rb);
68✔
581
  rc = lj_ir_tonum(J, rc);
68✔
582
  tmp = emitir(IRTN(IR_DIV), rb, rc);
68✔
583
  tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR);
68✔
584
  tmp = emitir(IRTN(IR_MUL), tmp, rc);
68✔
585
  return emitir(IRTN(IR_SUB), rb, tmp);
68✔
586
}
587

588
/* -- Predictive narrowing of induction variables ------------------------- */
589

590
/* Narrow a single runtime value. */
591
static int narrow_forl(jit_State *J, cTValue *o)
7,062✔
592
{
593
  if (tvisint(o)) return 1;
7,062✔
594
  if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o));
9,128✔
595
  return 0;
596
}
597

598
/* Narrow the FORL index type by looking at the runtime values. */
599
IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv)
2,943✔
600
{
601
  lj_assertJ(tvisnumber(&tv[FORL_IDX]) &&
2,943✔
602
             tvisnumber(&tv[FORL_STOP]) &&
603
             tvisnumber(&tv[FORL_STEP]),
604
             "expected number types");
605
  /* Narrow only if the runtime values of start/stop/step are all integers. */
606
  if (narrow_forl(J, &tv[FORL_IDX]) &&
2,943✔
607
      narrow_forl(J, &tv[FORL_STOP]) &&
2,061✔
608
      narrow_forl(J, &tv[FORL_STEP])) {
2,058✔
609
    /* And if the loop index can't possibly overflow. */
610
    lua_Number step = numberVnum(&tv[FORL_STEP]);
2,057✔
611
    lua_Number sum = numberVnum(&tv[FORL_STOP]) + step;
2,057✔
612
    if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0))
2,057✔
613
      return IRT_INT;
2,054✔
614
  }
615
  return IRT_NUM;
616
}
617

618
#undef IR
619
#undef fins
620
#undef emitir
621
#undef emitir_raw
622

623
#endif
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc