• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

python-control / python-control / 10399836602

15 Aug 2024 06:31AM UTC coverage: 94.694% (+0.001%) from 94.693%
10399836602

push

github

web-flow
Merge pull request #1040 from murrayrm/tickmark_labels-08Aug2024

Update shared axes processing in plot_time_response

9138 of 9650 relevant lines covered (94.69%)

8.27 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

94.8
control/freqplot.py
1
# freqplot.py - frequency domain plots for control systems
2
#
3
# Initial author: Richard M. Murray
4
# Date: 24 May 09
5
#
6
# This file contains some standard control system plots: Bode plots,
7
# Nyquist plots and other frequency response plots.  The code for Nichols
8
# charts is in nichols.py.  The code for pole-zero diagrams is in pzmap.py
9
# and rlocus.py.
10

11
import itertools
9✔
12
import math
9✔
13
import warnings
9✔
14
from os.path import commonprefix
9✔
15

16
import matplotlib as mpl
9✔
17
import matplotlib.pyplot as plt
9✔
18
import numpy as np
9✔
19

20
from . import config
9✔
21
from .bdalg import feedback
9✔
22
from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _find_axes_center, \
9✔
23
    _get_color, _get_color_offset, _get_line_labels, _make_legend_labels, \
24
    _process_ax_keyword, _process_legend_keywords, _process_line_labels, \
25
    _update_plot_title
26
from .ctrlutil import unwrap
9✔
27
from .exception import ControlMIMONotImplemented
9✔
28
from .frdata import FrequencyResponseData
9✔
29
from .lti import LTI, _process_frequency_response, frequency_response
9✔
30
from .margins import stability_margins
9✔
31
from .statesp import StateSpace
9✔
32
from .xferfcn import TransferFunction
9✔
33

34
__all__ = ['bode_plot', 'NyquistResponseData', 'nyquist_response',
9✔
35
           'nyquist_plot', 'singular_values_response',
36
           'singular_values_plot', 'gangof4_plot', 'gangof4_response',
37
           'bode', 'nyquist', 'gangof4', 'FrequencyResponseList']
38

39
# Default values for module parameter variables
40
_freqplot_defaults = {
9✔
41
    'freqplot.feature_periphery_decades': 1,
42
    'freqplot.number_of_samples': 1000,
43
    'freqplot.dB': False,  # Plot gain in dB
44
    'freqplot.deg': True,  # Plot phase in degrees
45
    'freqplot.Hz': False,  # Plot frequency in Hertz
46
    'freqplot.grid': True,  # Turn on grid for gain and phase
47
    'freqplot.wrap_phase': False,  # Wrap the phase plot at a given value
48
    'freqplot.freq_label': "Frequency [{units}]",
49
    'freqplot.share_magnitude': 'row',
50
    'freqplot.share_phase': 'row',
51
    'freqplot.share_frequency': 'col',
52
    'freqplot.title_frame': 'axes',
53
}
54

55
#
56
# Frequency response data list class
57
#
58
# This class is a subclass of list that adds a plot() method, enabling
59
# direct plotting from routines returning a list of FrequencyResponseData
60
# objects.
61
#
62

63
class FrequencyResponseList(list):
9✔
64
    def plot(self, *args, plot_type=None, **kwargs):
9✔
65
        if plot_type == None:
9✔
66
            for response in self:
9✔
67
                if plot_type is not None and response.plot_type != plot_type:
9✔
68
                    raise TypeError(
×
69
                        "inconsistent plot_types in data; set plot_type "
70
                        "to 'bode', 'nichols', or 'svplot'")
71
                plot_type = response.plot_type
9✔
72

73
        # Use FRD plot method, which can handle lists via plot functions
74
        return FrequencyResponseData.plot(
9✔
75
            self, plot_type=plot_type, *args, **kwargs)
76

77
#
78
# Bode plot
79
#
80
# This is the default method for plotting frequency responses.  There are
81
# lots of options available for tuning the format of the plot, (hopefully)
82
# covering most of the common use cases.
83
#
84

85
def bode_plot(
9✔
86
        data, omega=None, *fmt, ax=None, omega_limits=None, omega_num=None,
87
        plot=None, plot_magnitude=True, plot_phase=None,
88
        overlay_outputs=None, overlay_inputs=None, phase_label=None,
89
        magnitude_label=None, label=None, display_margins=None,
90
        margins_method='best', title=None, sharex=None, sharey=None, **kwargs):
91
    """Bode plot for a system.
92

93
    Plot the magnitude and phase of the frequency response over a
94
    (optional) frequency range.
95

96
    Parameters
97
    ----------
98
    data : list of `FrequencyResponseData` or `LTI`
99
        List of LTI systems or :class:`FrequencyResponseData` objects.  A
100
        single system or frequency response can also be passed.
101
    omega : array_like, optoinal
102
        Set of frequencies in rad/sec to plot over.  If not specified, this
103
        will be determined from the proporties of the systems.  Ignored if
104
        `data` is not a list of systems.
105
    *fmt : :func:`matplotlib.pyplot.plot` format string, optional
106
        Passed to `matplotlib` as the format string for all lines in the plot.
107
        The `omega` parameter must be present (use omega=None if needed).
108
    dB : bool
109
        If True, plot result in dB.  Default is False.
110
    Hz : bool
111
        If True, plot frequency in Hz (omega must be provided in rad/sec).
112
        Default value (False) set by config.defaults['freqplot.Hz'].
113
    deg : bool
114
        If True, plot phase in degrees (else radians).  Default value (True)
115
        set by config.defaults['freqplot.deg'].
116
    display_margins : bool or str
117
        If True, draw gain and phase margin lines on the magnitude and phase
118
        graphs and display the margins at the top of the graph.  If set to
119
        'overlay', the values for the gain and phase margin are placed on
120
        the graph.  Setting display_margins turns off the axes grid.
121
    **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional
122
        Additional keywords passed to `matplotlib` to specify line properties.
123

124
    Returns
125
    -------
126
    cplt : :class:`ControlPlot` object
127
        Object containing the data that were plotted:
128

129
          * cplt.lines: Array of :class:`matplotlib.lines.Line2D` objects
130
            for each line in the plot.  The shape of the array matches the
131
            subplots shape and the value of the array is a list of Line2D
132
            objects in that subplot.
133

134
          * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot.
135

136
          * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot.
137

138
          * cplt.legend: legend object(s) contained in the plot
139

140
        See :class:`ControlPlot` for more detailed information.
141

142
    Other Parameters
143
    ----------------
144
    ax : array of matplotlib.axes.Axes, optional
145
        The matplotlib axes to draw the figure on.  If not specified, the
146
        axes for the current figure are used or, if there is no current
147
        figure with the correct number and shape of axes, a new figure is
148
        created.  The shape of the array must match the shape of the
149
        plotted data.
150
    freq_label, magnitude_label, phase_label : str, optional
151
        Labels to use for the frequency, magnitude, and phase axes.
152
        Defaults are set by `config.defaults['freqplot.<keyword>']`.
153
    grid : bool, optional
154
        If True, plot grid lines on gain and phase plots.  Default is set by
155
        `config.defaults['freqplot.grid']`.
156
    initial_phase : float, optional
157
        Set the reference phase to use for the lowest frequency.  If set, the
158
        initial phase of the Bode plot will be set to the value closest to the
159
        value specified.  Units are in either degrees or radians, depending on
160
        the `deg` parameter. Default is -180 if wrap_phase is False, 0 if
161
        wrap_phase is True.
162
    label : str or array_like of str, optional
163
        If present, replace automatically generated label(s) with the given
164
        label(s).  If sysdata is a list, strings should be specified for each
165
        system.  If MIMO, strings required for each system, output, and input.
166
    legend_map : array of str, optional
167
        Location of the legend for multi-axes plots.  Specifies an array
168
        of legend location strings matching the shape of the subplots, with
169
        each entry being either None (for no legend) or a legend location
170
        string (see :func:`~matplotlib.pyplot.legend`).
171
    legend_loc : int or str, optional
172
        Include a legend in the given location. Default is 'center right',
173
        with no legend for a single response.  Use False to suppress legend.
174
    margins_method : str, optional
175
        Method to use in computing margins (see :func:`stability_margins`).
176
    omega_limits : array_like of two values
177
        Set limits for plotted frequency range. If Hz=True the limits are
178
        in Hz otherwise in rad/s.  Specifying ``omega`` as a list of two
179
        elements is equivalent to providing ``omega_limits``. Ignored if
180
        data is not a list of systems.
181
    omega_num : int
182
        Number of samples to use for the frequeny range.  Defaults to
183
        config.defaults['freqplot.number_of_samples'].  Ignored if data is
184
        not a list of systems.
185
    overlay_inputs, overlay_outputs : bool, optional
186
        If set to True, combine input and/or output signals onto a single
187
        plot and use line colors, labels, and a legend to distinguish them.
188
    plot : bool, optional
189
        (legacy) If given, `bode_plot` returns the legacy return values
190
        of magnitude, phase, and frequency.  If False, just return the
191
        values with no plot.
192
    plot_magnitude, plot_phase : bool, optional
193
        If set to `False`, don't plot the magnitude or phase, respectively.
194
    rcParams : dict
195
        Override the default parameters used for generating plots.
196
        Default is set by config.default['ctrlplot.rcParams'].
197
    share_frequency, share_magnitude, share_phase : str or bool, optional
198
        Determine whether and how axis limits are shared between the
199
        indicated variables.  Can be set set to 'row' to share across all
200
        subplots in a row, 'col' to set across all subplots in a column, or
201
        `False` to allow independent limits.  Note: if `sharex` is given,
202
        it sets the value of `share_frequency`; if `sharey` is given, it
203
        sets the value of both `share_magnitude` and `share_phase`.
204
        Default values are 'row' for `share_magnitude` and `share_phase',
205
        'col', for `share_frequency`, and can be set using
206
        config.defaults['freqplot.share_<axis>'].
207
    show_legend : bool, optional
208
        Force legend to be shown if ``True`` or hidden if ``False``.  If
209
        ``None``, then show legend when there is more than one line on an
210
        axis or ``legend_loc`` or ``legend_map`` has been specified.
211
    title : str, optional
212
        Set the title of the plot.  Defaults to plot type and system name(s).
213
    title_frame : str, optional
214
        Set the frame of reference used to center the plot title. If set to
215
        'axes' (default), the horizontal position of the title will be
216
        centered relative to the axes.  If set to 'figure', it will be
217
        centered with respect to the figure (faster execution).
218
    wrap_phase : bool or float
219
        If wrap_phase is `False` (default), then the phase will be unwrapped
220
        so that it is continuously increasing or decreasing.  If wrap_phase is
221
        `True` the phase will be restricted to the range [-180, 180) (or
222
        [:math:`-\\pi`, :math:`\\pi`) radians). If `wrap_phase` is specified
223
        as a float, the phase will be offset by 360 degrees if it falls below
224
        the specified value. Default value is `False` and can be set using
225
        config.defaults['freqplot.wrap_phase'].
226

227
    The default values for Bode plot configuration parameters can be reset
228
    using the `config.defaults` dictionary, with module name 'bode'.
229

230
    See Also
231
    --------
232
    frequency_response
233

234
    Notes
235
    -----
236
    1. Starting with python-control version 0.10, `bode_plot` returns a
237
       :class:`ControlPlot` object instead of magnitude, phase, and
238
       frequency. To recover the old behavior, call `bode_plot` with
239
       `plot=True`, which will force the legacy values (mag, phase, omega)
240
       to be returned (with a warning).  To obtain just the frequency
241
       response of a system (or list of systems) without plotting, use the
242
       :func:`~control.frequency_response` command.
243

244
    2. If a discrete time model is given, the frequency response is plotted
245
       along the upper branch of the unit circle, using the mapping ``z =
246
       exp(1j * omega * dt)`` where `omega` ranges from 0 to `pi/dt` and `dt`
247
       is the discrete timebase.  If timebase not specified (``dt=True``),
248
       `dt` is set to 1.
249

250
    Examples
251
    --------
252
    >>> G = ct.ss([[-1, -2], [3, -4]], [[5], [7]], [[6, 8]], [[9]])
253
    >>> out = ct.bode_plot(G)
254

255
    """
256
    #
257
    # Process keywords and set defaults
258
    #
259

260
    # Make a copy of the kwargs dictionary since we will modify it
261
    kwargs = dict(kwargs)
9✔
262

263
    # Get values for params (and pop from list to allow keyword use in plot)
264
    dB = config._get_param(
9✔
265
        'freqplot', 'dB', kwargs, _freqplot_defaults, pop=True)
266
    deg = config._get_param(
9✔
267
        'freqplot', 'deg', kwargs, _freqplot_defaults, pop=True)
268
    Hz = config._get_param(
9✔
269
        'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True)
270
    grid = config._get_param(
9✔
271
        'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True)
272
    wrap_phase = config._get_param(
9✔
273
        'freqplot', 'wrap_phase', kwargs, _freqplot_defaults, pop=True)
274
    initial_phase = config._get_param(
9✔
275
        'freqplot', 'initial_phase', kwargs, None, pop=True)
276
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
277
    title_frame = config._get_param(
9✔
278
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
279

280
    # Set the default labels
281
    freq_label = config._get_param(
9✔
282
        'freqplot', 'freq_label', kwargs, _freqplot_defaults, pop=True)
283
    if magnitude_label is None:
9✔
284
        magnitude_label = "Magnitude [dB]" if dB else "Magnitude"
9✔
285
    if phase_label is None:
9✔
286
        phase_label = "Phase [deg]" if deg else "Phase [rad]"
9✔
287

288
    # Use sharex and sharey as proxies for share_{magnitude, phase, frequency}
289
    if sharey is not None:
9✔
290
        if 'share_magnitude' in kwargs or 'share_phase' in kwargs:
9✔
291
            ValueError(
×
292
                "sharey cannot be present with share_magnitude/share_phase")
293
        kwargs['share_magnitude'] = sharey
9✔
294
        kwargs['share_phase'] = sharey
9✔
295
    if sharex is not None:
9✔
296
        if 'share_frequency' in kwargs:
9✔
297
            ValueError(
×
298
                "sharex cannot be present with share_frequency")
299
        kwargs['share_frequency'] = sharex
9✔
300

301
    # Legacy keywords for margins
302
    display_margins = config._process_legacy_keyword(
9✔
303
        kwargs, 'margins', 'display_margins', display_margins)
304
    if kwargs.pop('margin_info', False):
9✔
305
        warnings.warn(
×
306
            "keyword 'margin_info' is deprecated; "
307
            "use 'display_margins='overlay'")
308
        if display_margins is False:
×
309
            raise ValueError(
×
310
                "conflicting_keywords: `display_margins` and `margin_info`")
311
    margins_method = config._process_legacy_keyword(
9✔
312
        kwargs, 'method', 'margins_method', margins_method)
313

314
    if not isinstance(data, (list, tuple)):
9✔
315
        data = [data]
9✔
316

317
    #
318
    # Pre-process the data to be plotted (unwrap phase, limit frequencies)
319
    #
320
    # To maintain compatibility with legacy uses of bode_plot(), we do some
321
    # initial processing on the data, specifically phase unwrapping and
322
    # setting the initial value of the phase.  If bode_plot is called with
323
    # plot == False, then these values are returned to the user (instead of
324
    # the list of lines created, which is the new output for _plot functions.
325
    #
326

327
    # If we were passed a list of systems, convert to data
328
    if any([isinstance(
9✔
329
            sys, (StateSpace, TransferFunction)) for sys in data]):
330
        data = frequency_response(
9✔
331
            data, omega=omega, omega_limits=omega_limits,
332
            omega_num=omega_num, Hz=Hz)
333
    else:
334
        # Generate warnings if frequency keywords were given
335
        if omega_num is not None:
9✔
336
            warnings.warn("`omega_num` ignored when passed response data")
9✔
337
        elif omega is not None:
9✔
338
            warnings.warn("`omega` ignored when passed response data")
9✔
339

340
        # Check to make sure omega_limits is sensible
341
        if omega_limits is not None and \
9✔
342
           (len(omega_limits) != 2 or omega_limits[1] <= omega_limits[0]):
343
            raise ValueError(f"invalid limits: {omega_limits=}")
9✔
344

345
    # If plot_phase is not specified, check the data first, otherwise true
346
    if plot_phase is None:
9✔
347
        plot_phase = True if data[0].plot_phase is None else data[0].plot_phase
9✔
348

349
    if not plot_magnitude and not plot_phase:
9✔
350
        raise ValueError(
9✔
351
            "plot_magnitude and plot_phase both False; no data to plot")
352

353
    mag_data, phase_data, omega_data = [], [], []
9✔
354
    for response in data:
9✔
355
        noutputs, ninputs = response.noutputs, response.ninputs
9✔
356

357
        if initial_phase is None:
9✔
358
            # Start phase in the range 0 to -360 w/ initial phase = 0
359
            # TODO: change this to 0 to 270 (?)
360
            # If wrap_phase is true, use 0 instead (phase \in (-pi, pi])
361
            initial_phase_value = -math.pi if wrap_phase is not True else 0
9✔
362
        elif isinstance(initial_phase, (int, float)):
9✔
363
            # Allow the user to override the default calculation
364
            if deg:
9✔
365
                initial_phase_value = initial_phase/180. * math.pi
9✔
366
            else:
367
                initial_phase_value = initial_phase
9✔
368
        else:
369
            raise ValueError("initial_phase must be a number.")
×
370

371
        # Reshape the phase to allow standard indexing
372
        phase = response.phase.copy().reshape((noutputs, ninputs, -1))
9✔
373

374
        # Shift and wrap the phase
375
        for i, j in itertools.product(range(noutputs), range(ninputs)):
9✔
376
            # Shift the phase if needed
377
            if abs(phase[i, j, 0] - initial_phase_value) > math.pi:
9✔
378
                phase[i, j] -= 2*math.pi * round(
9✔
379
                    (phase[i, j, 0] - initial_phase_value) / (2*math.pi))
380

381
            # Phase wrapping
382
            if wrap_phase is False:
9✔
383
                phase[i, j] = unwrap(phase[i, j]) # unwrap the phase
9✔
384
            elif wrap_phase is True:
9✔
385
                pass                                    # default calc OK
9✔
386
            elif isinstance(wrap_phase, (int, float)):
9✔
387
                phase[i, j] = unwrap(phase[i, j]) # unwrap phase first
9✔
388
                if deg:
9✔
389
                    wrap_phase *= math.pi/180.
9✔
390

391
                # Shift the phase if it is below the wrap_phase
392
                phase[i, j] += 2*math.pi * np.maximum(
9✔
393
                    0, np.ceil((wrap_phase - phase[i, j])/(2*math.pi)))
394
            else:
395
                raise ValueError("wrap_phase must be bool or float.")
×
396

397
        # Put the phase back into the original shape
398
        phase = phase.reshape(response.magnitude.shape)
9✔
399

400
        # Save the data for later use (legacy return values)
401
        mag_data.append(response.magnitude)
9✔
402
        phase_data.append(phase)
9✔
403
        omega_data.append(response.omega)
9✔
404

405
    #
406
    # Process `plot` keyword
407
    #
408
    # We use the `plot` keyword to track legacy usage of `bode_plot`.
409
    # Prior to v0.10, the `bode_plot` command returned mag, phase, and
410
    # omega.  Post v0.10, we return an array with the same shape as the
411
    # axes we use for plotting, with each array element containing a list
412
    # of lines drawn on that axes.
413
    #
414
    # There are three possibilities at this stage in the code:
415
    #
416
    # * plot == True: set explicitly by the user. Return mag, phase, omega,
417
    #   with a warning.
418
    #
419
    # * plot == False: set explicitly by the user. Return mag, phase,
420
    #   omega, with a warning.
421
    #
422
    # * plot == None: this is the new default setting.  Return an array of
423
    #   lines that were drawn.
424
    #
425
    # If `bode_plot` was called with no `plot` argument and the return
426
    # values were used, the new code will cause problems (you get an array
427
    # of lines instead of magnitude, phase, and frequency).  To recover the
428
    # old behavior, call `bode_plot` with `plot=True`.
429
    #
430
    # All of this should be removed in v0.11+ when we get rid of deprecated
431
    # code.
432
    #
433

434
    if plot is not None:
9✔
435
        warnings.warn(
9✔
436
            "bode_plot() return value of mag, phase, omega is deprecated; "
437
            "use frequency_response()", FutureWarning)
438

439
    if plot is False:
9✔
440
        # Process the data to match what we were sent
441
        for i in range(len(mag_data)):
9✔
442
            mag_data[i] = _process_frequency_response(
9✔
443
                data[i], omega_data[i], mag_data[i], squeeze=data[i].squeeze)
444
            phase_data[i] = _process_frequency_response(
9✔
445
                data[i], omega_data[i], phase_data[i], squeeze=data[i].squeeze)
446

447
        if len(data) == 1:
9✔
448
            return mag_data[0], phase_data[0], omega_data[0]
9✔
449
        else:
450
            return mag_data, phase_data, omega_data
9✔
451
    #
452
    # Find/create axes
453
    #
454
    # Data are plotted in a standard subplots array, whose size depends on
455
    # which signals are being plotted and how they are combined.  The
456
    # baseline layout for data is to plot everything separately, with
457
    # the magnitude and phase for each output making up the rows and the
458
    # columns corresponding to the different inputs.
459
    #
460
    #      Input 0                 Input m
461
    # +---------------+       +---------------+
462
    # |  mag H_y0,u0  |  ...  |  mag H_y0,um  |
463
    # +---------------+       +---------------+
464
    # +---------------+       +---------------+
465
    # | phase H_y0,u0 |  ...  | phase H_y0,um |
466
    # +---------------+       +---------------+
467
    #         :                       :
468
    # +---------------+       +---------------+
469
    # |  mag H_yp,u0  |  ...  |  mag H_yp,um  |
470
    # +---------------+       +---------------+
471
    # +---------------+       +---------------+
472
    # | phase H_yp,u0 |  ...  | phase H_yp,um |
473
    # +---------------+       +---------------+
474
    #
475
    # Several operations are available that change this layout.
476
    #
477
    # * Omitting: either the magnitude or the phase plots can be omitted
478
    #   using the plot_magnitude and plot_phase keywords.
479
    #
480
    # * Overlay: inputs and/or outputs can be combined onto a single set of
481
    #   axes using the overlay_inputs and overlay_outputs keywords.  This
482
    #   basically collapses data along either the rows or columns, and a
483
    #   legend is generated.
484
    #
485

486
    # Decide on the maximum number of inputs and outputs
487
    ninputs, noutputs = 0, 0
9✔
488
    for response in data:       # TODO: make more pythonic/numpic
9✔
489
        ninputs = max(ninputs, response.ninputs)
9✔
490
        noutputs = max(noutputs, response.noutputs)
9✔
491

492
    # Figure how how many rows and columns to use + offsets for inputs/outputs
493
    if overlay_outputs and overlay_inputs:
9✔
494
        nrows = plot_magnitude + plot_phase
9✔
495
        ncols = 1
9✔
496
    elif overlay_outputs:
9✔
497
        nrows = plot_magnitude + plot_phase
9✔
498
        ncols = ninputs
9✔
499
    elif overlay_inputs:
9✔
500
        nrows = (noutputs if plot_magnitude else 0) + \
9✔
501
            (noutputs if plot_phase else 0)
502
        ncols = 1
9✔
503
    else:
504
        nrows = (noutputs if plot_magnitude else 0) + \
9✔
505
            (noutputs if plot_phase else 0)
506
        ncols = ninputs
9✔
507

508
    if ax is None:
9✔
509
        # Set up default sharing of axis limits if not specified
510
        for kw in ['share_magnitude', 'share_phase', 'share_frequency']:
9✔
511
            if kw not in kwargs or kwargs[kw] is None:
9✔
512
                kwargs[kw] = config.defaults['freqplot.' + kw]
9✔
513

514
    fig, ax_array = _process_ax_keyword(
9✔
515
        ax, (nrows, ncols), squeeze=False, rcParams=rcParams, clear_text=True)
516
    legend_loc, legend_map, show_legend = _process_legend_keywords(
9✔
517
        kwargs, (nrows,ncols), 'center right')
518

519
    # Get the values for sharing axes limits
520
    share_magnitude = kwargs.pop('share_magnitude', None)
9✔
521
    share_phase = kwargs.pop('share_phase', None)
9✔
522
    share_frequency = kwargs.pop('share_frequency', None)
9✔
523

524
    # Set up axes variables for easier access below
525
    if plot_magnitude and not plot_phase:
9✔
526
        mag_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
527
        for i in range(noutputs):
9✔
528
            for j in range(ninputs):
9✔
529
                if overlay_outputs and overlay_inputs:
9✔
530
                    mag_map[i, j] = (0, 0)
9✔
531
                elif overlay_outputs:
9✔
532
                    mag_map[i, j] = (0, j)
9✔
533
                elif overlay_inputs:
9✔
534
                    mag_map[i, j] = (i, 0)
×
535
                else:
536
                    mag_map[i, j] = (i, j)
9✔
537
        phase_map = np.full((noutputs, ninputs), None)
9✔
538
        share_phase = False
9✔
539

540
    elif plot_phase and not plot_magnitude:
9✔
541
        phase_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
542
        for i in range(noutputs):
9✔
543
            for j in range(ninputs):
9✔
544
                if overlay_outputs and overlay_inputs:
9✔
545
                    phase_map[i, j] = (0, 0)
×
546
                elif overlay_outputs:
9✔
547
                    phase_map[i, j] = (0, j)
×
548
                elif overlay_inputs:
9✔
549
                    phase_map[i, j] = (i, 0)
9✔
550
                else:
551
                    phase_map[i, j] = (i, j)
9✔
552
        mag_map = np.full((noutputs, ninputs), None)
9✔
553
        share_magnitude = False
9✔
554

555
    else:
556
        mag_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
557
        phase_map = np.empty((noutputs, ninputs), dtype=tuple)
9✔
558
        for i in range(noutputs):
9✔
559
            for j in range(ninputs):
9✔
560
                if overlay_outputs and overlay_inputs:
9✔
561
                    mag_map[i, j] = (0, 0)
×
562
                    phase_map[i, j] = (1, 0)
×
563
                elif overlay_outputs:
9✔
564
                    mag_map[i, j] = (0, j)
×
565
                    phase_map[i, j] = (1, j)
×
566
                elif overlay_inputs:
9✔
567
                    mag_map[i, j] = (i*2, 0)
×
568
                    phase_map[i, j] = (i*2 + 1, 0)
×
569
                else:
570
                    mag_map[i, j] = (i*2, j)
9✔
571
                    phase_map[i, j] = (i*2 + 1, j)
9✔
572

573
    # Identity map needed for setting up shared axes
574
    ax_map = np.empty((nrows, ncols), dtype=tuple)
9✔
575
    for i, j in itertools.product(range(nrows), range(ncols)):
9✔
576
        ax_map[i, j] = (i, j)
9✔
577

578
    #
579
    # Set up axes limit sharing
580
    #
581
    # This code uses the share_magnitude, share_phase, and share_frequency
582
    # keywords to decide which axes have shared limits and what ticklabels
583
    # to include.  The sharing code needs to come before the plots are
584
    # generated, but additional code for removing tick labels needs to come
585
    # *during* and *after* the plots are generated (see below).
586
    #
587
    # Note: if the various share_* keywords are None then a previous set of
588
    # axes are available and no updates should be made.
589
    #
590

591
    # Utility function to turn on sharing
592
    def _share_axes(ref, share_map, axis):
9✔
593
        ref_ax = ax_array[ref]
9✔
594
        for index in np.nditer(share_map, flags=["refs_ok"]):
9✔
595
            if index.item() == ref:
9✔
596
                continue
9✔
597
            if axis == 'x':
9✔
598
                ax_array[index.item()].sharex(ref_ax)
9✔
599
            elif axis == 'y':
9✔
600
                ax_array[index.item()].sharey(ref_ax)
9✔
601
            else:
602
                raise ValueError("axis must be 'x' or 'y'")
×
603

604
    # Process magnitude, phase, and frequency axes
605
    for name, value, map, axis in zip(
9✔
606
            ['share_magnitude', 'share_phase', 'share_frequency'],
607
            [ share_magnitude,   share_phase,   share_frequency],
608
            [ mag_map,           phase_map,     ax_map],
609
            [ 'y',               'y',           'x']):
610
        if value in [True, 'all']:
9✔
611
            _share_axes(map[0 if axis == 'y' else -1, 0], map, axis)
9✔
612
        elif axis == 'y' and value in ['row']:
9✔
613
            for i in range(noutputs if not overlay_outputs else 1):
9✔
614
                _share_axes(map[i, 0], map[i], 'y')
9✔
615
        elif axis == 'x' and value in ['col']:
9✔
616
            for j in range(ncols):
9✔
617
                _share_axes(map[-1, j], map[:, j], 'x')
9✔
618
        elif value in [False, 'none']:
9✔
619
            # TODO: turn off any sharing that is on
620
            pass
9✔
621
        elif value is not None:
9✔
622
            raise ValueError(
×
623
                f"unknown value for `{name}`: '{value}'")
624

625
    #
626
    # Plot the data
627
    #
628
    # The mag_map and phase_map arrays have the indices axes needed for
629
    # making the plots.  Labels are used on each axes for later creation of
630
    # legends.  The generic labels if of the form:
631
    #
632
    #     To output label, From input label, system name
633
    #
634
    # The input and output labels are omitted if overlay_inputs or
635
    # overlay_outputs is False, respectively.  The system name is always
636
    # included, since multiple calls to plot() will require a legend that
637
    # distinguishes which system signals are plotted.  The system name is
638
    # stripped off later (in the legend-handling code) if it is not needed.
639
    #
640
    # Note: if we are building on top of an existing plot, tick labels
641
    # should be preserved from the existing axes.  For log scale axes the
642
    # tick labels seem to appear no matter what => we have to detect if
643
    # they are present at the start and, it not, remove them after calling
644
    # loglog or semilogx.
645
    #
646

647
    # Create a list of lines for the output
648
    out = np.empty((nrows, ncols), dtype=object)
9✔
649
    for i in range(nrows):
9✔
650
        for j in range(ncols):
9✔
651
            out[i, j] = []      # unique list in each element
9✔
652

653
    # Process label keyword
654
    line_labels = _process_line_labels(label, len(data), ninputs, noutputs)
9✔
655

656
    # Utility function for creating line label
657
    def _make_line_label(response, output_index, input_index):
9✔
658
        label = ""              # start with an empty label
9✔
659

660
        # Add the output name if it won't appear as an axes label
661
        if noutputs > 1 and overlay_outputs:
9✔
662
            label += response.output_labels[output_index]
9✔
663

664
        # Add the input name if it won't appear as a column label
665
        if ninputs > 1 and overlay_inputs:
9✔
666
            label += ", " if label != "" else ""
9✔
667
            label += response.input_labels[input_index]
9✔
668

669
        # Add the system name (will strip off later if redundant)
670
        label += ", " if label != "" else ""
9✔
671
        label += f"{response.sysname}"
9✔
672

673
        return label
9✔
674

675
    for index, response in enumerate(data):
9✔
676
        # Get the (pre-processed) data in fully indexed form
677
        mag = mag_data[index].reshape((noutputs, ninputs, -1))
9✔
678
        phase = phase_data[index].reshape((noutputs, ninputs, -1))
9✔
679
        omega_sys, sysname = omega_data[index], response.sysname
9✔
680

681
        for i, j in itertools.product(range(noutputs), range(ninputs)):
9✔
682
            # Get the axes to use for magnitude and phase
683
            ax_mag = ax_array[mag_map[i, j]]
9✔
684
            ax_phase = ax_array[phase_map[i, j]]
9✔
685

686
            # Get the frequencies and convert to Hz, if needed
687
            omega_plot = omega_sys / (2 * math.pi) if Hz else omega_sys
9✔
688
            if response.isdtime(strict=True):
9✔
689
                nyq_freq = (0.5/response.dt) if Hz else (math.pi/response.dt)
9✔
690

691
            # Save the magnitude and phase to plot
692
            mag_plot = 20 * np.log10(mag[i, j]) if dB else mag[i, j]
9✔
693
            phase_plot = phase[i, j] * 180. / math.pi if deg else phase[i, j]
9✔
694

695
            # Generate a label
696
            if line_labels is None:
9✔
697
                label = _make_line_label(response, i, j)
9✔
698
            else:
699
                label = line_labels[index, i, j]
9✔
700

701
            # Magnitude
702
            if plot_magnitude:
9✔
703
                pltfcn = ax_mag.semilogx if dB else ax_mag.loglog
9✔
704

705
                # Plot the main data
706
                lines = pltfcn(
9✔
707
                    omega_plot, mag_plot, *fmt, label=label, **kwargs)
708
                out[mag_map[i, j]] += lines
9✔
709

710
                # Save the information needed for the Nyquist line
711
                if response.isdtime(strict=True):
9✔
712
                    ax_mag.axvline(
9✔
713
                        nyq_freq, color=lines[0].get_color(), linestyle='--',
714
                        label='_nyq_mag_' + sysname)
715

716
                # Add a grid to the plot
717
                ax_mag.grid(grid and not display_margins, which='both')
9✔
718

719
            # Phase
720
            if plot_phase:
9✔
721
                lines = ax_phase.semilogx(
9✔
722
                    omega_plot, phase_plot, *fmt, label=label, **kwargs)
723
                out[phase_map[i, j]] += lines
9✔
724

725
                # Save the information needed for the Nyquist line
726
                if response.isdtime(strict=True):
9✔
727
                    ax_phase.axvline(
9✔
728
                        nyq_freq, color=lines[0].get_color(), linestyle='--',
729
                        label='_nyq_phase_' + sysname)
730

731
                # Add a grid to the plot
732
                ax_phase.grid(grid and not display_margins, which='both')
9✔
733

734
        #
735
        # Display gain and phase margins (SISO only)
736
        #
737

738
        if display_margins:
9✔
739
            if ninputs > 1 or noutputs > 1:
9✔
740
                raise NotImplementedError(
741
                    "margins are not available for MIMO systems")
742

743
            # Compute stability margins for the system
744
            margins = stability_margins(response, method=margins_method)
9✔
745
            gm, pm, Wcg, Wcp = (margins[i] for i in [0, 1, 3, 4])
9✔
746

747
            # Figure out sign of the phase at the first gain crossing
748
            # (needed if phase_wrap is True)
749
            phase_at_cp = phase[
9✔
750
                0, 0, (np.abs(omega_data[0] - Wcp)).argmin()]
751
            if phase_at_cp >= 0.:
9✔
752
                phase_limit = 180.
×
753
            else:
754
                phase_limit = -180.
9✔
755

756
            if Hz:
9✔
757
                Wcg, Wcp = Wcg/(2*math.pi), Wcp/(2*math.pi)
9✔
758

759
            # Draw lines at gain and phase limits
760
            if plot_magnitude:
9✔
761
                ax_mag.axhline(y=0 if dB else 1, color='k', linestyle=':',
9✔
762
                               zorder=-20)
763
                mag_ylim = ax_mag.get_ylim()
9✔
764

765
            if plot_phase:
9✔
766
                ax_phase.axhline(y=phase_limit if deg else
9✔
767
                                 math.radians(phase_limit),
768
                                 color='k', linestyle=':', zorder=-20)
769
                phase_ylim = ax_phase.get_ylim()
9✔
770

771
            # Annotate the phase margin (if it exists)
772
            if plot_phase and pm != float('inf') and Wcp != float('nan'):
9✔
773
                # Draw dotted lines marking the gain crossover frequencies
774
                if plot_magnitude:
9✔
775
                    ax_mag.axvline(Wcp, color='k', linestyle=':', zorder=-30)
9✔
776
                ax_phase.axvline(Wcp, color='k', linestyle=':', zorder=-30)
9✔
777

778
                # Draw solid segments indicating the margins
779
                if deg:
9✔
780
                    ax_phase.semilogx(
9✔
781
                        [Wcp, Wcp], [phase_limit + pm, phase_limit],
782
                        color='k', zorder=-20)
783
                else:
784
                    ax_phase.semilogx(
9✔
785
                        [Wcp, Wcp], [math.radians(phase_limit) +
786
                                     math.radians(pm),
787
                                     math.radians(phase_limit)],
788
                        color='k', zorder=-20)
789

790
            # Annotate the gain margin (if it exists)
791
            if plot_magnitude and gm != float('inf') and \
9✔
792
               Wcg != float('nan'):
793
                # Draw dotted lines marking the phase crossover frequencies
794
                ax_mag.axvline(Wcg, color='k', linestyle=':', zorder=-30)
9✔
795
                if plot_phase:
9✔
796
                    ax_phase.axvline(Wcg, color='k', linestyle=':', zorder=-30)
9✔
797

798
                # Draw solid segments indicating the margins
799
                if dB:
9✔
800
                    ax_mag.semilogx(
9✔
801
                        [Wcg, Wcg], [0, -20*np.log10(gm)],
802
                        color='k', zorder=-20)
803
                else:
804
                    ax_mag.loglog(
9✔
805
                        [Wcg, Wcg], [1., 1./gm], color='k', zorder=-20)
806

807
            if display_margins == 'overlay':
9✔
808
                # TODO: figure out how to handle case of multiple lines
809
                # Put the margin information in the lower left corner
810
                if plot_magnitude:
9✔
811
                    ax_mag.text(
9✔
812
                        0.04, 0.06,
813
                        'G.M.: %.2f %s\nFreq: %.2f %s' %
814
                        (20*np.log10(gm) if dB else gm,
815
                         'dB ' if dB else '',
816
                         Wcg, 'Hz' if Hz else 'rad/s'),
817
                        horizontalalignment='left',
818
                        verticalalignment='bottom',
819
                        transform=ax_mag.transAxes,
820
                        fontsize=8 if int(mpl.__version__[0]) == 1 else 6)
821

822
                if plot_phase:
9✔
823
                    ax_phase.text(
9✔
824
                        0.04, 0.06,
825
                        'P.M.: %.2f %s\nFreq: %.2f %s' %
826
                        (pm if deg else math.radians(pm),
827
                         'deg' if deg else 'rad',
828
                         Wcp, 'Hz' if Hz else 'rad/s'),
829
                        horizontalalignment='left',
830
                        verticalalignment='bottom',
831
                        transform=ax_phase.transAxes,
832
                        fontsize=8 if int(mpl.__version__[0]) == 1 else 6)
833

834
            else:
835
                # Put the title underneath the suptitle (one line per system)
836
                ax = ax_mag if ax_mag else ax_phase
9✔
837
                axes_title = ax.get_title()
9✔
838
                if axes_title is not None and axes_title != "":
9✔
839
                    axes_title += "\n"
×
840
                with plt.rc_context(rcParams):
9✔
841
                    ax.set_title(
9✔
842
                        axes_title + f"{sysname}: "
843
                        "Gm = %.2f %s(at %.2f %s), "
844
                        "Pm = %.2f %s (at %.2f %s)" %
845
                        (20*np.log10(gm) if dB else gm,
846
                         'dB ' if dB else '',
847
                         Wcg, 'Hz' if Hz else 'rad/s',
848
                         pm if deg else math.radians(pm),
849
                         'deg' if deg else 'rad',
850
                         Wcp, 'Hz' if Hz else 'rad/s'))
851

852
    #
853
    # Finishing handling axes limit sharing
854
    #
855
    # This code handles labels on Bode plots and also removes tick labels
856
    # on shared axes.  It needs to come *after* the plots are generated,
857
    # in order to handle two things:
858
    #
859
    # * manually generated labels and grids need to reflect the limits for
860
    #   shared axes, which we don't know until we have plotted everything;
861
    #
862
    # * the loglog and semilog functions regenerate the labels (not quite
863
    #   sure why, since using sharex and sharey in subplots does not have
864
    #   this behavior).
865
    #
866
    # Note: as before, if the various share_* keywords are None then a
867
    # previous set of axes are available and no updates are made. (TODO: true?)
868
    #
869

870
    for i in range(noutputs):
9✔
871
        for j in range(ninputs):
9✔
872
            # Utility function to generate phase labels
873
            def gen_zero_centered_series(val_min, val_max, period):
9✔
874
                v1 = np.ceil(val_min / period - 0.2)
9✔
875
                v2 = np.floor(val_max / period + 0.2)
9✔
876
                return np.arange(v1, v2 + 1) * period
9✔
877

878
            # Label the phase axes using multiples of 45 degrees
879
            if plot_phase:
9✔
880
                ax_phase = ax_array[phase_map[i, j]]
9✔
881

882
                # Set the labels
883
                if deg:
9✔
884
                    ylim = ax_phase.get_ylim()
9✔
885
                    num = np.floor((ylim[1] - ylim[0]) / 45)
9✔
886
                    factor = max(1, np.round(num / (32 / nrows)) * 2)
9✔
887
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
888
                        ylim[0], ylim[1], 45 * factor))
889
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
890
                        ylim[0], ylim[1], 15 * factor), minor=True)
891
                else:
892
                    ylim = ax_phase.get_ylim()
9✔
893
                    num = np.ceil((ylim[1] - ylim[0]) / (math.pi/4))
9✔
894
                    factor = max(1, np.round(num / (36 / nrows)) * 2)
9✔
895
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
896
                        ylim[0], ylim[1], math.pi / 4. * factor))
897
                    ax_phase.set_yticks(gen_zero_centered_series(
9✔
898
                        ylim[0], ylim[1], math.pi / 12. * factor), minor=True)
899

900
    # Turn off y tick labels for shared axes
901
    for i in range(0, noutputs):
9✔
902
        for j in range(1, ncols):
9✔
903
            if share_magnitude in [True, 'all', 'row']:
9✔
904
                ax_array[mag_map[i, j]].tick_params(labelleft=False)
9✔
905
            if share_phase in [True, 'all', 'row']:
9✔
906
                ax_array[phase_map[i, j]].tick_params(labelleft=False)
9✔
907

908
    # Turn off x tick labels for shared axes
909
    for i in range(0, nrows-1):
9✔
910
        for j in range(0, ncols):
9✔
911
            if share_frequency in [True, 'all', 'col']:
9✔
912
                ax_array[i, j].tick_params(labelbottom=False)
9✔
913

914
    # If specific omega_limits were given, use them
915
    if omega_limits is not None:
9✔
916
        for i, j in itertools.product(range(nrows), range(ncols)):
9✔
917
            ax_array[i, j].set_xlim(omega_limits)
9✔
918

919
    #
920
    # Label the axes (including header labels)
921
    #
922
    # Once the data are plotted, we label the axes.  The horizontal axes is
923
    # always frequency and this is labeled only on the bottom most row.  The
924
    # vertical axes can consist either of a single signal or a combination
925
    # of signals (when overlay_inputs or overlay_outputs is True)
926
    #
927
    # Input/output signals are give at the top of columns and left of rows
928
    # when these are individually plotted.
929
    #
930

931
    # Label the columns (do this first to get row labels in the right spot)
932
    for j in range(ncols):
9✔
933
        # If we have more than one column, label the individual responses
934
        if (noutputs > 1 and not overlay_outputs or ninputs > 1) \
9✔
935
           and not overlay_inputs:
936
            with plt.rc_context(rcParams):
9✔
937
                ax_array[0, j].set_title(f"From {data[0].input_labels[j]}")
9✔
938

939
        # Label the frequency axis
940
        ax_array[-1, j].set_xlabel(
9✔
941
            freq_label.format(units="Hz" if Hz else "rad/s"))
942

943
    # Label the rows
944
    for i in range(noutputs if not overlay_outputs else 1):
9✔
945
        if plot_magnitude:
9✔
946
            ax_mag = ax_array[mag_map[i, 0]]
9✔
947
            ax_mag.set_ylabel(magnitude_label)
9✔
948
        if plot_phase:
9✔
949
            ax_phase = ax_array[phase_map[i, 0]]
9✔
950
            ax_phase.set_ylabel(phase_label)
9✔
951

952
        if (noutputs > 1 or ninputs > 1) and not overlay_outputs:
9✔
953
            if plot_magnitude and plot_phase:
9✔
954
                # Get existing ylabel for left column and add a blank line
955
                ax_mag.set_ylabel("\n" + ax_mag.get_ylabel())
9✔
956
                ax_phase.set_ylabel("\n" + ax_phase.get_ylabel())
9✔
957

958
                # Find the midpoint between the row axes (+ tight_layout)
959
                _, ypos = _find_axes_center(fig, [ax_mag, ax_phase])
9✔
960

961
                # Get the bounding box including the labels
962
                inv_transform = fig.transFigure.inverted()
9✔
963
                mag_bbox = inv_transform.transform(
9✔
964
                    ax_mag.get_tightbbox(fig.canvas.get_renderer()))
965

966
                # Figure out location for the text (center left in figure frame)
967
                xpos = mag_bbox[0, 0]               # left edge
9✔
968

969
                # Put a centered label as text outside the box
970
                fig.text(
9✔
971
                    0.8 * xpos, ypos, f"To {data[0].output_labels[i]}\n",
972
                    rotation=90, ha='left', va='center',
973
                    fontsize=rcParams['axes.titlesize'])
974
            else:
975
                # Only a single axes => add label to the left
976
                ax_array[i, 0].set_ylabel(
9✔
977
                    f"To {data[0].output_labels[i]}\n" +
978
                    ax_array[i, 0].get_ylabel())
979

980
    #
981
    # Update the plot title (= figure suptitle)
982
    #
983
    # If plots are built up by multiple calls to plot() and the title is
984
    # not given, then the title is updated to provide a list of unique text
985
    # items in each successive title.  For data generated by the frequency
986
    # response function this will generate a common prefix followed by a
987
    # list of systems (e.g., "Step response for sys[1], sys[2]").
988
    #
989

990
    # Set the initial title for the data (unique system names, preserving order)
991
    seen = set()
9✔
992
    sysnames = [response.sysname for response in data \
9✔
993
                if not (response.sysname in seen or seen.add(response.sysname))]
994

995
    if ax is None and title is None:
9✔
996
        if data[0].title is None:
9✔
997
            title = "Bode plot for " + ", ".join(sysnames)
9✔
998
        else:
999
            # Allow data to set the title (used by gangof4)
1000
            title = data[0].title
9✔
1001
        _update_plot_title(title, fig, rcParams=rcParams, frame=title_frame)
9✔
1002
    elif ax is None:
9✔
1003
        _update_plot_title(
9✔
1004
            title, fig=fig, rcParams=rcParams, frame=title_frame,
1005
            use_existing=False)
1006

1007
    #
1008
    # Create legends
1009
    #
1010
    # Legends can be placed manually by passing a legend_map array that
1011
    # matches the shape of the suplots, with each item being a string
1012
    # indicating the location of the legend for that axes (or None for no
1013
    # legend).
1014
    #
1015
    # If no legend spec is passed, a minimal number of legends are used so
1016
    # that each line in each axis can be uniquely identified.  The details
1017
    # depends on the various plotting parameters, but the general rule is
1018
    # to place legends in the top row and right column.
1019
    #
1020
    # Because plots can be built up by multiple calls to plot(), the legend
1021
    # strings are created from the line labels manually.  Thus an initial
1022
    # call to plot() may not generate any legends (eg, if no signals are
1023
    # overlaid), but subsequent calls to plot() will need a legend for each
1024
    # different response (system).
1025
    #
1026

1027
    # Create axis legends
1028
    if show_legend != False:
9✔
1029
        # Figure out where to put legends
1030
        if legend_map is None:
9✔
1031
            legend_map = np.full(ax_array.shape, None, dtype=object)
9✔
1032
            legend_map[0, -1] = legend_loc
9✔
1033

1034
        legend_array = np.full(ax_array.shape, None, dtype=object)
9✔
1035
        for i, j in itertools.product(range(nrows), range(ncols)):
9✔
1036
            if legend_map[i, j] is None:
9✔
1037
                continue
9✔
1038
            ax = ax_array[i, j]
9✔
1039

1040
            # Get the labels to use, removing common strings
1041
            lines = [line for line in ax.get_lines()
9✔
1042
                     if line.get_label()[0] != '_']
1043
            labels = _make_legend_labels(
9✔
1044
                [line.get_label() for line in lines],
1045
                ignore_common=line_labels is not None)
1046

1047
            # Generate the label, if needed
1048
            if show_legend == True or len(labels) > 1:
9✔
1049
                with plt.rc_context(rcParams):
9✔
1050
                    legend_array[i, j] = ax.legend(
9✔
1051
                        lines, labels, loc=legend_map[i, j])
1052
    else:
1053
        legend_array = None
9✔
1054

1055
    #
1056
    # Legacy return pocessing
1057
    #
1058
    if plot is True:            # legacy usage; remove in future release
9✔
1059
        # Process the data to match what we were sent
1060
        for i in range(len(mag_data)):
9✔
1061
            mag_data[i] = _process_frequency_response(
9✔
1062
                data[i], omega_data[i], mag_data[i], squeeze=data[i].squeeze)
1063
            phase_data[i] = _process_frequency_response(
9✔
1064
                data[i], omega_data[i], phase_data[i], squeeze=data[i].squeeze)
1065

1066
        if len(data) == 1:
9✔
1067
            return mag_data[0], phase_data[0], omega_data[0]
9✔
1068
        else:
1069
            return mag_data, phase_data, omega_data
9✔
1070

1071
    return ControlPlot(out, ax_array, fig, legend=legend_array)
9✔
1072

1073

1074
#
1075
# Nyquist plot
1076
#
1077

1078
# Default values for module parameter variables
1079
_nyquist_defaults = {
9✔
1080
    'nyquist.primary_style': ['-', '-.'],       # style for primary curve
1081
    'nyquist.mirror_style': ['--', ':'],        # style for mirror curve
1082
    'nyquist.arrows': 2,                        # number of arrows around curve
1083
    'nyquist.arrow_size': 8,                    # pixel size for arrows
1084
    'nyquist.encirclement_threshold': 0.05,     # warning threshold
1085
    'nyquist.indent_radius': 1e-4,              # indentation radius
1086
    'nyquist.indent_direction': 'right',        # indentation direction
1087
    'nyquist.indent_points': 50,                # number of points to insert
1088
    'nyquist.max_curve_magnitude': 20,          # clip large values
1089
    'nyquist.max_curve_offset': 0.02,           # offset of primary/mirror
1090
    'nyquist.start_marker': 'o',                # marker at start of curve
1091
    'nyquist.start_marker_size': 4,             # size of the marker
1092
    'nyquist.circle_style':                     # style for unit circles
1093
      {'color': 'black', 'linestyle': 'dashed', 'linewidth': 1}
1094
}
1095

1096

1097
class NyquistResponseData:
9✔
1098
    """Nyquist response data object.
1099

1100
    Nyquist contour analysis allows the stability and robustness of a
1101
    closed loop linear system to be evaluated using the open loop response
1102
    of the loop transfer function.  The NyquistResponseData class is used
1103
    by the :func:`~control.nyquist_response` function to return the
1104
    response of a linear system along the Nyquist 'D' contour.  The
1105
    response object can be used to obtain information about the Nyquist
1106
    response or to generate a Nyquist plot.
1107

1108
    Attributes
1109
    ----------
1110
    count : integer
1111
        Number of encirclements of the -1 point by the Nyquist curve for
1112
        a system evaluated along the Nyquist contour.
1113
    contour : complex array
1114
        The Nyquist 'D' contour, with appropriate indendtations to avoid
1115
        open loop poles and zeros near/on the imaginary axis.
1116
    response : complex array
1117
        The value of the linear system under study along the Nyquist contour.
1118
    dt : None or float
1119
        The system timebase.
1120
    sysname : str
1121
        The name of the system being analyzed.
1122
    return_contour: bool
1123
        If true, when the object is accessed as an iterable return two
1124
        elements": `count` (number of encirlements) and `contour`.  If
1125
        false (default), then return only `count`.
1126

1127
    """
1128
    def __init__(
9✔
1129
            self, count, contour, response, dt, sysname=None,
1130
            return_contour=False):
1131
        self.count = count
9✔
1132
        self.contour = contour
9✔
1133
        self.response = response
9✔
1134
        self.dt = dt
9✔
1135
        self.sysname = sysname
9✔
1136
        self.return_contour = return_contour
9✔
1137

1138
    # Implement iter to allow assigning to a tuple
1139
    def __iter__(self):
9✔
1140
        if self.return_contour:
9✔
1141
            return iter((self.count, self.contour))
9✔
1142
        else:
1143
            return iter((self.count, ))
9✔
1144

1145
    # Implement (thin) getitem to allow access via legacy indexing
1146
    def __getitem__(self, index):
9✔
1147
        return list(self.__iter__())[index]
×
1148

1149
    # Implement (thin) len to emulate legacy testing interface
1150
    def __len__(self):
9✔
1151
        return 2 if self.return_contour else 1
9✔
1152

1153
    def plot(self, *args, **kwargs):
9✔
1154
        return nyquist_plot(self, *args, **kwargs)
9✔
1155

1156

1157
class NyquistResponseList(list):
9✔
1158
    def plot(self, *args, **kwargs):
9✔
1159
        return nyquist_plot(self, *args, **kwargs)
9✔
1160

1161

1162
def nyquist_response(
9✔
1163
        sysdata, omega=None, omega_limits=None, omega_num=None,
1164
        return_contour=False, warn_encirclements=True, warn_nyquist=True,
1165
        _check_kwargs=True, **kwargs):
1166
    """Nyquist response for a system.
1167

1168
    Computes a Nyquist contour for the system over a (optional) frequency
1169
    range and evaluates the number of net encirclements.  The curve is
1170
    computed by evaluating the Nyqist segment along the positive imaginary
1171
    axis, with a mirror image generated to reflect the negative imaginary
1172
    axis.  Poles on or near the imaginary axis are avoided using a small
1173
    indentation.  The portion of the Nyquist contour at infinity is not
1174
    explicitly computed (since it maps to a constant value for any system
1175
    with a proper transfer function).
1176

1177
    Parameters
1178
    ----------
1179
    sysdata : LTI or list of LTI
1180
        List of linear input/output systems (single system is OK). Nyquist
1181
        curves for each system are plotted on the same graph.
1182
    omega : array_like, optional
1183
        Set of frequencies to be evaluated, in rad/sec.
1184

1185
    Returns
1186
    -------
1187
    responses : list of :class:`~control.NyquistResponseData`
1188
        For each system, a Nyquist response data object is returned.  If
1189
        `sysdata` is a single system, a single elemeent is returned (not a
1190
        list).  For each response, the following information is available:
1191
    response.count : int
1192
        Number of encirclements of the point -1 by the Nyquist curve.  If
1193
        multiple systems are given, an array of counts is returned.
1194
    response.contour : ndarray
1195
        The contour used to create the primary Nyquist curve segment.  To
1196
        obtain the Nyquist curve values, evaluate system(s) along contour.
1197

1198
    Other Parameters
1199
    ----------------
1200
    encirclement_threshold : float, optional
1201
        Define the threshold for generating a warning if the number of net
1202
        encirclements is a non-integer value.  Default value is 0.05 and can
1203
        be set using config.defaults['nyquist.encirclement_threshold'].
1204
    indent_direction : str, optional
1205
        For poles on the imaginary axis, set the direction of indentation to
1206
        be 'right' (default), 'left', or 'none'.
1207
    indent_points : int, optional
1208
        Number of points to insert in the Nyquist contour around poles that
1209
        are at or near the imaginary axis.
1210
    indent_radius : float, optional
1211
        Amount to indent the Nyquist contour around poles on or near the
1212
        imaginary axis. Portions of the Nyquist plot corresponding to indented
1213
        portions of the contour are plotted using a different line style.
1214
    omega_limits : array_like of two values
1215
        Set limits for plotted frequency range. If Hz=True the limits are
1216
        in Hz otherwise in rad/s.  Specifying ``omega`` as a list of two
1217
        elements is equivalent to providing ``omega_limits``.
1218
    omega_num : int, optional
1219
        Number of samples to use for the frequeny range.  Defaults to
1220
        config.defaults['freqplot.number_of_samples'].
1221
    warn_nyquist : bool, optional
1222
        If set to 'False', turn off warnings about frequencies above Nyquist.
1223
    warn_encirclements : bool, optional
1224
        If set to 'False', turn off warnings about number of encirclements not
1225
        meeting the Nyquist criterion.
1226

1227
    Notes
1228
    -----
1229
    1. If a discrete time model is given, the frequency response is computed
1230
       along the upper branch of the unit circle, using the mapping ``z =
1231
       exp(1j * omega * dt)`` where `omega` ranges from 0 to `pi/dt` and `dt`
1232
       is the discrete timebase.  If timebase not specified (``dt=True``),
1233
       `dt` is set to 1.
1234

1235
    2. If a continuous-time system contains poles on or near the imaginary
1236
       axis, a small indentation will be used to avoid the pole.  The radius
1237
       of the indentation is given by `indent_radius` and it is taken to the
1238
       right of stable poles and the left of unstable poles.  If a pole is
1239
       exactly on the imaginary axis, the `indent_direction` parameter can be
1240
       used to set the direction of indentation.  Setting `indent_direction`
1241
       to `none` will turn off indentation.
1242

1243
    3. For those portions of the Nyquist plot in which the contour is
1244
       indented to avoid poles, resuling in a scaling of the Nyquist plot,
1245
       the line styles are according to the settings of the `primary_style`
1246
       and `mirror_style` keywords.  By default the scaled portions of the
1247
       primary curve use a dotted line style and the scaled portion of the
1248
       mirror image use a dashdot line style.
1249

1250
    4. If the legacy keyword `return_contour` is specified as True, the
1251
       response object can be iterated over to return `count, contour`.
1252
       This behavior is deprecated and will be removed in a future release.
1253

1254
    See Also
1255
    --------
1256
    nyquist_plot
1257

1258
    Examples
1259
    --------
1260
    >>> G = ct.zpk([], [-1, -2, -3], gain=100)
1261
    >>> response = ct.nyquist_response(G)
1262
    >>> count = response.count
1263
    >>> lines = response.plot()
1264

1265
    """
1266
    # Get values for params
1267
    omega_num_given = omega_num is not None
9✔
1268
    omega_num = config._get_param('freqplot', 'number_of_samples', omega_num)
9✔
1269
    indent_radius = config._get_param(
9✔
1270
        'nyquist', 'indent_radius', kwargs, _nyquist_defaults, pop=True)
1271
    encirclement_threshold = config._get_param(
9✔
1272
        'nyquist', 'encirclement_threshold', kwargs,
1273
        _nyquist_defaults, pop=True)
1274
    indent_direction = config._get_param(
9✔
1275
        'nyquist', 'indent_direction', kwargs, _nyquist_defaults, pop=True)
1276
    indent_points = config._get_param(
9✔
1277
        'nyquist', 'indent_points', kwargs, _nyquist_defaults, pop=True)
1278

1279
    if _check_kwargs and kwargs:
9✔
1280
        raise TypeError("unrecognized keywords: ", str(kwargs))
9✔
1281

1282
    # Convert the first argument to a list
1283
    syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata]
9✔
1284

1285
    # Determine the range of frequencies to use, based on args/features
1286
    omega, omega_range_given = _determine_omega_vector(
9✔
1287
        syslist, omega, omega_limits, omega_num, feature_periphery_decades=2)
1288

1289
    # If omega was not specified explicitly, start at omega = 0
1290
    if not omega_range_given:
9✔
1291
        if omega_num_given:
9✔
1292
            # Just reset the starting point
1293
            omega[0] = 0.0
9✔
1294
        else:
1295
            # Insert points between the origin and the first frequency point
1296
            omega = np.concatenate((
9✔
1297
                np.linspace(0, omega[0], indent_points), omega[1:]))
1298

1299
    # Go through each system and keep track of the results
1300
    responses = []
9✔
1301
    for idx, sys in enumerate(syslist):
9✔
1302
        if not sys.issiso():
9✔
1303
            # TODO: Add MIMO nyquist plots.
1304
            raise ControlMIMONotImplemented(
9✔
1305
                "Nyquist plot currently only supports SISO systems.")
1306

1307
        # Figure out the frequency range
1308
        if isinstance(sys, FrequencyResponseData) and sys.ifunc is None \
9✔
1309
           and not omega_range_given:
1310
            omega_sys = sys.omega               # use system frequencies
9✔
1311
        else:
1312
            omega_sys = np.asarray(omega)       # use common omega vector
9✔
1313

1314
        # Determine the contour used to evaluate the Nyquist curve
1315
        if sys.isdtime(strict=True):
9✔
1316
            # Restrict frequencies for discrete-time systems
1317
            nyq_freq = math.pi / sys.dt
9✔
1318
            if not omega_range_given:
9✔
1319
                # limit up to and including Nyquist frequency
1320
                omega_sys = np.hstack((
9✔
1321
                    omega_sys[omega_sys < nyq_freq], nyq_freq))
1322

1323
            # Issue a warning if we are sampling above Nyquist
1324
            if np.any(omega_sys * sys.dt > np.pi) and warn_nyquist:
9✔
1325
                warnings.warn("evaluation above Nyquist frequency")
9✔
1326

1327
        # do indentations in s-plane where it is more convenient
1328
        splane_contour = 1j * omega_sys
9✔
1329

1330
        # Bend the contour around any poles on/near the imaginary axis
1331
        if isinstance(sys, (StateSpace, TransferFunction)) \
9✔
1332
                and indent_direction != 'none':
1333
            if sys.isctime():
9✔
1334
                splane_poles = sys.poles()
9✔
1335
                splane_cl_poles = sys.feedback().poles()
9✔
1336
            else:
1337
                # map z-plane poles to s-plane. We ignore any at the origin
1338
                # to avoid numerical warnings because we know we
1339
                # don't need to indent for them
1340
                zplane_poles = sys.poles()
9✔
1341
                zplane_poles = zplane_poles[~np.isclose(abs(zplane_poles), 0.)]
9✔
1342
                splane_poles = np.log(zplane_poles) / sys.dt
9✔
1343

1344
                zplane_cl_poles = sys.feedback().poles()
9✔
1345
                # eliminate z-plane poles at the origin to avoid warnings
1346
                zplane_cl_poles = zplane_cl_poles[
9✔
1347
                    ~np.isclose(abs(zplane_cl_poles), 0.)]
1348
                splane_cl_poles = np.log(zplane_cl_poles) / sys.dt
9✔
1349

1350
            #
1351
            # Check to make sure indent radius is small enough
1352
            #
1353
            # If there is a closed loop pole that is near the imaginary axis
1354
            # at a point that is near an open loop pole, it is possible that
1355
            # indentation might skip or create an extraneous encirclement.
1356
            # We check for that situation here and generate a warning if that
1357
            # could happen.
1358
            #
1359
            for p_cl in splane_cl_poles:
9✔
1360
                # See if any closed loop poles are near the imaginary axis
1361
                if abs(p_cl.real) <= indent_radius:
9✔
1362
                    # See if any open loop poles are close to closed loop poles
1363
                    if len(splane_poles) > 0:
9✔
1364
                        p_ol = splane_poles[
9✔
1365
                            (np.abs(splane_poles - p_cl)).argmin()]
1366

1367
                        if abs(p_ol - p_cl) <= indent_radius and \
9✔
1368
                                warn_encirclements:
1369
                            warnings.warn(
9✔
1370
                                "indented contour may miss closed loop pole; "
1371
                                "consider reducing indent_radius to below "
1372
                                f"{abs(p_ol - p_cl):5.2g}", stacklevel=2)
1373

1374
            #
1375
            # See if we should add some frequency points near imaginary poles
1376
            #
1377
            for p in splane_poles:
9✔
1378
                # See if we need to process this pole (skip if on the negative
1379
                # imaginary axis or not near imaginary axis + user override)
1380
                if p.imag < 0 or abs(p.real) > indent_radius or \
9✔
1381
                   omega_range_given:
1382
                    continue
9✔
1383

1384
                # Find the frequencies before the pole frequency
1385
                below_points = np.argwhere(
9✔
1386
                    splane_contour.imag - abs(p.imag) < -indent_radius)
1387
                if below_points.size > 0:
9✔
1388
                    first_point = below_points[-1].item()
9✔
1389
                    start_freq = p.imag - indent_radius
9✔
1390
                else:
1391
                    # Add the points starting at the beginning of the contour
1392
                    assert splane_contour[0] == 0
9✔
1393
                    first_point = 0
9✔
1394
                    start_freq = 0
9✔
1395

1396
                # Find the frequencies after the pole frequency
1397
                above_points = np.argwhere(
9✔
1398
                    splane_contour.imag - abs(p.imag) > indent_radius)
1399
                last_point = above_points[0].item()
9✔
1400

1401
                # Add points for half/quarter circle around pole frequency
1402
                # (these will get indented left or right below)
1403
                splane_contour = np.concatenate((
9✔
1404
                    splane_contour[0:first_point+1],
1405
                    (1j * np.linspace(
1406
                        start_freq, p.imag + indent_radius, indent_points)),
1407
                    splane_contour[last_point:]))
1408

1409
            # Indent points that are too close to a pole
1410
            if len(splane_poles) > 0: # accomodate no splane poles if dtime sys
9✔
1411
                for i, s in enumerate(splane_contour):
9✔
1412
                    # Find the nearest pole
1413
                    p = splane_poles[(np.abs(splane_poles - s)).argmin()]
9✔
1414

1415
                    # See if we need to indent around it
1416
                    if abs(s - p) < indent_radius:
9✔
1417
                        # Figure out how much to offset (simple trigonometry)
1418
                        offset = np.sqrt(
9✔
1419
                            indent_radius ** 2 - (s - p).imag ** 2) \
1420
                            - (s - p).real
1421

1422
                        # Figure out which way to offset the contour point
1423
                        if p.real < 0 or (p.real == 0 and
9✔
1424
                                        indent_direction == 'right'):
1425
                            # Indent to the right
1426
                            splane_contour[i] += offset
9✔
1427

1428
                        elif p.real > 0 or (p.real == 0 and
9✔
1429
                                            indent_direction == 'left'):
1430
                            # Indent to the left
1431
                            splane_contour[i] -= offset
9✔
1432

1433
                        else:
1434
                            raise ValueError(
9✔
1435
                                "unknown value for indent_direction")
1436

1437
        # change contour to z-plane if necessary
1438
        if sys.isctime():
9✔
1439
            contour = splane_contour
9✔
1440
        else:
1441
            contour = np.exp(splane_contour * sys.dt)
9✔
1442

1443
        # Compute the primary curve
1444
        resp = sys(contour)
9✔
1445

1446
        # Compute CW encirclements of -1 by integrating the (unwrapped) angle
1447
        phase = -unwrap(np.angle(resp + 1))
9✔
1448
        encirclements = np.sum(np.diff(phase)) / np.pi
9✔
1449
        count = int(np.round(encirclements, 0))
9✔
1450

1451
        # Let the user know if the count might not make sense
1452
        if abs(encirclements - count) > encirclement_threshold and \
9✔
1453
           warn_encirclements:
1454
            warnings.warn(
9✔
1455
                "number of encirclements was a non-integer value; this can"
1456
                " happen is contour is not closed, possibly based on a"
1457
                " frequency range that does not include zero.")
1458

1459
        #
1460
        # Make sure that the enciriclements match the Nyquist criterion
1461
        #
1462
        # If the user specifies the frequency points to use, it is possible
1463
        # to miss enciriclements, so we check here to make sure that the
1464
        # Nyquist criterion is actually satisfied.
1465
        #
1466
        if isinstance(sys, (StateSpace, TransferFunction)):
9✔
1467
            # Count the number of open/closed loop RHP poles
1468
            if sys.isctime():
9✔
1469
                if indent_direction == 'right':
9✔
1470
                    P = (sys.poles().real > 0).sum()
9✔
1471
                else:
1472
                    P = (sys.poles().real >= 0).sum()
9✔
1473
                Z = (sys.feedback().poles().real >= 0).sum()
9✔
1474
            else:
1475
                if indent_direction == 'right':
9✔
1476
                    P = (np.abs(sys.poles()) > 1).sum()
9✔
1477
                else:
1478
                    P = (np.abs(sys.poles()) >= 1).sum()
×
1479
                Z = (np.abs(sys.feedback().poles()) >= 1).sum()
9✔
1480

1481
            # Check to make sure the results make sense; warn if not
1482
            if Z != count + P and warn_encirclements:
9✔
1483
                warnings.warn(
9✔
1484
                    "number of encirclements does not match Nyquist criterion;"
1485
                    " check frequency range and indent radius/direction",
1486
                    UserWarning, stacklevel=2)
1487
            elif indent_direction == 'none' and any(sys.poles().real == 0) and \
9✔
1488
                 warn_encirclements:
1489
                warnings.warn(
×
1490
                    "system has pure imaginary poles but indentation is"
1491
                    " turned off; results may be meaningless",
1492
                    RuntimeWarning, stacklevel=2)
1493

1494
        # Decide on system name
1495
        sysname = sys.name if sys.name is not None else f"Unknown-{idx}"
9✔
1496

1497
        responses.append(NyquistResponseData(
9✔
1498
            count, contour, resp, sys.dt, sysname=sysname,
1499
            return_contour=return_contour))
1500

1501
    if isinstance(sysdata, (list, tuple)):
9✔
1502
        return NyquistResponseList(responses)
9✔
1503
    else:
1504
        return responses[0]
9✔
1505

1506

1507
def nyquist_plot(
9✔
1508
        data, omega=None, plot=None, label_freq=0, color=None, label=None,
1509
        return_contour=None, title=None, ax=None,
1510
        unit_circle=False, mt_circles=None, ms_circles=None, **kwargs):
1511
    """Nyquist plot for a system.
1512

1513
    Generates a Nyquist plot for the system over a (optional) frequency
1514
    range.  The curve is computed by evaluating the Nyqist segment along
1515
    the positive imaginary axis, with a mirror image generated to reflect
1516
    the negative imaginary axis.  Poles on or near the imaginary axis are
1517
    avoided using a small indentation.  The portion of the Nyquist contour
1518
    at infinity is not explicitly computed (since it maps to a constant
1519
    value for any system with a proper transfer function).
1520

1521
    Parameters
1522
    ----------
1523
    data : list of LTI or NyquistResponseData
1524
        List of linear input/output systems (single system is OK) or
1525
        Nyquist ersponses (computed using :func:`~control.nyquist_response`).
1526
        Nyquist curves for each system are plotted on the same graph.
1527
    omega : array_like, optional
1528
        Set of frequencies to be evaluated, in rad/sec. Specifying
1529
        ``omega`` as a list of two elements is equivalent to providing
1530
        ``omega_limits``.
1531
    unit_circle : bool, optional
1532
        If ``True``, display the unit circle, to read gain crossover frequency.
1533
    mt_circles : array_like, optional
1534
        Draw circles corresponding to the given magnitudes of sensitivity.
1535
    ms_circles : array_like, optional
1536
        Draw circles corresponding to the given magnitudes of complementary
1537
        sensitivity.
1538
    **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional
1539
        Additional keywords passed to `matplotlib` to specify line properties.
1540

1541
    Returns
1542
    -------
1543
    cplt : :class:`ControlPlot` object
1544
        Object containing the data that were plotted:
1545

1546
          * cplt.lines: 2D array of :class:`matplotlib.lines.Line2D`
1547
            objects for each line in the plot.  The shape of the array is
1548
            given by (nsys, 4) where nsys is the number of systems or
1549
            Nyquist responses passed to the function.  The second index
1550
            specifies the segment type:
1551

1552
              - lines[idx, 0]: unscaled portion of the primary curve
1553
              - lines[idx, 1]: scaled portion of the primary curve
1554
              - lines[idx, 2]: unscaled portion of the mirror curve
1555
              - lines[idx, 3]: scaled portion of the mirror curve
1556

1557
          * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot.
1558

1559
          * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot.
1560

1561
          * cplt.legend: legend object(s) contained in the plot
1562

1563
        See :class:`ControlPlot` for more detailed information.
1564

1565
    Other Parameters
1566
    ----------------
1567
    arrows : int or 1D/2D array of floats, optional
1568
        Specify the number of arrows to plot on the Nyquist curve.  If an
1569
        integer is passed. that number of equally spaced arrows will be
1570
        plotted on each of the primary segment and the mirror image.  If a 1D
1571
        array is passed, it should consist of a sorted list of floats between
1572
        0 and 1, indicating the location along the curve to plot an arrow.  If
1573
        a 2D array is passed, the first row will be used to specify arrow
1574
        locations for the primary curve and the second row will be used for
1575
        the mirror image.
1576
    arrow_size : float, optional
1577
        Arrowhead width and length (in display coordinates).  Default value is
1578
        8 and can be set using config.defaults['nyquist.arrow_size'].
1579
    arrow_style : matplotlib.patches.ArrowStyle, optional
1580
        Define style used for Nyquist curve arrows (overrides `arrow_size`).
1581
    ax : matplotlib.axes.Axes, optional
1582
        The matplotlib axes to draw the figure on.  If not specified and
1583
        the current figure has a single axes, that axes is used.
1584
        Otherwise, a new figure is created.
1585
    encirclement_threshold : float, optional
1586
        Define the threshold for generating a warning if the number of net
1587
        encirclements is a non-integer value.  Default value is 0.05 and can
1588
        be set using config.defaults['nyquist.encirclement_threshold'].
1589
    indent_direction : str, optional
1590
        For poles on the imaginary axis, set the direction of indentation to
1591
        be 'right' (default), 'left', or 'none'.
1592
    indent_points : int, optional
1593
        Number of points to insert in the Nyquist contour around poles that
1594
        are at or near the imaginary axis.
1595
    indent_radius : float, optional
1596
        Amount to indent the Nyquist contour around poles on or near the
1597
        imaginary axis. Portions of the Nyquist plot corresponding to indented
1598
        portions of the contour are plotted using a different line style.
1599
    label : str or array_like of str, optional
1600
        If present, replace automatically generated label(s) with the given
1601
        label(s).  If sysdata is a list, strings should be specified for each
1602
        system.
1603
    label_freq : int, optiona
1604
        Label every nth frequency on the plot.  If not specified, no labels
1605
        are generated.
1606
    legend_loc : int or str, optional
1607
        Include a legend in the given location. Default is 'upper right',
1608
        with no legend for a single response.  Use False to suppress legend.
1609
    max_curve_magnitude : float, optional
1610
        Restrict the maximum magnitude of the Nyquist plot to this value.
1611
        Portions of the Nyquist plot whose magnitude is restricted are
1612
        plotted using a different line style.
1613
    max_curve_offset : float, optional
1614
        When plotting scaled portion of the Nyquist plot, increase/decrease
1615
        the magnitude by this fraction of the max_curve_magnitude to allow
1616
        any overlaps between the primary and mirror curves to be avoided.
1617
    mirror_style : [str, str] or False
1618
        Linestyles for mirror image of the Nyquist curve.  The first element
1619
        is used for unscaled portions of the Nyquist curve, the second element
1620
        is used for portions that are scaled (using max_curve_magnitude).  If
1621
        `False` then omit completely.  Default linestyle (['--', ':']) is
1622
        determined by config.defaults['nyquist.mirror_style'].
1623
    omega_limits : array_like of two values
1624
        Set limits for plotted frequency range. If Hz=True the limits are
1625
        in Hz otherwise in rad/s.  Specifying ``omega`` as a list of two
1626
        elements is equivalent to providing ``omega_limits``.
1627
    omega_num : int, optional
1628
        Number of samples to use for the frequeny range.  Defaults to
1629
        config.defaults['freqplot.number_of_samples'].  Ignored if data is
1630
        not a list of systems.
1631
    plot : bool, optional
1632
        (legacy) If given, `nyquist_plot` returns the legacy return values
1633
        of (counts, contours).  If False, return the values with no plot.
1634
    primary_style : [str, str], optional
1635
        Linestyles for primary image of the Nyquist curve.  The first
1636
        element is used for unscaled portions of the Nyquist curve,
1637
        the second element is used for portions that are scaled (using
1638
        max_curve_magnitude).  Default linestyle (['-', '-.']) is
1639
        determined by config.defaults['nyquist.mirror_style'].
1640
    rcParams : dict
1641
        Override the default parameters used for generating plots.
1642
        Default is set by config.default['ctrlplot.rcParams'].
1643
    return_contour : bool, optional
1644
        (legacy) If 'True', return the encirclement count and Nyquist
1645
        contour used to generate the Nyquist plot.
1646
    show_legend : bool, optional
1647
        Force legend to be shown if ``True`` or hidden if ``False``.  If
1648
        ``None``, then show legend when there is more than one line on the
1649
        plot or ``legend_loc`` has been specified.
1650
    start_marker : str, optional
1651
        Matplotlib marker to use to mark the starting point of the Nyquist
1652
        plot.  Defaults value is 'o' and can be set using
1653
        config.defaults['nyquist.start_marker'].
1654
    start_marker_size : float, optional
1655
        Start marker size (in display coordinates).  Default value is
1656
        4 and can be set using config.defaults['nyquist.start_marker_size'].
1657
    title : str, optional
1658
        Set the title of the plot.  Defaults to plot type and system name(s).
1659
    title_frame : str, optional
1660
        Set the frame of reference used to center the plot title. If set to
1661
        'axes' (default), the horizontal position of the title will
1662
        centered relative to the axes.  If set to 'figure', it will be
1663
        centered with respect to the figure (faster execution).
1664
    warn_nyquist : bool, optional
1665
        If set to 'False', turn off warnings about frequencies above Nyquist.
1666
    warn_encirclements : bool, optional
1667
        If set to 'False', turn off warnings about number of encirclements not
1668
        meeting the Nyquist criterion.
1669

1670
    See Also
1671
    --------
1672
    nyquist_response
1673

1674
    Notes
1675
    -----
1676
    1. If a discrete time model is given, the frequency response is computed
1677
       along the upper branch of the unit circle, using the mapping ``z =
1678
       exp(1j * omega * dt)`` where `omega` ranges from 0 to `pi/dt` and `dt`
1679
       is the discrete timebase.  If timebase not specified (``dt=True``),
1680
       `dt` is set to 1.
1681

1682
    2. If a continuous-time system contains poles on or near the imaginary
1683
       axis, a small indentation will be used to avoid the pole.  The radius
1684
       of the indentation is given by `indent_radius` and it is taken to the
1685
       right of stable poles and the left of unstable poles.  If a pole is
1686
       exactly on the imaginary axis, the `indent_direction` parameter can be
1687
       used to set the direction of indentation.  Setting `indent_direction`
1688
       to `none` will turn off indentation.  If `return_contour` is True, the
1689
       exact contour used for evaluation is returned.
1690

1691
    3. For those portions of the Nyquist plot in which the contour is
1692
       indented to avoid poles, resuling in a scaling of the Nyquist plot,
1693
       the line styles are according to the settings of the `primary_style`
1694
       and `mirror_style` keywords.  By default the scaled portions of the
1695
       primary curve use a dotted line style and the scaled portion of the
1696
       mirror image use a dashdot line style.
1697

1698
    Examples
1699
    --------
1700
    >>> G = ct.zpk([], [-1, -2, -3], gain=100)
1701
    >>> out = ct.nyquist_plot(G)
1702

1703
    """
1704
    #
1705
    # Keyword processing
1706
    #
1707
    # Keywords for the nyquist_plot function can either be keywords that
1708
    # are unique to this function, keywords that are intended for use by
1709
    # nyquist_response (if data is a list of systems), or keywords that
1710
    # are intended for the plotting commands.
1711
    #
1712
    # We first pop off all keywords that are used directly by this
1713
    # function.  If data is a list of systems, when then pop off keywords
1714
    # that correspond to nyquist_response() keywords.  The remaining
1715
    # keywords are passed to matplotlib (and will generate an error if
1716
    # unrecognized).
1717
    #
1718

1719
    # Get values for params (and pop from list to allow keyword use in plot)
1720
    arrows = config._get_param(
9✔
1721
        'nyquist', 'arrows', kwargs, _nyquist_defaults, pop=True)
1722
    arrow_size = config._get_param(
9✔
1723
        'nyquist', 'arrow_size', kwargs, _nyquist_defaults, pop=True)
1724
    arrow_style = config._get_param('nyquist', 'arrow_style', kwargs, None)
9✔
1725
    ax_user = ax
9✔
1726
    max_curve_magnitude = config._get_param(
9✔
1727
        'nyquist', 'max_curve_magnitude', kwargs, _nyquist_defaults, pop=True)
1728
    max_curve_offset = config._get_param(
9✔
1729
        'nyquist', 'max_curve_offset', kwargs, _nyquist_defaults, pop=True)
1730
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
1731
    start_marker = config._get_param(
9✔
1732
        'nyquist', 'start_marker', kwargs, _nyquist_defaults, pop=True)
1733
    start_marker_size = config._get_param(
9✔
1734
        'nyquist', 'start_marker_size', kwargs, _nyquist_defaults, pop=True)
1735
    title_frame = config._get_param(
9✔
1736
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
1737

1738
    # Set line styles for the curves
1739
    def _parse_linestyle(style_name, allow_false=False):
9✔
1740
        style = config._get_param(
9✔
1741
            'nyquist', style_name, kwargs, _nyquist_defaults, pop=True)
1742
        if isinstance(style, str):
9✔
1743
            # Only one style provided, use the default for the other
1744
            style = [style, _nyquist_defaults['nyquist.' + style_name][1]]
9✔
1745
            warnings.warn(
9✔
1746
                "use of a single string for linestyle will be deprecated "
1747
                " in a future release", PendingDeprecationWarning)
1748
        if (allow_false and style is False) or \
9✔
1749
           (isinstance(style, list) and len(style) == 2):
1750
            return style
9✔
1751
        else:
1752
            raise ValueError(f"invalid '{style_name}': {style}")
9✔
1753

1754
    primary_style = _parse_linestyle('primary_style')
9✔
1755
    mirror_style = _parse_linestyle('mirror_style', allow_false=True)
9✔
1756

1757
    # Parse the arrows keyword
1758
    if not arrows:
9✔
1759
        arrow_pos = []
9✔
1760
    elif isinstance(arrows, int):
9✔
1761
        N = arrows
9✔
1762
        # Space arrows out, starting midway along each "region"
1763
        arrow_pos = np.linspace(0.5/N, 1 + 0.5/N, N, endpoint=False)
9✔
1764
    elif isinstance(arrows, (list, np.ndarray)):
9✔
1765
        arrow_pos = np.sort(np.atleast_1d(arrows))
9✔
1766
    else:
1767
        raise ValueError("unknown or unsupported arrow location")
9✔
1768

1769
    # Set the arrow style
1770
    if arrow_style is None:
9✔
1771
        arrow_style = mpl.patches.ArrowStyle(
9✔
1772
            'simple', head_width=arrow_size, head_length=arrow_size)
1773

1774
    # If argument was a singleton, turn it into a tuple
1775
    if not isinstance(data, (list, tuple)):
9✔
1776
        data = [data]
9✔
1777

1778
    # Process label keyword
1779
    line_labels = _process_line_labels(label, len(data))
9✔
1780

1781
    # If we are passed a list of systems, compute response first
1782
    if all([isinstance(
9✔
1783
            sys, (StateSpace, TransferFunction, FrequencyResponseData))
1784
            for sys in data]):
1785
        # Get the response, popping off keywords used there
1786
        nyquist_responses = nyquist_response(
9✔
1787
            data, omega=omega, return_contour=return_contour,
1788
            omega_limits=kwargs.pop('omega_limits', None),
1789
            omega_num=kwargs.pop('omega_num', None),
1790
            warn_encirclements=kwargs.pop('warn_encirclements', True),
1791
            warn_nyquist=kwargs.pop('warn_nyquist', True),
1792
            indent_radius=kwargs.pop('indent_radius', None),
1793
            _check_kwargs=False, **kwargs)
1794
    else:
1795
        nyquist_responses = data
9✔
1796

1797
    # Legacy return value processing
1798
    if plot is not None or return_contour is not None:
9✔
1799
        warnings.warn(
9✔
1800
            "nyquist_plot() return value of count[, contour] is deprecated; "
1801
            "use nyquist_response()", FutureWarning)
1802

1803
        # Extract out the values that we will eventually return
1804
        counts = [response.count for response in nyquist_responses]
9✔
1805
        contours = [response.contour for response in nyquist_responses]
9✔
1806

1807
    if plot is False:
9✔
1808
        # Make sure we used all of the keywrods
1809
        if kwargs:
9✔
1810
            raise TypeError("unrecognized keywords: ", str(kwargs))
×
1811

1812
        if len(data) == 1:
9✔
1813
            counts, contours = counts[0], contours[0]
9✔
1814

1815
        # Return counts and (optionally) the contour we used
1816
        return (counts, contours) if return_contour else counts
9✔
1817

1818
    fig, ax = _process_ax_keyword(
9✔
1819
        ax_user, shape=(1, 1), squeeze=True, rcParams=rcParams)
1820
    legend_loc, _, show_legend = _process_legend_keywords(
9✔
1821
        kwargs, None, 'upper right')
1822

1823
    # Create a list of lines for the output
1824
    out = np.empty(len(nyquist_responses), dtype=object)
9✔
1825
    for i in range(out.shape[0]):
9✔
1826
        out[i] = []             # unique list in each element
9✔
1827

1828
    for idx, response in enumerate(nyquist_responses):
9✔
1829
        resp = response.response
9✔
1830
        if response.dt in [0, None]:
9✔
1831
            splane_contour = response.contour
9✔
1832
        else:
1833
            splane_contour = np.log(response.contour) / response.dt
9✔
1834

1835
        # Find the different portions of the curve (with scaled pts marked)
1836
        reg_mask = np.logical_or(
9✔
1837
            np.abs(resp) > max_curve_magnitude,
1838
            splane_contour.real != 0)
1839
        # reg_mask = np.logical_or(
1840
        #     np.abs(resp.real) > max_curve_magnitude,
1841
        #     np.abs(resp.imag) > max_curve_magnitude)
1842

1843
        scale_mask = ~reg_mask \
9✔
1844
            & np.concatenate((~reg_mask[1:], ~reg_mask[-1:])) \
1845
            & np.concatenate((~reg_mask[0:1], ~reg_mask[:-1]))
1846

1847
        # Rescale the points with large magnitude
1848
        rescale = np.logical_and(
9✔
1849
            reg_mask, abs(resp) > max_curve_magnitude)
1850
        resp[rescale] *= max_curve_magnitude / abs(resp[rescale])
9✔
1851

1852
        # Get the label to use for the line
1853
        label = response.sysname if line_labels is None else line_labels[idx]
9✔
1854

1855
        # Plot the regular portions of the curve (and grab the color)
1856
        x_reg = np.ma.masked_where(reg_mask, resp.real)
9✔
1857
        y_reg = np.ma.masked_where(reg_mask, resp.imag)
9✔
1858
        p = plt.plot(
9✔
1859
            x_reg, y_reg, primary_style[0], color=color, label=label, **kwargs)
1860
        c = p[0].get_color()
9✔
1861
        out[idx] += p
9✔
1862

1863
        # Figure out how much to offset the curve: the offset goes from
1864
        # zero at the start of the scaled section to max_curve_offset as
1865
        # we move along the curve
1866
        curve_offset = _compute_curve_offset(
9✔
1867
            resp, scale_mask, max_curve_offset)
1868

1869
        # Plot the scaled sections of the curve (changing linestyle)
1870
        x_scl = np.ma.masked_where(scale_mask, resp.real)
9✔
1871
        y_scl = np.ma.masked_where(scale_mask, resp.imag)
9✔
1872
        if x_scl.count() >= 1 and y_scl.count() >= 1:
9✔
1873
            out[idx] += plt.plot(
9✔
1874
                x_scl * (1 + curve_offset),
1875
                y_scl * (1 + curve_offset),
1876
                primary_style[1], color=c, **kwargs)
1877
        else:
1878
            out[idx] += [None]
9✔
1879

1880
        # Plot the primary curve (invisible) for setting arrows
1881
        x, y = resp.real.copy(), resp.imag.copy()
9✔
1882
        x[reg_mask] *= (1 + curve_offset[reg_mask])
9✔
1883
        y[reg_mask] *= (1 + curve_offset[reg_mask])
9✔
1884
        p = plt.plot(x, y, linestyle='None', color=c)
9✔
1885

1886
        # Add arrows
1887
        ax = plt.gca()
9✔
1888
        _add_arrows_to_line2D(
9✔
1889
            ax, p[0], arrow_pos, arrowstyle=arrow_style, dir=1)
1890

1891
        # Plot the mirror image
1892
        if mirror_style is not False:
9✔
1893
            # Plot the regular and scaled segments
1894
            out[idx] += plt.plot(
9✔
1895
                x_reg, -y_reg, mirror_style[0], color=c, **kwargs)
1896
            if x_scl.count() >= 1 and y_scl.count() >= 1:
9✔
1897
                out[idx] += plt.plot(
9✔
1898
                    x_scl * (1 - curve_offset),
1899
                    -y_scl * (1 - curve_offset),
1900
                    mirror_style[1], color=c, **kwargs)
1901
            else:
1902
                out[idx] += [None]
9✔
1903

1904
            # Add the arrows (on top of an invisible contour)
1905
            x, y = resp.real.copy(), resp.imag.copy()
9✔
1906
            x[reg_mask] *= (1 - curve_offset[reg_mask])
9✔
1907
            y[reg_mask] *= (1 - curve_offset[reg_mask])
9✔
1908
            p = plt.plot(x, -y, linestyle='None', color=c, **kwargs)
9✔
1909
            _add_arrows_to_line2D(
9✔
1910
                ax, p[0], arrow_pos, arrowstyle=arrow_style, dir=-1)
1911
        else:
1912
            out[idx] += [None, None]
9✔
1913

1914
        # Mark the start of the curve
1915
        if start_marker:
9✔
1916
            plt.plot(resp[0].real, resp[0].imag, start_marker,
9✔
1917
                     color=c, markersize=start_marker_size)
1918

1919
        # Mark the -1 point
1920
        plt.plot([-1], [0], 'r+')
9✔
1921

1922
        #
1923
        # Draw circles for gain crossover and sensitivity functions
1924
        #
1925
        theta = np.linspace(0, 2*np.pi, 100)
9✔
1926
        cos = np.cos(theta)
9✔
1927
        sin = np.sin(theta)
9✔
1928
        label_pos = 15
9✔
1929

1930
        # Display the unit circle, to read gain crossover frequency
1931
        if unit_circle:
9✔
1932
            plt.plot(cos, sin, **config.defaults['nyquist.circle_style'])
9✔
1933

1934
        # Draw circles for given magnitudes of sensitivity
1935
        if ms_circles is not None:
9✔
1936
            for ms in ms_circles:
9✔
1937
                pos_x = -1 + (1/ms)*cos
9✔
1938
                pos_y = (1/ms)*sin
9✔
1939
                plt.plot(
9✔
1940
                    pos_x, pos_y, **config.defaults['nyquist.circle_style'])
1941
                plt.text(pos_x[label_pos], pos_y[label_pos], ms)
9✔
1942

1943
        # Draw circles for given magnitudes of complementary sensitivity
1944
        if mt_circles is not None:
9✔
1945
            for mt in mt_circles:
9✔
1946
                if mt != 1:
9✔
1947
                    ct = -mt**2/(mt**2-1)  # Mt center
9✔
1948
                    rt = mt/(mt**2-1)  # Mt radius
9✔
1949
                    pos_x = ct+rt*cos
9✔
1950
                    pos_y = rt*sin
9✔
1951
                    plt.plot(
9✔
1952
                        pos_x, pos_y,
1953
                        **config.defaults['nyquist.circle_style'])
1954
                    plt.text(pos_x[label_pos], pos_y[label_pos], mt)
9✔
1955
                else:
1956
                    _, _, ymin, ymax = plt.axis()
9✔
1957
                    pos_y = np.linspace(ymin, ymax, 100)
9✔
1958
                    plt.vlines(
9✔
1959
                        -0.5, ymin=ymin, ymax=ymax,
1960
                        **config.defaults['nyquist.circle_style'])
1961
                    plt.text(-0.5, pos_y[label_pos], 1)
9✔
1962

1963
        # Label the frequencies of the points on the Nyquist curve
1964
        if label_freq:
9✔
1965
            ind = slice(None, None, label_freq)
9✔
1966
            omega_sys = np.imag(splane_contour[np.real(splane_contour) == 0])
9✔
1967
            for xpt, ypt, omegapt in zip(x[ind], y[ind], omega_sys[ind]):
9✔
1968
                # Convert to Hz
1969
                f = omegapt / (2 * np.pi)
9✔
1970

1971
                # Factor out multiples of 1000 and limit the
1972
                # result to the range [-8, 8].
1973
                pow1000 = max(min(get_pow1000(f), 8), -8)
9✔
1974

1975
                # Get the SI prefix.
1976
                prefix = gen_prefix(pow1000)
9✔
1977

1978
                # Apply the text. (Use a space before the text to
1979
                # prevent overlap with the data.)
1980
                #
1981
                # np.round() is used because 0.99... appears
1982
                # instead of 1.0, and this would otherwise be
1983
                # truncated to 0.
1984
                plt.text(xpt, ypt, ' ' +
9✔
1985
                         str(int(np.round(f / 1000 ** pow1000, 0))) + ' ' +
1986
                         prefix + 'Hz')
1987

1988
    # Label the axes
1989
    ax.set_xlabel("Real axis")
9✔
1990
    ax.set_ylabel("Imaginary axis")
9✔
1991
    ax.grid(color="lightgray")
9✔
1992

1993
    # List of systems that are included in this plot
1994
    lines, labels = _get_line_labels(ax)
9✔
1995

1996
    # Add legend if there is more than one system plotted
1997
    if show_legend == True or (show_legend != False and len(labels) > 1):
9✔
1998
        with plt.rc_context(rcParams):
9✔
1999
            legend = ax.legend(lines, labels, loc=legend_loc)
9✔
2000
    else:
2001
        legend = None
9✔
2002

2003
    # Add the title
2004
    sysnames = [response.sysname for response in nyquist_responses]
9✔
2005
    if ax_user is None and title is None:
9✔
2006
        title = "Nyquist plot for " + ", ".join(sysnames)
9✔
2007
        _update_plot_title(
9✔
2008
            title, fig=fig, rcParams=rcParams, frame=title_frame)
2009
    elif ax_user is None:
9✔
2010
        _update_plot_title(
9✔
2011
            title, fig=fig, rcParams=rcParams, frame=title_frame,
2012
            use_existing=False)
2013

2014
    # Legacy return pocessing
2015
    if plot is True or return_contour is not None:
9✔
2016
        if len(data) == 1:
9✔
2017
            counts, contours = counts[0], contours[0]
9✔
2018

2019
        # Return counts and (optionally) the contour we used
2020
        return (counts, contours) if return_contour else counts
9✔
2021

2022
    return ControlPlot(out, ax, fig, legend=legend)
9✔
2023

2024

2025
#
2026
# Function to compute Nyquist curve offsets
2027
#
2028
# This function computes a smoothly varying offset that starts and ends at
2029
# zero at the ends of a scaled segment.
2030
#
2031
def _compute_curve_offset(resp, mask, max_offset):
9✔
2032
    # Compute the arc length along the curve
2033
    s_curve = np.cumsum(
9✔
2034
        np.sqrt(np.diff(resp.real) ** 2 + np.diff(resp.imag) ** 2))
2035

2036
    # Initialize the offset
2037
    offset = np.zeros(resp.size)
9✔
2038
    arclen = np.zeros(resp.size)
9✔
2039

2040
    # Walk through the response and keep track of each continous component
2041
    i, nsegs = 0, 0
9✔
2042
    while i < resp.size:
9✔
2043
        # Skip the regular segment
2044
        while i < resp.size and mask[i]:
9✔
2045
            i += 1              # Increment the counter
9✔
2046
            if i == resp.size:
9✔
2047
                break
9✔
2048
            # Keep track of the arclength
2049
            arclen[i] = arclen[i-1] + np.abs(resp[i] - resp[i-1])
9✔
2050

2051
        nsegs += 0.5
9✔
2052
        if i == resp.size:
9✔
2053
            break
9✔
2054

2055
        # Save the starting offset of this segment
2056
        seg_start = i
9✔
2057

2058
        # Walk through the scaled segment
2059
        while i < resp.size and not mask[i]:
9✔
2060
            i += 1
9✔
2061
            if i == resp.size:  # See if we are done with this segment
9✔
2062
                break
9✔
2063
            # Keep track of the arclength
2064
            arclen[i] = arclen[i-1] + np.abs(resp[i] - resp[i-1])
9✔
2065

2066
        nsegs += 0.5
9✔
2067
        if i == resp.size:
9✔
2068
            break
9✔
2069

2070
        # Save the ending offset of this segment
2071
        seg_end = i
9✔
2072

2073
        # Now compute the scaling for this segment
2074
        s_segment = arclen[seg_end-1] - arclen[seg_start]
9✔
2075
        offset[seg_start:seg_end] = max_offset * s_segment/s_curve[-1] * \
9✔
2076
            np.sin(np.pi * (arclen[seg_start:seg_end]
2077
                            - arclen[seg_start])/s_segment)
2078

2079
    return offset
9✔
2080

2081

2082
#
2083
# Gang of Four plot
2084
#
2085
def gangof4_response(
9✔
2086
        P, C, omega=None, omega_limits=None, omega_num=None, Hz=False):
2087
    """Compute the response of the "Gang of 4" transfer functions for a system.
2088

2089
    Generates a 2x2 frequency response for the "Gang of 4" sensitivity
2090
    functions [T, PS; CS, S].
2091

2092
    Parameters
2093
    ----------
2094
    P, C : LTI
2095
        Linear input/output systems (process and control).
2096
    omega : array
2097
        Range of frequencies (list or bounds) in rad/sec.
2098
    omega_limits : array_like of two values
2099
        Set limits for plotted frequency range. If Hz=True the limits are
2100
        in Hz otherwise in rad/s.  Specifying ``omega`` as a list of two
2101
        elements is equivalent to providing ``omega_limits``. Ignored if
2102
        data is not a list of systems.
2103
    omega_num : int
2104
        Number of samples to use for the frequeny range.  Defaults to
2105
        config.defaults['freqplot.number_of_samples'].  Ignored if data is
2106
        not a list of systems.
2107
    Hz : bool, optional
2108
        If True, when computing frequency limits automatically set
2109
        limits to full decades in Hz instead of rad/s.
2110

2111
    Returns
2112
    -------
2113
    response : :class:`~control.FrequencyResponseData`
2114
        Frequency response with inputs 'r' and 'd' and outputs 'y', and 'u'
2115
        representing the 2x2 matrix of transfer functions in the Gang of 4.
2116

2117
    Examples
2118
    --------
2119
    >>> P = ct.tf([1], [1, 1])
2120
    >>> C = ct.tf([2], [1])
2121
    >>> response = ct.gangof4_response(P, C)
2122
    >>> lines = response.plot()
2123

2124
    """
2125
    if not P.issiso() or not C.issiso():
9✔
2126
        # TODO: Add MIMO go4 plots.
2127
        raise ControlMIMONotImplemented(
×
2128
            "Gang of four is currently only implemented for SISO systems.")
2129

2130
    # Compute the senstivity functions
2131
    L = P * C
9✔
2132
    S = feedback(1, L)
9✔
2133
    T = L * S
9✔
2134

2135
    # Select a default range if none is provided
2136
    # TODO: This needs to be made more intelligent
2137
    omega, _ = _determine_omega_vector(
9✔
2138
        [P, C, S], omega, omega_limits, omega_num, Hz=Hz)
2139

2140
    #
2141
    # bode_plot based implementation
2142
    #
2143

2144
    # Compute the response of the Gang of 4
2145
    resp_T = T(1j * omega)
9✔
2146
    resp_PS = (P * S)(1j * omega)
9✔
2147
    resp_CS = (C * S)(1j * omega)
9✔
2148
    resp_S = S(1j * omega)
9✔
2149

2150
    # Create a single frequency response data object with the underlying data
2151
    data = np.empty((2, 2, omega.size), dtype=complex)
9✔
2152
    data[0, 0, :] = resp_T
9✔
2153
    data[0, 1, :] = resp_PS
9✔
2154
    data[1, 0, :] = resp_CS
9✔
2155
    data[1, 1, :] = resp_S
9✔
2156

2157
    return FrequencyResponseData(
9✔
2158
        data, omega, outputs=['y', 'u'], inputs=['r', 'd'],
2159
        title=f"Gang of Four for P={P.name}, C={C.name}",
2160
        sysname=f"P={P.name}, C={C.name}", plot_phase=False)
2161

2162

2163
def gangof4_plot(
9✔
2164
        *args, omega=None, omega_limits=None, omega_num=None,
2165
        Hz=False, **kwargs):
2166
    """Plot the response of the "Gang of 4" transfer functions for a system.
2167

2168
    Plots a 2x2 frequency response for the "Gang of 4" sensitivity
2169
    functions [T, PS; CS, S].  Can be called in one of two ways:
2170

2171
        gangof4_plot(response[, ...])
2172
        gangof4_plot(P, C[, ...])
2173

2174
    Parameters
2175
    ----------
2176
    response : FrequencyPlotData
2177
        Gang of 4 frequency response from `gangof4_response`.
2178
    P, C : LTI
2179
        Linear input/output systems (process and control).
2180
    omega : array
2181
        Range of frequencies (list or bounds) in rad/sec.
2182
    omega_limits : array_like of two values
2183
        Set limits for plotted frequency range. If Hz=True the limits are
2184
        in Hz otherwise in rad/s.  Specifying ``omega`` as a list of two
2185
        elements is equivalent to providing ``omega_limits``. Ignored if
2186
        data is not a list of systems.
2187
    omega_num : int
2188
        Number of samples to use for the frequeny range.  Defaults to
2189
        config.defaults['freqplot.number_of_samples'].  Ignored if data is
2190
        not a list of systems.
2191
    Hz : bool, optional
2192
        If True, when computing frequency limits automatically set
2193
        limits to full decades in Hz instead of rad/s.
2194

2195
    Returns
2196
    -------
2197
    cplt : :class:`ControlPlot` object
2198
        Object containing the data that were plotted:
2199

2200
          * cplt.lines: 2x2 array of :class:`matplotlib.lines.Line2D`
2201
            objects for each line in the plot.  The value of each array
2202
            entry is a list of Line2D objects in that subplot.
2203

2204
          * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot.
2205

2206
          * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot.
2207

2208
          * cplt.legend: legend object(s) contained in the plot
2209

2210
        See :class:`ControlPlot` for more detailed information.
2211

2212
    """
2213
    if len(args) == 1 and isinstance(arg, FrequencyResponseData):
9✔
2214
        if any([kw is not None
×
2215
                for kw in [omega, omega_limits, omega_num, Hz]]):
2216
            raise ValueError(
×
2217
                "omega, omega_limits, omega_num, Hz not allowed when "
2218
                "given a Gang of 4 response as first argument")
2219
        return args[0].plot(kwargs)
×
2220
    else:
2221
        if len(args) > 3:
9✔
2222
            raise TypeError(
×
2223
                f"expecting 2 or 3 positional arguments; received {len(args)}")
2224
        omega = omega if len(args) < 3 else args[2]
9✔
2225
        args = args[0:2]
9✔
2226
        return gangof4_response(
9✔
2227
            *args, omega=omega, omega_limits=omega_limits,
2228
            omega_num=omega_num, Hz=Hz).plot(**kwargs)
2229

2230

2231
#
2232
# Singular values plot
2233
#
2234
def singular_values_response(
9✔
2235
        sysdata, omega=None, omega_limits=None, omega_num=None, Hz=False):
2236
    """Singular value response for a system.
2237

2238
    Computes the singular values for a system or list of systems over
2239
    a (optional) frequency range.
2240

2241
    Parameters
2242
    ----------
2243
    sysdata : LTI or list of LTI
2244
        List of linear input/output systems (single system is OK).
2245
    omega : array_like
2246
        List of frequencies in rad/sec to be used for frequency response.
2247
    Hz : bool, optional
2248
        If True, when computing frequency limits automatically set
2249
        limits to full decades in Hz instead of rad/s.
2250

2251
    Returns
2252
    -------
2253
    response : FrequencyResponseData
2254
        Frequency response with the number of outputs equal to the
2255
        number of singular values in the response, and a single input.
2256

2257
    Other Parameters
2258
    ----------------
2259
    omega_limits : array_like of two values
2260
        Set limits for plotted frequency range. If Hz=True the limits are
2261
        in Hz otherwise in rad/s.  Specifying ``omega`` as a list of two
2262
        elements is equivalent to providing ``omega_limits``.
2263
    omega_num : int, optional
2264
        Number of samples to use for the frequeny range.  Defaults to
2265
        config.defaults['freqplot.number_of_samples'].
2266

2267
    See Also
2268
    --------
2269
    singular_values_plot
2270

2271
    Examples
2272
    --------
2273
    >>> omegas = np.logspace(-4, 1, 1000)
2274
    >>> den = [75, 1]
2275
    >>> G = ct.tf([[[87.8], [-86.4]], [[108.2], [-109.6]]],
2276
    ...           [[den, den], [den, den]])
2277
    >>> response = ct.singular_values_response(G, omega=omegas)
2278

2279
    """
2280
    # Convert the first argument to a list
2281
    syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata]
9✔
2282

2283
    if any([not isinstance(sys, LTI) for sys in syslist]):
9✔
2284
        ValueError("singular values can only be computed for LTI systems")
×
2285

2286
    # Compute the frequency responses for the systems
2287
    responses = frequency_response(
9✔
2288
        syslist, omega=omega, omega_limits=omega_limits,
2289
        omega_num=omega_num, Hz=Hz, squeeze=False)
2290

2291
    # Calculate the singular values for each system in the list
2292
    svd_responses = []
9✔
2293
    for response in responses:
9✔
2294
        # Compute the singular values (permute indices to make things work)
2295
        fresp_permuted = response.fresp.transpose((2, 0, 1))
9✔
2296
        sigma = np.linalg.svd(fresp_permuted, compute_uv=False).transpose()
9✔
2297
        sigma_fresp = sigma.reshape(sigma.shape[0], 1, sigma.shape[1])
9✔
2298

2299
        # Save the singular values as an FRD object
2300
        svd_responses.append(
9✔
2301
            FrequencyResponseData(
2302
                sigma_fresp, response.omega, _return_singvals=True,
2303
                outputs=[f'$\\sigma_{{{k+1}}}$' for k in range(sigma.shape[0])],
2304
                inputs='inputs', dt=response.dt, plot_phase=False,
2305
                sysname=response.sysname, plot_type='svplot',
2306
                title=f"Singular values for {response.sysname}"))
2307

2308
    if isinstance(sysdata, (list, tuple)):
9✔
2309
        return FrequencyResponseList(svd_responses)
9✔
2310
    else:
2311
        return svd_responses[0]
9✔
2312

2313

2314
def singular_values_plot(
9✔
2315
        data, omega=None, *fmt, plot=None, omega_limits=None, omega_num=None,
2316
        ax=None, label=None, title=None, **kwargs):
2317
    """Plot the singular values for a system.
2318

2319
    Plot the singular values as a function of frequency for a system or
2320
    list of systems.  If multiple systems are plotted, each system in the
2321
    list is plotted in a different color.
2322

2323
    Parameters
2324
    ----------
2325
    data : list of `FrequencyResponseData`
2326
        List of :class:`FrequencyResponseData` objects.  For backward
2327
        compatibility, a list of LTI systems can also be given.
2328
    omega : array_like
2329
        List of frequencies in rad/sec over to plot over.
2330
    *fmt : :func:`matplotlib.pyplot.plot` format string, optional
2331
        Passed to `matplotlib` as the format string for all lines in the plot.
2332
        The `omega` parameter must be present (use omega=None if needed).
2333
    dB : bool
2334
        If True, plot result in dB.  Default is False.
2335
    Hz : bool
2336
        If True, plot frequency in Hz (omega must be provided in rad/sec).
2337
        Default value (False) set by config.defaults['freqplot.Hz'].
2338
    **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional
2339
        Additional keywords passed to `matplotlib` to specify line properties.
2340

2341
    Returns
2342
    -------
2343
    cplt : :class:`ControlPlot` object
2344
        Object containing the data that were plotted:
2345

2346
          * cplt.lines: 1-D array of :class:`matplotlib.lines.Line2D` objects.
2347
            The size of the array matches the number of systems and the
2348
            value of the array is a list of Line2D objects for that system.
2349

2350
          * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot.
2351

2352
          * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot.
2353

2354
          * cplt.legend: legend object(s) contained in the plot
2355

2356
        See :class:`ControlPlot` for more detailed information.
2357

2358
    Other Parameters
2359
    ----------------
2360
    ax : matplotlib.axes.Axes, optional
2361
        The matplotlib axes to draw the figure on.  If not specified and
2362
        the current figure has a single axes, that axes is used.
2363
        Otherwise, a new figure is created.
2364
    color : matplotlib color spec
2365
        Color to use for singular values (or None for matplotlib default).
2366
    grid : bool
2367
        If True, plot grid lines on gain and phase plots.  Default is set by
2368
        `config.defaults['freqplot.grid']`.
2369
    label : str or array_like of str, optional
2370
        If present, replace automatically generated label(s) with the given
2371
        label(s).  If sysdata is a list, strings should be specified for each
2372
        system.
2373
    legend_loc : int or str, optional
2374
        Include a legend in the given location. Default is 'center right',
2375
        with no legend for a single response.  Use False to suppress legend.
2376
    omega_limits : array_like of two values
2377
        Set limits for plotted frequency range. If Hz=True the limits are
2378
        in Hz otherwise in rad/s.  Specifying ``omega`` as a list of two
2379
        elements is equivalent to providing ``omega_limits``.
2380
    omega_num : int, optional
2381
        Number of samples to use for the frequeny range.  Defaults to
2382
        config.defaults['freqplot.number_of_samples'].  Ignored if data is
2383
        not a list of systems.
2384
    plot : bool, optional
2385
        (legacy) If given, `singular_values_plot` returns the legacy return
2386
        values of magnitude, phase, and frequency.  If False, just return
2387
        the values with no plot.
2388
    rcParams : dict
2389
        Override the default parameters used for generating plots.
2390
        Default is set up config.default['ctrlplot.rcParams'].
2391
    show_legend : bool, optional
2392
        Force legend to be shown if ``True`` or hidden if ``False``.  If
2393
        ``None``, then show legend when there is more than one line on an
2394
        axis or ``legend_loc`` or ``legend_map`` has been specified.
2395
    title : str, optional
2396
        Set the title of the plot.  Defaults to plot type and system name(s).
2397
    title_frame : str, optional
2398
        Set the frame of reference used to center the plot title. If set to
2399
        'axes' (default), the horizontal position of the title will
2400
        centered relative to the axes.  If set to 'figure', it will be
2401
        centered with respect to the figure (faster execution).
2402

2403
    See Also
2404
    --------
2405
    singular_values_response
2406

2407
    Notes
2408
    -----
2409
    1. If plot==False, the following legacy values are returned:
2410
         * mag : ndarray (or list of ndarray if len(data) > 1))
2411
             Magnitude of the response (deprecated).
2412
         * phase : ndarray (or list of ndarray if len(data) > 1))
2413
             Phase in radians of the response (deprecated).
2414
         * omega : ndarray (or list of ndarray if len(data) > 1))
2415
             Frequency in rad/sec (deprecated).
2416

2417
    """
2418
    # Keyword processing
2419
    color = kwargs.pop('color', None)
9✔
2420
    dB = config._get_param(
9✔
2421
        'freqplot', 'dB', kwargs, _freqplot_defaults, pop=True)
2422
    Hz = config._get_param(
9✔
2423
        'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True)
2424
    grid = config._get_param(
9✔
2425
        'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True)
2426
    rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True)
9✔
2427
    title_frame = config._get_param(
9✔
2428
        'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True)
2429

2430
    # If argument was a singleton, turn it into a tuple
2431
    data = data if isinstance(data, (list, tuple)) else (data,)
9✔
2432

2433
    # Convert systems into frequency responses
2434
    if any([isinstance(response, (StateSpace, TransferFunction))
9✔
2435
            for response in data]):
2436
        responses = singular_values_response(
9✔
2437
                    data, omega=omega, omega_limits=omega_limits,
2438
                    omega_num=omega_num)
2439
    else:
2440
        # Generate warnings if frequency keywords were given
2441
        if omega_num is not None:
9✔
2442
            warnings.warn("`omega_num` ignored when passed response data")
9✔
2443
        elif omega is not None:
9✔
2444
            warnings.warn("`omega` ignored when passed response data")
9✔
2445

2446
        # Check to make sure omega_limits is sensible
2447
        if omega_limits is not None and \
9✔
2448
           (len(omega_limits) != 2 or omega_limits[1] <= omega_limits[0]):
2449
            raise ValueError(f"invalid limits: {omega_limits=}")
9✔
2450

2451
        responses = data
9✔
2452

2453
    # Process label keyword
2454
    line_labels = _process_line_labels(label, len(data))
9✔
2455

2456
    # Process (legacy) plot keyword
2457
    if plot is not None:
9✔
2458
        warnings.warn(
×
2459
            "`singular_values_plot` return values of sigma, omega is "
2460
            "deprecated; use singular_values_response()", FutureWarning)
2461

2462
    # Warn the user if we got past something that is not real-valued
2463
    if any([not np.allclose(np.imag(response.fresp[:, 0, :]), 0)
9✔
2464
            for response in responses]):
2465
        warnings.warn("data has non-zero imaginary component")
×
2466

2467
    # Extract the data we need for plotting
2468
    sigmas = [np.real(response.fresp[:, 0, :]) for response in responses]
9✔
2469
    omegas = [response.omega for response in responses]
9✔
2470

2471
    # Legacy processing for no plotting case
2472
    if plot is False:
9✔
2473
        if len(data) == 1:
×
2474
            return sigmas[0], omegas[0]
×
2475
        else:
2476
            return sigmas, omegas
×
2477

2478
    fig, ax_sigma = _process_ax_keyword(
9✔
2479
        ax, shape=(1, 1), squeeze=True, rcParams=rcParams)
2480
    ax_sigma.set_label('control-sigma')         # TODO: deprecate?
9✔
2481
    legend_loc, _, show_legend = _process_legend_keywords(
9✔
2482
        kwargs, None, 'center right')
2483

2484
    # Get color offset for first (new) line to be drawn
2485
    color_offset, color_cycle = _get_color_offset(ax_sigma)
9✔
2486

2487
    # Create a list of lines for the output
2488
    out = np.empty(len(data), dtype=object)
9✔
2489

2490
    # Plot the singular values for each response
2491
    for idx_sys, response in enumerate(responses):
9✔
2492
        sigma = sigmas[idx_sys].transpose()     # frequency first for plotting
9✔
2493
        omega = omegas[idx_sys] / (2 * math.pi) if Hz else  omegas[idx_sys]
9✔
2494

2495
        if response.isdtime(strict=True):
9✔
2496
            nyq_freq = (0.5/response.dt) if Hz else (math.pi/response.dt)
9✔
2497
        else:
2498
            nyq_freq = None
9✔
2499

2500
        # Determine the color to use for this response
2501
        color = _get_color(
9✔
2502
            color, fmt=fmt, offset=color_offset + idx_sys,
2503
            color_cycle=color_cycle)
2504

2505
        # To avoid conflict with *fmt, only pass color kw if non-None
2506
        color_arg = {} if color is None else {'color': color}
9✔
2507

2508
        # Decide on the system name
2509
        sysname = response.sysname if response.sysname is not None \
9✔
2510
            else f"Unknown-{idx_sys}"
2511

2512
        # Get the label to use for the line
2513
        label = sysname if line_labels is None else line_labels[idx_sys]
9✔
2514

2515
        # Plot the data
2516
        if dB:
9✔
2517
            out[idx_sys] = ax_sigma.semilogx(
9✔
2518
                omega, 20 * np.log10(sigma), *fmt,
2519
                label=label, **color_arg, **kwargs)
2520
        else:
2521
            out[idx_sys] = ax_sigma.loglog(
9✔
2522
                omega, sigma, label=label, *fmt, **color_arg, **kwargs)
2523

2524
        # Plot the Nyquist frequency
2525
        if nyq_freq is not None:
9✔
2526
            ax_sigma.axvline(
9✔
2527
                nyq_freq, linestyle='--', label='_nyq_freq_' + sysname,
2528
                **color_arg)
2529

2530
    # If specific omega_limits were given, use them
2531
    if omega_limits is not None:
9✔
2532
        ax_sigma.set_xlim(omega_limits)
9✔
2533

2534
    # Add a grid to the plot + labeling
2535
    if grid:
9✔
2536
        ax_sigma.grid(grid, which='both')
9✔
2537

2538
    ax_sigma.set_ylabel(
9✔
2539
        "Singular Values [dB]" if dB else "Singular Values")
2540
    ax_sigma.set_xlabel("Frequency [Hz]" if Hz else "Frequency [rad/sec]")
9✔
2541

2542
    # List of systems that are included in this plot
2543
    lines, labels = _get_line_labels(ax_sigma)
9✔
2544

2545
    # Add legend if there is more than one system plotted
2546
    if show_legend == True or (show_legend != False and len(labels) > 1):
9✔
2547
        with plt.rc_context(rcParams):
9✔
2548
            legend = ax_sigma.legend(lines, labels, loc=legend_loc)
9✔
2549
    else:
2550
        legend = None
9✔
2551

2552
    # Add the title
2553
    if ax is None:
9✔
2554
        if title is None:
9✔
2555
            title = "Singular values for " + ", ".join(labels)
9✔
2556
        _update_plot_title(
9✔
2557
            title, fig=fig, rcParams=rcParams, frame=title_frame,
2558
            use_existing=False)
2559

2560
    # Legacy return processing
2561
    if plot is not None:
9✔
2562
        if len(responses) == 1:
×
2563
            return sigmas[0], omegas[0]
×
2564
        else:
2565
            return sigmas, omegas
×
2566

2567
    return ControlPlot(out, ax_sigma, fig, legend=legend)
9✔
2568

2569
#
2570
# Utility functions
2571
#
2572
# This section of the code contains some utility functions for
2573
# generating frequency domain plots.
2574
#
2575

2576

2577
# Determine the frequency range to be used
2578
def _determine_omega_vector(syslist, omega_in, omega_limits, omega_num,
9✔
2579
                            Hz=None, feature_periphery_decades=None):
2580
    """Determine the frequency range for a frequency-domain plot
2581
    according to a standard logic.
2582

2583
    If omega_in and omega_limits are both None, then omega_out is computed
2584
    on omega_num points according to a default logic defined by
2585
    _default_frequency_range and tailored for the list of systems syslist, and
2586
    omega_range_given is set to False.
2587

2588
    If omega_in is None but omega_limits is an array-like of 2 elements, then
2589
    omega_out is computed with the function np.logspace on omega_num points
2590
    within the interval [min, max] =  [omega_limits[0], omega_limits[1]], and
2591
    omega_range_given is set to True.
2592

2593
    If omega_in is a list or tuple of length 2, it is interpreted as a
2594
    range and handled like omega_limits.  If omega_in is a list or tuple of
2595
    length 3, it is interpreted a range plus number of points and handled
2596
    like omega_limits and omega_num.
2597

2598
    If omega_in is an array or a list/tuple of length greater than
2599
    two, then omega_out is set to omega_in (as an array), and
2600
    omega_range_given is set to True
2601

2602
    Parameters
2603
    ----------
2604
    syslist : list of LTI
2605
        List of linear input/output systems (single system is OK).
2606
    omega_in : 1D array_like or None
2607
        Frequency range specified by the user.
2608
    omega_limits : 1D array_like or None
2609
        Frequency limits specified by the user.
2610
    omega_num : int
2611
        Number of points to be used for the frequency range (if the
2612
        frequency range is not user-specified).
2613
    Hz : bool, optional
2614
        If True, the limits (first and last value) of the frequencies
2615
        are set to full decades in Hz so it fits plotting with logarithmic
2616
        scale in Hz otherwise in rad/s. Omega is always returned in rad/sec.
2617

2618
    Returns
2619
    -------
2620
    omega_out : 1D array
2621
        Frequency range to be used.
2622
    omega_range_given : bool
2623
        True if the frequency range was specified by the user, either through
2624
        omega_in or through omega_limits. False if both omega_in
2625
        and omega_limits are None.
2626

2627
    """
2628
    # Handle the special case of a range of frequencies
2629
    if omega_in is not None and omega_limits is not None:
9✔
2630
        warnings.warn(
×
2631
            "omega and omega_limits both specified; ignoring limits")
2632
    elif isinstance(omega_in, (list, tuple)) and len(omega_in) == 2:
9✔
2633
        omega_limits = omega_in
9✔
2634
        omega_in = None
9✔
2635

2636
    omega_range_given = True
9✔
2637
    if omega_in is None:
9✔
2638
        if omega_limits is None:
9✔
2639
            omega_range_given = False
9✔
2640
            # Select a default range if none is provided
2641
            omega_out = _default_frequency_range(
9✔
2642
                syslist, number_of_samples=omega_num, Hz=Hz,
2643
                feature_periphery_decades=feature_periphery_decades)
2644
        else:
2645
            omega_limits = np.asarray(omega_limits)
9✔
2646
            if len(omega_limits) != 2:
9✔
2647
                raise ValueError("len(omega_limits) must be 2")
×
2648
            omega_out = np.logspace(np.log10(omega_limits[0]),
9✔
2649
                                    np.log10(omega_limits[1]),
2650
                                    num=omega_num, endpoint=True)
2651
    else:
2652
        omega_out = np.copy(omega_in)
9✔
2653

2654
    return omega_out, omega_range_given
9✔
2655

2656

2657
# Compute reasonable defaults for axes
2658
def _default_frequency_range(syslist, Hz=None, number_of_samples=None,
9✔
2659
                             feature_periphery_decades=None):
2660
    """Compute a default frequency range for frequency domain plots.
2661

2662
    This code looks at the poles and zeros of all of the systems that
2663
    we are plotting and sets the frequency range to be one decade above
2664
    and below the min and max feature frequencies, rounded to the nearest
2665
    integer.  If no features are found, it returns logspace(-1, 1)
2666

2667
    Parameters
2668
    ----------
2669
    syslist : list of LTI
2670
        List of linear input/output systems (single system is OK)
2671
    Hz : bool, optional
2672
        If True, the limits (first and last value) of the frequencies
2673
        are set to full decades in Hz so it fits plotting with logarithmic
2674
        scale in Hz otherwise in rad/s. Omega is always returned in rad/sec.
2675
    number_of_samples : int, optional
2676
        Number of samples to generate.  The default value is read from
2677
        ``config.defaults['freqplot.number_of_samples'].  If None, then the
2678
        default from `numpy.logspace` is used.
2679
    feature_periphery_decades : float, optional
2680
        Defines how many decades shall be included in the frequency range on
2681
        both sides of features (poles, zeros).  The default value is read from
2682
        ``config.defaults['freqplot.feature_periphery_decades']``.
2683

2684
    Returns
2685
    -------
2686
    omega : array
2687
        Range of frequencies in rad/sec
2688

2689
    Examples
2690
    --------
2691
    >>> G = ct.ss([[-1, -2], [3, -4]], [[5], [7]], [[6, 8]], [[9]])
2692
    >>> omega = ct._default_frequency_range(G)
2693
    >>> omega.min(), omega.max()
2694
    (0.1, 100.0)
2695

2696
    """
2697
    # Set default values for options
2698
    number_of_samples = config._get_param(
9✔
2699
        'freqplot', 'number_of_samples', number_of_samples)
2700
    feature_periphery_decades = config._get_param(
9✔
2701
        'freqplot', 'feature_periphery_decades', feature_periphery_decades, 1)
2702

2703
    # Find the list of all poles and zeros in the systems
2704
    features = np.array(())
9✔
2705
    freq_interesting = []
9✔
2706

2707
    # detect if single sys passed by checking if it is sequence-like
2708
    if not hasattr(syslist, '__iter__'):
9✔
2709
        syslist = (syslist,)
9✔
2710

2711
    for sys in syslist:
9✔
2712
        # For FRD systems, just use the response frequencies
2713
        if isinstance(sys, FrequencyResponseData):
9✔
2714
            # Add the min and max frequency, minus periphery decades
2715
            # (keeps frequency ranges from artificially expanding)
2716
            features = np.concatenate([features, np.array([
9✔
2717
                np.min(sys.omega) * 10**feature_periphery_decades,
2718
                np.max(sys.omega) / 10**feature_periphery_decades])])
2719
            continue
9✔
2720

2721
        try:
9✔
2722
            # Add new features to the list
2723
            if sys.isctime():
9✔
2724
                features_ = np.concatenate(
9✔
2725
                    (np.abs(sys.poles()), np.abs(sys.zeros())))
2726
                # Get rid of poles and zeros at the origin
2727
                toreplace = np.isclose(features_, 0.0)
9✔
2728
                if np.any(toreplace):
9✔
2729
                    features_ = features_[~toreplace]
9✔
2730
            elif sys.isdtime(strict=True):
9✔
2731
                fn = math.pi / sys.dt
9✔
2732
                # TODO: What distance to the Nyquist frequency is appropriate?
2733
                freq_interesting.append(fn * 0.9)
9✔
2734

2735
                features_ = np.concatenate(
9✔
2736
                    (np.abs(sys.poles()), np.abs(sys.zeros())))
2737
                # Get rid of poles and zeros on the real axis (imag==0)
2738
                # * origin and real < 0
2739
                # * at 1.: would result in omega=0. (logaritmic plot!)
2740
                toreplace = np.isclose(features_.imag, 0.0) & (
9✔
2741
                                    (features_.real <= 0.) |
2742
                                    (np.abs(features_.real - 1.0) < 1.e-10))
2743
                if np.any(toreplace):
9✔
2744
                    features_ = features_[~toreplace]
9✔
2745
                # TODO: improve (mapping pack to continuous time)
2746
                features_ = np.abs(np.log(features_) / (1.j * sys.dt))
9✔
2747
            else:
2748
                # TODO
2749
                raise NotImplementedError(
2750
                    "type of system in not implemented now")
2751
            features = np.concatenate([features, features_])
9✔
2752
        except NotImplementedError:
9✔
2753
            # Don't add any features for anything we don't understand
2754
            pass
9✔
2755

2756
    # Make sure there is at least one point in the range
2757
    if features.shape[0] == 0:
9✔
2758
        features = np.array([1.])
9✔
2759

2760
    if Hz:
9✔
2761
        features /= 2. * math.pi
9✔
2762
    features = np.log10(features)
9✔
2763
    lsp_min = np.rint(np.min(features) - feature_periphery_decades)
9✔
2764
    lsp_max = np.rint(np.max(features) + feature_periphery_decades)
9✔
2765
    if Hz:
9✔
2766
        lsp_min += np.log10(2. * math.pi)
9✔
2767
        lsp_max += np.log10(2. * math.pi)
9✔
2768

2769
    if freq_interesting:
9✔
2770
        lsp_min = min(lsp_min, np.log10(min(freq_interesting)))
9✔
2771
        lsp_max = max(lsp_max, np.log10(max(freq_interesting)))
9✔
2772

2773
    # TODO: Add a check in discrete case to make sure we don't get aliasing
2774
    # (Attention: there is a list of system but only one omega vector)
2775

2776
    # Set the range to be an order of magnitude beyond any features
2777
    if number_of_samples:
9✔
2778
        omega = np.logspace(
9✔
2779
            lsp_min, lsp_max, num=number_of_samples, endpoint=True)
2780
    else:
2781
        omega = np.logspace(lsp_min, lsp_max, endpoint=True)
×
2782
    return omega
9✔
2783

2784

2785
#
2786
# Utility functions to create nice looking labels (KLD 5/23/11)
2787
#
2788

2789
def get_pow1000(num):
9✔
2790
    """Determine exponent for which significand of a number is within the
2791
    range [1, 1000).
2792
    """
2793
    # Based on algorithm from http://www.mail-archive.com/
2794
    # matplotlib-users@lists.sourceforge.net/msg14433.html, accessed 2010/11/7
2795
    # by Jason Heeris 2009/11/18
2796
    from decimal import Decimal
9✔
2797
    from math import floor
9✔
2798
    dnum = Decimal(str(num))
9✔
2799
    if dnum == 0:
9✔
2800
        return 0
9✔
2801
    elif dnum < 0:
9✔
2802
        dnum = -dnum
×
2803
    return int(floor(dnum.log10() / 3))
9✔
2804

2805

2806
def gen_prefix(pow1000):
9✔
2807
    """Return the SI prefix for a power of 1000.
2808
    """
2809
    # Prefixes according to Table 5 of [BIPM 2006] (excluding hecto,
2810
    # deca, deci, and centi).
2811
    if pow1000 < -8 or pow1000 > 8:
9✔
2812
        raise ValueError(
×
2813
            "Value is out of the range covered by the SI prefixes.")
2814
    return ['Y',  # yotta (10^24)
9✔
2815
            'Z',  # zetta (10^21)
2816
            'E',  # exa (10^18)
2817
            'P',  # peta (10^15)
2818
            'T',  # tera (10^12)
2819
            'G',  # giga (10^9)
2820
            'M',  # mega (10^6)
2821
            'k',  # kilo (10^3)
2822
            '',  # (10^0)
2823
            'm',  # milli (10^-3)
2824
            r'$\mu$',  # micro (10^-6)
2825
            'n',  # nano (10^-9)
2826
            'p',  # pico (10^-12)
2827
            'f',  # femto (10^-15)
2828
            'a',  # atto (10^-18)
2829
            'z',  # zepto (10^-21)
2830
            'y'][8 - pow1000]  # yocto (10^-24)
2831

2832

2833
# Function aliases
2834
bode = bode_plot
9✔
2835
nyquist = nyquist_plot
9✔
2836
gangof4 = gangof4_plot
9✔
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc