• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

OpenCOMPES / sed / 6421960341

05 Oct 2023 04:43PM UTC coverage: 90.25% (+0.08%) from 90.173%
6421960341

push

github

web-flow
Merge pull request #136 from OpenCOMPES/mpes-tweaks

Mpes tweaks

52 of 52 new or added lines in 4 files covered. (100.0%)

4221 of 4677 relevant lines covered (90.25%)

0.9 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

91.35
/sed/core/processor.py
1
"""This module contains the core class for the sed package
2

3
"""
4
import pathlib
1✔
5
from typing import Any
1✔
6
from typing import cast
1✔
7
from typing import Dict
1✔
8
from typing import List
1✔
9
from typing import Sequence
1✔
10
from typing import Tuple
1✔
11
from typing import Union
1✔
12

13
import dask.dataframe as ddf
1✔
14
import matplotlib.pyplot as plt
1✔
15
import numpy as np
1✔
16
import pandas as pd
1✔
17
import psutil
1✔
18
import xarray as xr
1✔
19

20
from sed.binning import bin_dataframe
1✔
21
from sed.calibrator import DelayCalibrator
1✔
22
from sed.calibrator import EnergyCalibrator
1✔
23
from sed.calibrator import MomentumCorrector
1✔
24
from sed.core.config import parse_config
1✔
25
from sed.core.config import save_config
1✔
26
from sed.core.dfops import apply_jitter
1✔
27
from sed.core.metadata import MetaHandler
1✔
28
from sed.diagnostics import grid_histogram
1✔
29
from sed.io import to_h5
1✔
30
from sed.io import to_nexus
1✔
31
from sed.io import to_tiff
1✔
32
from sed.loader import CopyTool
1✔
33
from sed.loader import get_loader
1✔
34

35
N_CPU = psutil.cpu_count()
1✔
36

37

38
class SedProcessor:
1✔
39
    """Processor class of sed. Contains wrapper functions defining a work flow for data
40
    correction, calibration and binning.
41

42
    Args:
43
        metadata (dict, optional): Dict of external Metadata. Defaults to None.
44
        config (Union[dict, str], optional): Config dictionary or config file name.
45
            Defaults to None.
46
        dataframe (Union[pd.DataFrame, ddf.DataFrame], optional): dataframe to load
47
            into the class. Defaults to None.
48
        files (List[str], optional): List of files to pass to the loader defined in
49
            the config. Defaults to None.
50
        folder (str, optional): Folder containing files to pass to the loader
51
            defined in the config. Defaults to None.
52
        collect_metadata (bool): Option to collect metadata from files.
53
            Defaults to False.
54
        **kwds: Keyword arguments passed to the reader.
55
    """
56

57
    def __init__(
1✔
58
        self,
59
        metadata: dict = None,
60
        config: Union[dict, str] = None,
61
        dataframe: Union[pd.DataFrame, ddf.DataFrame] = None,
62
        files: List[str] = None,
63
        folder: str = None,
64
        runs: Sequence[str] = None,
65
        collect_metadata: bool = False,
66
        **kwds,
67
    ):
68
        """Processor class of sed. Contains wrapper functions defining a work flow
69
        for data correction, calibration, and binning.
70

71
        Args:
72
            metadata (dict, optional): Dict of external Metadata. Defaults to None.
73
            config (Union[dict, str], optional): Config dictionary or config file name.
74
                Defaults to None.
75
            dataframe (Union[pd.DataFrame, ddf.DataFrame], optional): dataframe to load
76
                into the class. Defaults to None.
77
            files (List[str], optional): List of files to pass to the loader defined in
78
                the config. Defaults to None.
79
            folder (str, optional): Folder containing files to pass to the loader
80
                defined in the config. Defaults to None.
81
            runs (Sequence[str], optional): List of run identifiers to pass to the loader
82
                defined in the config. Defaults to None.
83
            collect_metadata (bool): Option to collect metadata from files.
84
                Defaults to False.
85
            **kwds: Keyword arguments passed to parse_config and to the reader.
86
        """
87
        config_kwds = {
1✔
88
            key: value for key, value in kwds.items() if key in parse_config.__code__.co_varnames
89
        }
90
        for key in config_kwds.keys():
1✔
91
            del kwds[key]
1✔
92
        self._config = parse_config(config, **config_kwds)
1✔
93
        num_cores = self._config.get("binning", {}).get("num_cores", N_CPU - 1)
1✔
94
        if num_cores >= N_CPU:
1✔
95
            num_cores = N_CPU - 1
1✔
96
        self._config["binning"]["num_cores"] = num_cores
1✔
97

98
        self._dataframe: Union[pd.DataFrame, ddf.DataFrame] = None
1✔
99
        self._files: List[str] = []
1✔
100

101
        self._binned: xr.DataArray = None
1✔
102
        self._pre_binned: xr.DataArray = None
1✔
103

104
        self._attributes = MetaHandler(meta=metadata)
1✔
105

106
        loader_name = self._config["core"]["loader"]
1✔
107
        self.loader = get_loader(
1✔
108
            loader_name=loader_name,
109
            config=self._config,
110
        )
111

112
        self.ec = EnergyCalibrator(
1✔
113
            loader=self.loader,
114
            config=self._config,
115
        )
116

117
        self.mc = MomentumCorrector(
1✔
118
            config=self._config,
119
        )
120

121
        self.dc = DelayCalibrator(
1✔
122
            config=self._config,
123
        )
124

125
        self.use_copy_tool = self._config.get("core", {}).get(
1✔
126
            "use_copy_tool",
127
            False,
128
        )
129
        if self.use_copy_tool:
1✔
130
            try:
1✔
131
                self.ct = CopyTool(
1✔
132
                    source=self._config["core"]["copy_tool_source"],
133
                    dest=self._config["core"]["copy_tool_dest"],
134
                    **self._config["core"].get("copy_tool_kwds", {}),
135
                )
136
            except KeyError:
1✔
137
                self.use_copy_tool = False
1✔
138

139
        # Load data if provided:
140
        if dataframe is not None or files is not None or folder is not None or runs is not None:
1✔
141
            self.load(
1✔
142
                dataframe=dataframe,
143
                metadata=metadata,
144
                files=files,
145
                folder=folder,
146
                runs=runs,
147
                collect_metadata=collect_metadata,
148
                **kwds,
149
            )
150

151
    def __repr__(self):
1✔
152
        if self._dataframe is None:
1✔
153
            df_str = "Data Frame: No Data loaded"
1✔
154
        else:
155
            df_str = self._dataframe.__repr__()
1✔
156
        attributes_str = f"Metadata: {self._attributes.metadata}"
1✔
157
        pretty_str = df_str + "\n" + attributes_str
1✔
158
        return pretty_str
1✔
159

160
    @property
1✔
161
    def dataframe(self) -> Union[pd.DataFrame, ddf.DataFrame]:
1✔
162
        """Accessor to the underlying dataframe.
163

164
        Returns:
165
            Union[pd.DataFrame, ddf.DataFrame]: Dataframe object.
166
        """
167
        return self._dataframe
1✔
168

169
    @dataframe.setter
1✔
170
    def dataframe(self, dataframe: Union[pd.DataFrame, ddf.DataFrame]):
1✔
171
        """Setter for the underlying dataframe.
172

173
        Args:
174
            dataframe (Union[pd.DataFrame, ddf.DataFrame]): The dataframe object to set.
175
        """
176
        if not isinstance(dataframe, (pd.DataFrame, ddf.DataFrame)) or not isinstance(
1✔
177
            dataframe,
178
            self._dataframe.__class__,
179
        ):
180
            raise ValueError(
1✔
181
                "'dataframe' has to be a Pandas or Dask dataframe and has to be of the same kind "
182
                "as the dataframe loaded into the SedProcessor!.\n"
183
                f"Loaded type: {self._dataframe.__class__}, provided type: {dataframe}.",
184
            )
185
        self._dataframe = dataframe
1✔
186

187
    @property
1✔
188
    def attributes(self) -> dict:
1✔
189
        """Accessor to the metadata dict.
190

191
        Returns:
192
            dict: The metadata dict.
193
        """
194
        return self._attributes.metadata
1✔
195

196
    def add_attribute(self, attributes: dict, name: str, **kwds):
1✔
197
        """Function to add element to the attributes dict.
198

199
        Args:
200
            attributes (dict): The attributes dictionary object to add.
201
            name (str): Key under which to add the dictionary to the attributes.
202
        """
203
        self._attributes.add(
1✔
204
            entry=attributes,
205
            name=name,
206
            **kwds,
207
        )
208

209
    @property
1✔
210
    def config(self) -> Dict[Any, Any]:
1✔
211
        """Getter attribute for the config dictionary
212

213
        Returns:
214
            Dict: The config dictionary.
215
        """
216
        return self._config
1✔
217

218
    @property
1✔
219
    def files(self) -> List[str]:
1✔
220
        """Getter attribute for the list of files
221

222
        Returns:
223
            List[str]: The list of loaded files
224
        """
225
        return self._files
1✔
226

227
    def cpy(self, path: Union[str, List[str]]) -> Union[str, List[str]]:
1✔
228
        """Function to mirror a list of files or a folder from a network drive to a
229
        local storage. Returns either the original or the copied path to the given
230
        path. The option to use this functionality is set by
231
        config["core"]["use_copy_tool"].
232

233
        Args:
234
            path (Union[str, List[str]]): Source path or path list.
235

236
        Returns:
237
            Union[str, List[str]]: Source or destination path or path list.
238
        """
239
        if self.use_copy_tool:
1✔
240
            if isinstance(path, list):
1✔
241
                path_out = []
1✔
242
                for file in path:
1✔
243
                    path_out.append(self.ct.copy(file))
1✔
244
                return path_out
1✔
245

246
            return self.ct.copy(path)
×
247

248
        if isinstance(path, list):
1✔
249
            return path
1✔
250

251
        return path
1✔
252

253
    def load(
1✔
254
        self,
255
        dataframe: Union[pd.DataFrame, ddf.DataFrame] = None,
256
        metadata: dict = None,
257
        files: List[str] = None,
258
        folder: str = None,
259
        runs: Sequence[str] = None,
260
        collect_metadata: bool = False,
261
        **kwds,
262
    ):
263
        """Load tabular data of single events into the dataframe object in the class.
264

265
        Args:
266
            dataframe (Union[pd.DataFrame, ddf.DataFrame], optional): data in tabular
267
                format. Accepts anything which can be interpreted by pd.DataFrame as
268
                an input. Defaults to None.
269
            metadata (dict, optional): Dict of external Metadata. Defaults to None.
270
            files (List[str], optional): List of file paths to pass to the loader.
271
                Defaults to None.
272
            runs (Sequence[str], optional): List of run identifiers to pass to the
273
                loader. Defaults to None.
274
            folder (str, optional): Folder path to pass to the loader.
275
                Defaults to None.
276

277
        Raises:
278
            ValueError: Raised if no valid input is provided.
279
        """
280
        if metadata is None:
1✔
281
            metadata = {}
1✔
282
        if dataframe is not None:
1✔
283
            self._dataframe = dataframe
1✔
284
        elif runs is not None:
1✔
285
            # If runs are provided, we only use the copy tool if also folder is provided.
286
            # In that case, we copy the whole provided base folder tree, and pass the copied
287
            # version to the loader as base folder to look for the runs.
288
            if folder is not None:
1✔
289
                dataframe, metadata = self.loader.read_dataframe(
1✔
290
                    folders=cast(str, self.cpy(folder)),
291
                    runs=runs,
292
                    metadata=metadata,
293
                    collect_metadata=collect_metadata,
294
                    **kwds,
295
                )
296
            else:
297
                dataframe, metadata = self.loader.read_dataframe(
×
298
                    runs=runs,
299
                    metadata=metadata,
300
                    collect_metadata=collect_metadata,
301
                    **kwds,
302
                )
303

304
        elif folder is not None:
1✔
305
            dataframe, metadata = self.loader.read_dataframe(
1✔
306
                folders=cast(str, self.cpy(folder)),
307
                metadata=metadata,
308
                collect_metadata=collect_metadata,
309
                **kwds,
310
            )
311

312
        elif files is not None:
1✔
313
            dataframe, metadata = self.loader.read_dataframe(
1✔
314
                files=cast(List[str], self.cpy(files)),
315
                metadata=metadata,
316
                collect_metadata=collect_metadata,
317
                **kwds,
318
            )
319

320
        else:
321
            raise ValueError(
1✔
322
                "Either 'dataframe', 'files', 'folder', or 'runs' needs to be provided!",
323
            )
324

325
        self._dataframe = dataframe
1✔
326
        self._files = self.loader.files
1✔
327

328
        for key in metadata:
1✔
329
            self._attributes.add(
1✔
330
                entry=metadata[key],
331
                name=key,
332
                duplicate_policy="merge",
333
            )
334

335
    # Momentum calibration workflow
336
    # 1. Bin raw detector data for distortion correction
337
    def bin_and_load_momentum_calibration(
1✔
338
        self,
339
        df_partitions: int = 100,
340
        axes: List[str] = None,
341
        bins: List[int] = None,
342
        ranges: Sequence[Tuple[float, float]] = None,
343
        plane: int = 0,
344
        width: int = 5,
345
        apply: bool = False,
346
        **kwds,
347
    ):
348
        """1st step of momentum correction work flow. Function to do an initial binning
349
        of the dataframe loaded to the class, slice a plane from it using an
350
        interactive view, and load it into the momentum corrector class.
351

352
        Args:
353
            df_partitions (int, optional): Number of dataframe partitions to use for
354
                the initial binning. Defaults to 100.
355
            axes (List[str], optional): Axes to bin.
356
                Defaults to config["momentum"]["axes"].
357
            bins (List[int], optional): Bin numbers to use for binning.
358
                Defaults to config["momentum"]["bins"].
359
            ranges (List[Tuple], optional): Ranges to use for binning.
360
                Defaults to config["momentum"]["ranges"].
361
            plane (int, optional): Initial value for the plane slider. Defaults to 0.
362
            width (int, optional): Initial value for the width slider. Defaults to 5.
363
            apply (bool, optional): Option to directly apply the values and select the
364
                slice. Defaults to False.
365
            **kwds: Keyword argument passed to the pre_binning function.
366
        """
367
        self._pre_binned = self.pre_binning(
1✔
368
            df_partitions=df_partitions,
369
            axes=axes,
370
            bins=bins,
371
            ranges=ranges,
372
            **kwds,
373
        )
374

375
        self.mc.load_data(data=self._pre_binned)
1✔
376
        self.mc.select_slicer(plane=plane, width=width, apply=apply)
1✔
377

378
    # 2. Generate the spline warp correction from momentum features.
379
    # Either autoselect features, or input features from view above.
380
    def define_features(
1✔
381
        self,
382
        features: np.ndarray = None,
383
        rotation_symmetry: int = 6,
384
        auto_detect: bool = False,
385
        include_center: bool = True,
386
        apply: bool = False,
387
        **kwds,
388
    ):
389
        """2. Step of the distortion correction workflow: Define feature points in
390
        momentum space. They can be either manually selected using a GUI tool, be
391
        ptovided as list of feature points, or auto-generated using a
392
        feature-detection algorithm.
393

394
        Args:
395
            features (np.ndarray, optional): np.ndarray of features. Defaults to None.
396
            rotation_symmetry (int, optional): Number of rotational symmetry axes.
397
                Defaults to 6.
398
            auto_detect (bool, optional): Whether to auto-detect the features.
399
                Defaults to False.
400
            include_center (bool, optional): Option to include a point at the center
401
                in the feature list. Defaults to True.
402
            ***kwds: Keyword arguments for MomentumCorrector.feature_extract() and
403
                MomentumCorrector.feature_select()
404
        """
405
        if auto_detect:  # automatic feature selection
1✔
406
            sigma = kwds.pop("sigma", self._config["momentum"]["sigma"])
×
407
            fwhm = kwds.pop("fwhm", self._config["momentum"]["fwhm"])
×
408
            sigma_radius = kwds.pop(
×
409
                "sigma_radius",
410
                self._config["momentum"]["sigma_radius"],
411
            )
412
            self.mc.feature_extract(
×
413
                sigma=sigma,
414
                fwhm=fwhm,
415
                sigma_radius=sigma_radius,
416
                rotsym=rotation_symmetry,
417
                **kwds,
418
            )
419
            features = self.mc.peaks
×
420

421
        self.mc.feature_select(
1✔
422
            rotsym=rotation_symmetry,
423
            include_center=include_center,
424
            features=features,
425
            apply=apply,
426
            **kwds,
427
        )
428

429
    # 3. Generate the spline warp correction from momentum features.
430
    # If no features have been selected before, use class defaults.
431
    def generate_splinewarp(
1✔
432
        self,
433
        use_center: bool = None,
434
        **kwds,
435
    ):
436
        """3. Step of the distortion correction workflow: Generate the correction
437
        function restoring the symmetry in the image using a splinewarp algortihm.
438

439
        Args:
440
            use_center (bool, optional): Option to use the position of the
441
                center point in the correction. Default is read from config, or set to True.
442
            **kwds: Keyword arguments for MomentumCorrector.spline_warp_estimate().
443
        """
444
        self.mc.spline_warp_estimate(use_center=use_center, **kwds)
1✔
445

446
        if self.mc.slice is not None:
1✔
447
            print("Original slice with reference features")
1✔
448
            self.mc.view(annotated=True, backend="bokeh", crosshair=True)
1✔
449

450
            print("Corrected slice with target features")
1✔
451
            self.mc.view(
1✔
452
                image=self.mc.slice_corrected,
453
                annotated=True,
454
                points={"feats": self.mc.ptargs},
455
                backend="bokeh",
456
                crosshair=True,
457
            )
458

459
            print("Original slice with target features")
1✔
460
            self.mc.view(
1✔
461
                image=self.mc.slice,
462
                points={"feats": self.mc.ptargs},
463
                annotated=True,
464
                backend="bokeh",
465
            )
466

467
    # 3a. Save spline-warp parameters to config file.
468
    def save_splinewarp(
1✔
469
        self,
470
        filename: str = None,
471
        overwrite: bool = False,
472
    ):
473
        """Save the generated spline-warp parameters to the folder config file.
474

475
        Args:
476
            filename (str, optional): Filename of the config dictionary to save to.
477
                Defaults to "sed_config.yaml" in the current folder.
478
            overwrite (bool, optional): Option to overwrite the present dictionary.
479
                Defaults to False.
480
        """
481
        if filename is None:
1✔
482
            filename = "sed_config.yaml"
×
483
        points = []
1✔
484
        try:
1✔
485
            for point in self.mc.pouter_ord:
1✔
486
                points.append([float(i) for i in point])
1✔
487
            if self.mc.include_center:
1✔
488
                points.append([float(i) for i in self.mc.pcent])
1✔
489
        except AttributeError as exc:
×
490
            raise AttributeError(
×
491
                "Momentum correction parameters not found, need to generate parameters first!",
492
            ) from exc
493
        config = {
1✔
494
            "momentum": {
495
                "correction": {
496
                    "rotation_symmetry": self.mc.rotsym,
497
                    "feature_points": points,
498
                    "include_center": self.mc.include_center,
499
                    "use_center": self.mc.use_center,
500
                },
501
            },
502
        }
503
        save_config(config, filename, overwrite)
1✔
504

505
    # 4. Pose corrections. Provide interactive interface for correcting
506
    # scaling, shift and rotation
507
    def pose_adjustment(
1✔
508
        self,
509
        scale: float = 1,
510
        xtrans: float = 0,
511
        ytrans: float = 0,
512
        angle: float = 0,
513
        apply: bool = False,
514
        use_correction: bool = True,
515
        reset: bool = True,
516
    ):
517
        """3. step of the distortion correction workflow: Generate an interactive panel
518
        to adjust affine transformations that are applied to the image. Applies first
519
        a scaling, next an x/y translation, and last a rotation around the center of
520
        the image.
521

522
        Args:
523
            scale (float, optional): Initial value of the scaling slider.
524
                Defaults to 1.
525
            xtrans (float, optional): Initial value of the xtrans slider.
526
                Defaults to 0.
527
            ytrans (float, optional): Initial value of the ytrans slider.
528
                Defaults to 0.
529
            angle (float, optional): Initial value of the angle slider.
530
                Defaults to 0.
531
            apply (bool, optional): Option to directly apply the provided
532
                transformations. Defaults to False.
533
            use_correction (bool, option): Whether to use the spline warp correction
534
                or not. Defaults to True.
535
            reset (bool, optional):
536
                Option to reset the correction before transformation. Defaults to True.
537
        """
538
        # Generate homomorphy as default if no distortion correction has been applied
539
        if self.mc.slice_corrected is None:
1✔
540
            if self.mc.slice is None:
1✔
541
                raise ValueError(
1✔
542
                    "No slice for corrections and transformations loaded!",
543
                )
544
            self.mc.slice_corrected = self.mc.slice
×
545

546
        if not use_correction:
1✔
547
            self.mc.reset_deformation()
1✔
548

549
        if self.mc.cdeform_field is None or self.mc.rdeform_field is None:
1✔
550
            # Generate distortion correction from config values
551
            self.mc.add_features()
×
552
            self.mc.spline_warp_estimate()
×
553

554
        self.mc.pose_adjustment(
1✔
555
            scale=scale,
556
            xtrans=xtrans,
557
            ytrans=ytrans,
558
            angle=angle,
559
            apply=apply,
560
            reset=reset,
561
        )
562

563
    # 5. Apply the momentum correction to the dataframe
564
    def apply_momentum_correction(
1✔
565
        self,
566
        preview: bool = False,
567
    ):
568
        """Applies the distortion correction and pose adjustment (optional)
569
        to the dataframe.
570

571
        Args:
572
            rdeform_field (np.ndarray, optional): Row deformation field.
573
                Defaults to None.
574
            cdeform_field (np.ndarray, optional): Column deformation field.
575
                Defaults to None.
576
            inv_dfield (np.ndarray, optional): Inverse deformation field.
577
                Defaults to None.
578
            preview (bool): Option to preview the first elements of the data frame.
579
        """
580
        if self._dataframe is not None:
1✔
581
            print("Adding corrected X/Y columns to dataframe:")
1✔
582
            self._dataframe, metadata = self.mc.apply_corrections(
1✔
583
                df=self._dataframe,
584
            )
585
            # Add Metadata
586
            self._attributes.add(
1✔
587
                metadata,
588
                "momentum_correction",
589
                duplicate_policy="merge",
590
            )
591
            if preview:
1✔
592
                print(self._dataframe.head(10))
×
593
            else:
594
                print(self._dataframe)
1✔
595

596
    # Momentum calibration work flow
597
    # 1. Calculate momentum calibration
598
    def calibrate_momentum_axes(
1✔
599
        self,
600
        point_a: Union[np.ndarray, List[int]] = None,
601
        point_b: Union[np.ndarray, List[int]] = None,
602
        k_distance: float = None,
603
        k_coord_a: Union[np.ndarray, List[float]] = None,
604
        k_coord_b: Union[np.ndarray, List[float]] = np.array([0.0, 0.0]),
605
        equiscale: bool = True,
606
        apply=False,
607
    ):
608
        """1. step of the momentum calibration workflow. Calibrate momentum
609
        axes using either provided pixel coordinates of a high-symmetry point and its
610
        distance to the BZ center, or the k-coordinates of two points in the BZ
611
        (depending on the equiscale option). Opens an interactive panel for selecting
612
        the points.
613

614
        Args:
615
            point_a (Union[np.ndarray, List[int]]): Pixel coordinates of the first
616
                point used for momentum calibration.
617
            point_b (Union[np.ndarray, List[int]], optional): Pixel coordinates of the
618
                second point used for momentum calibration.
619
                Defaults to config["momentum"]["center_pixel"].
620
            k_distance (float, optional): Momentum distance between point a and b.
621
                Needs to be provided if no specific k-koordinates for the two points
622
                are given. Defaults to None.
623
            k_coord_a (Union[np.ndarray, List[float]], optional): Momentum coordinate
624
                of the first point used for calibration. Used if equiscale is False.
625
                Defaults to None.
626
            k_coord_b (Union[np.ndarray, List[float]], optional): Momentum coordinate
627
                of the second point used for calibration. Defaults to [0.0, 0.0].
628
            equiscale (bool, optional): Option to apply different scales to kx and ky.
629
                If True, the distance between points a and b, and the absolute
630
                position of point a are used for defining the scale. If False, the
631
                scale is calculated from the k-positions of both points a and b.
632
                Defaults to True.
633
            apply (bool, optional): Option to directly store the momentum calibration
634
                in the class. Defaults to False.
635
        """
636
        if point_b is None:
1✔
637
            point_b = self._config["momentum"]["center_pixel"]
1✔
638

639
        self.mc.select_k_range(
1✔
640
            point_a=point_a,
641
            point_b=point_b,
642
            k_distance=k_distance,
643
            k_coord_a=k_coord_a,
644
            k_coord_b=k_coord_b,
645
            equiscale=equiscale,
646
            apply=apply,
647
        )
648

649
    # 1a. Save momentum calibration parameters to config file.
650
    def save_momentum_calibration(
1✔
651
        self,
652
        filename: str = None,
653
        overwrite: bool = False,
654
    ):
655
        """Save the generated momentum calibration parameters to the folder config file.
656

657
        Args:
658
            filename (str, optional): Filename of the config dictionary to save to.
659
                Defaults to "sed_config.yaml" in the current folder.
660
            overwrite (bool, optional): Option to overwrite the present dictionary.
661
                Defaults to False.
662
        """
663
        if filename is None:
1✔
664
            filename = "sed_config.yaml"
1✔
665
        calibration = {}
1✔
666
        try:
1✔
667
            for key in [
1✔
668
                "kx_scale",
669
                "ky_scale",
670
                "x_center",
671
                "y_center",
672
                "rstart",
673
                "cstart",
674
                "rstep",
675
                "cstep",
676
            ]:
677
                calibration[key] = float(self.mc.calibration[key])
1✔
678
        except KeyError as exc:
×
679
            raise KeyError(
×
680
                "Momentum calibration parameters not found, need to generate parameters first!",
681
            ) from exc
682

683
        config = {"momentum": {"calibration": calibration}}
1✔
684
        save_config(config, filename, overwrite)
1✔
685

686
    # 2. Apply correction and calibration to the dataframe
687
    def apply_momentum_calibration(
1✔
688
        self,
689
        calibration: dict = None,
690
        preview: bool = False,
691
    ):
692
        """2. step of the momentum calibration work flow: Apply the momentum
693
        calibration stored in the class to the dataframe. If corrected X/Y axis exist,
694
        these are used.
695

696
        Args:
697
            calibration (dict, optional): Optional dictionary with calibration data to
698
                use. Defaults to None.
699
            preview (bool): Option to preview the first elements of the data frame.
700
        """
701
        if self._dataframe is not None:
1✔
702

703
            print("Adding kx/ky columns to dataframe:")
1✔
704
            self._dataframe, metadata = self.mc.append_k_axis(
1✔
705
                df=self._dataframe,
706
                calibration=calibration,
707
            )
708

709
            # Add Metadata
710
            self._attributes.add(
1✔
711
                metadata,
712
                "momentum_calibration",
713
                duplicate_policy="merge",
714
            )
715
            if preview:
1✔
716
                print(self._dataframe.head(10))
×
717
            else:
718
                print(self._dataframe)
1✔
719

720
    # Energy correction workflow
721
    # 1. Adjust the energy correction parameters
722
    def adjust_energy_correction(
1✔
723
        self,
724
        correction_type: str = None,
725
        amplitude: float = None,
726
        center: Tuple[float, float] = None,
727
        apply=False,
728
        **kwds,
729
    ):
730
        """1. step of the energy crrection workflow: Opens an interactive plot to
731
        adjust the parameters for the TOF/energy correction. Also pre-bins the data if
732
        they are not present yet.
733

734
        Args:
735
            correction_type (str, optional): Type of correction to apply to the TOF
736
                axis. Valid values are:
737

738
                - 'spherical'
739
                - 'Lorentzian'
740
                - 'Gaussian'
741
                - 'Lorentzian_asymmetric'
742

743
                Defaults to config["energy"]["correction_type"].
744
            amplitude (float, optional): Amplitude of the correction.
745
                Defaults to config["energy"]["correction"]["amplitude"].
746
            center (Tuple[float, float], optional): Center X/Y coordinates for the
747
                correction. Defaults to config["energy"]["correction"]["center"].
748
            apply (bool, optional): Option to directly apply the provided or default
749
                correction parameters. Defaults to False.
750
        """
751
        if self._pre_binned is None:
1✔
752
            print(
1✔
753
                "Pre-binned data not present, binning using defaults from config...",
754
            )
755
            self._pre_binned = self.pre_binning()
1✔
756

757
        self.ec.adjust_energy_correction(
1✔
758
            self._pre_binned,
759
            correction_type=correction_type,
760
            amplitude=amplitude,
761
            center=center,
762
            apply=apply,
763
            **kwds,
764
        )
765

766
    # 1a. Save energy correction parameters to config file.
767
    def save_energy_correction(
1✔
768
        self,
769
        filename: str = None,
770
        overwrite: bool = False,
771
    ):
772
        """Save the generated energy correction parameters to the folder config file.
773

774
        Args:
775
            filename (str, optional): Filename of the config dictionary to save to.
776
                Defaults to "sed_config.yaml" in the current folder.
777
            overwrite (bool, optional): Option to overwrite the present dictionary.
778
                Defaults to False.
779
        """
780
        if filename is None:
1✔
781
            filename = "sed_config.yaml"
1✔
782
        correction = {}
1✔
783
        try:
1✔
784
            for key, val in self.ec.correction.items():
1✔
785
                if key == "correction_type":
1✔
786
                    correction[key] = val
1✔
787
                elif key == "center":
1✔
788
                    correction[key] = [float(i) for i in val]
1✔
789
                else:
790
                    correction[key] = float(val)
1✔
791
        except AttributeError as exc:
×
792
            raise AttributeError(
×
793
                "Energy correction parameters not found, need to generate parameters first!",
794
            ) from exc
795

796
        config = {"energy": {"correction": correction}}
1✔
797
        save_config(config, filename, overwrite)
1✔
798

799
    # 2. Apply energy correction to dataframe
800
    def apply_energy_correction(
1✔
801
        self,
802
        correction: dict = None,
803
        preview: bool = False,
804
        **kwds,
805
    ):
806
        """2. step of the energy correction workflow: Apply the enery correction
807
        parameters stored in the class to the dataframe.
808

809
        Args:
810
            correction (dict, optional): Dictionary containing the correction
811
                parameters. Defaults to config["energy"]["calibration"].
812
            preview (bool): Option to preview the first elements of the data frame.
813
            **kwds:
814
                Keyword args passed to ``EnergyCalibrator.apply_energy_correction``.
815
            preview (bool): Option to preview the first elements of the data frame.
816
            **kwds:
817
                Keyword args passed to ``EnergyCalibrator.apply_energy_correction``.
818
        """
819
        if self._dataframe is not None:
1✔
820
            print("Applying energy correction to dataframe...")
1✔
821
            self._dataframe, metadata = self.ec.apply_energy_correction(
1✔
822
                df=self._dataframe,
823
                correction=correction,
824
                **kwds,
825
            )
826

827
            # Add Metadata
828
            self._attributes.add(
1✔
829
                metadata,
830
                "energy_correction",
831
            )
832
            if preview:
1✔
833
                print(self._dataframe.head(10))
×
834
            else:
835
                print(self._dataframe)
1✔
836

837
    # Energy calibrator workflow
838
    # 1. Load and normalize data
839
    def load_bias_series(
1✔
840
        self,
841
        data_files: List[str],
842
        axes: List[str] = None,
843
        bins: List = None,
844
        ranges: Sequence[Tuple[float, float]] = None,
845
        biases: np.ndarray = None,
846
        bias_key: str = None,
847
        normalize: bool = None,
848
        span: int = None,
849
        order: int = None,
850
    ):
851
        """1. step of the energy calibration workflow: Load and bin data from
852
        single-event files.
853

854
        Args:
855
            data_files (List[str]): list of file paths to bin
856
            axes (List[str], optional): bin axes.
857
                Defaults to config["dataframe"]["tof_column"].
858
            bins (List, optional): number of bins.
859
                Defaults to config["energy"]["bins"].
860
            ranges (Sequence[Tuple[float, float]], optional): bin ranges.
861
                Defaults to config["energy"]["ranges"].
862
            biases (np.ndarray, optional): Bias voltages used. If missing, bias
863
                voltages are extracted from the data files.
864
            bias_key (str, optional): hdf5 path where bias values are stored.
865
                Defaults to config["energy"]["bias_key"].
866
            normalize (bool, optional): Option to normalize traces.
867
                Defaults to config["energy"]["normalize"].
868
            span (int, optional): span smoothing parameters of the LOESS method
869
                (see ``scipy.signal.savgol_filter()``).
870
                Defaults to config["energy"]["normalize_span"].
871
            order (int, optional): order smoothing parameters of the LOESS method
872
                (see ``scipy.signal.savgol_filter()``).
873
                Defaults to config["energy"]["normalize_order"].
874
        """
875
        self.ec.bin_data(
1✔
876
            data_files=cast(List[str], self.cpy(data_files)),
877
            axes=axes,
878
            bins=bins,
879
            ranges=ranges,
880
            biases=biases,
881
            bias_key=bias_key,
882
        )
883
        if (normalize is not None and normalize is True) or (
1✔
884
            normalize is None and self._config["energy"]["normalize"]
885
        ):
886
            if span is None:
1✔
887
                span = self._config["energy"]["normalize_span"]
1✔
888
            if order is None:
1✔
889
                order = self._config["energy"]["normalize_order"]
1✔
890
            self.ec.normalize(smooth=True, span=span, order=order)
1✔
891
        self.ec.view(
1✔
892
            traces=self.ec.traces_normed,
893
            xaxis=self.ec.tof,
894
            backend="bokeh",
895
        )
896

897
    # 2. extract ranges and get peak positions
898
    def find_bias_peaks(
1✔
899
        self,
900
        ranges: Union[List[Tuple], Tuple],
901
        ref_id: int = 0,
902
        infer_others: bool = True,
903
        mode: str = "replace",
904
        radius: int = None,
905
        peak_window: int = None,
906
        apply: bool = False,
907
    ):
908
        """2. step of the energy calibration workflow: Find a peak within a given range
909
        for the indicated reference trace, and tries to find the same peak for all
910
        other traces. Uses fast_dtw to align curves, which might not be too good if the
911
        shape of curves changes qualitatively. Ideally, choose a reference trace in the
912
        middle of the set, and don't choose the range too narrow around the peak.
913
        Alternatively, a list of ranges for all traces can be provided.
914

915
        Args:
916
            ranges (Union[List[Tuple], Tuple]): Tuple of TOF values indicating a range.
917
                Alternatively, a list of ranges for all traces can be given.
918
            refid (int, optional): The id of the trace the range refers to.
919
                Defaults to 0.
920
            infer_others (bool, optional): Whether to determine the range for the other
921
                traces. Defaults to True.
922
            mode (str, optional): Whether to "add" or "replace" existing ranges.
923
                Defaults to "replace".
924
            radius (int, optional): Radius parameter for fast_dtw.
925
                Defaults to config["energy"]["fastdtw_radius"].
926
            peak_window (int, optional): Peak_window parameter for the peak detection
927
                algorthm. amount of points that have to have to behave monotoneously
928
                around a peak. Defaults to config["energy"]["peak_window"].
929
            apply (bool, optional): Option to directly apply the provided parameters.
930
                Defaults to False.
931
        """
932
        if radius is None:
1✔
933
            radius = self._config["energy"]["fastdtw_radius"]
1✔
934
        if peak_window is None:
1✔
935
            peak_window = self._config["energy"]["peak_window"]
1✔
936
        if not infer_others:
1✔
937
            self.ec.add_ranges(
1✔
938
                ranges=ranges,
939
                ref_id=ref_id,
940
                infer_others=infer_others,
941
                mode=mode,
942
                radius=radius,
943
            )
944
            print(self.ec.featranges)
1✔
945
            try:
1✔
946
                self.ec.feature_extract(peak_window=peak_window)
1✔
947
                self.ec.view(
1✔
948
                    traces=self.ec.traces_normed,
949
                    segs=self.ec.featranges,
950
                    xaxis=self.ec.tof,
951
                    peaks=self.ec.peaks,
952
                    backend="bokeh",
953
                )
954
            except IndexError:
×
955
                print("Could not determine all peaks!")
×
956
                raise
×
957
        else:
958
            # New adjustment tool
959
            assert isinstance(ranges, tuple)
1✔
960
            self.ec.adjust_ranges(
1✔
961
                ranges=ranges,
962
                ref_id=ref_id,
963
                traces=self.ec.traces_normed,
964
                infer_others=infer_others,
965
                radius=radius,
966
                peak_window=peak_window,
967
                apply=apply,
968
            )
969

970
    # 3. Fit the energy calibration relation
971
    def calibrate_energy_axis(
1✔
972
        self,
973
        ref_id: int,
974
        ref_energy: float,
975
        method: str = None,
976
        energy_scale: str = None,
977
        **kwds,
978
    ):
979
        """3. Step of the energy calibration workflow: Calculate the calibration
980
        function for the energy axis, and apply it to the dataframe. Two
981
        approximations are implemented, a (normally 3rd order) polynomial
982
        approximation, and a d^2/(t-t0)^2 relation.
983

984
        Args:
985
            ref_id (int): id of the trace at the bias where the reference energy is
986
                given.
987
            ref_energy (float): Absolute energy of the detected feature at the bias
988
                of ref_id
989
            method (str, optional): Method for determining the energy calibration.
990

991
                - **'lmfit'**: Energy calibration using lmfit and 1/t^2 form.
992
                - **'lstsq'**, **'lsqr'**: Energy calibration using polynomial form.
993

994
                Defaults to config["energy"]["calibration_method"]
995
            energy_scale (str, optional): Direction of increasing energy scale.
996

997
                - **'kinetic'**: increasing energy with decreasing TOF.
998
                - **'binding'**: increasing energy with increasing TOF.
999

1000
                Defaults to config["energy"]["energy_scale"]
1001
        """
1002
        if method is None:
1✔
1003
            method = self._config["energy"]["calibration_method"]
1✔
1004

1005
        if energy_scale is None:
1✔
1006
            energy_scale = self._config["energy"]["energy_scale"]
1✔
1007

1008
        self.ec.calibrate(
1✔
1009
            ref_id=ref_id,
1010
            ref_energy=ref_energy,
1011
            method=method,
1012
            energy_scale=energy_scale,
1013
            **kwds,
1014
        )
1015
        print("Quality of Calibration:")
1✔
1016
        self.ec.view(
1✔
1017
            traces=self.ec.traces_normed,
1018
            xaxis=self.ec.calibration["axis"],
1019
            align=True,
1020
            energy_scale=energy_scale,
1021
            backend="bokeh",
1022
        )
1023
        print("E/TOF relationship:")
1✔
1024
        self.ec.view(
1✔
1025
            traces=self.ec.calibration["axis"][None, :],
1026
            xaxis=self.ec.tof,
1027
            backend="matplotlib",
1028
            show_legend=False,
1029
        )
1030
        if energy_scale == "kinetic":
1✔
1031
            plt.scatter(
1✔
1032
                self.ec.peaks[:, 0],
1033
                -(self.ec.biases - self.ec.biases[ref_id]) + ref_energy,
1034
                s=50,
1035
                c="k",
1036
            )
1037
        elif energy_scale == "binding":
1✔
1038
            plt.scatter(
1✔
1039
                self.ec.peaks[:, 0],
1040
                self.ec.biases - self.ec.biases[ref_id] + ref_energy,
1041
                s=50,
1042
                c="k",
1043
            )
1044
        else:
1045
            raise ValueError(
×
1046
                'energy_scale needs to be either "binding" or "kinetic"',
1047
                f", got {energy_scale}.",
1048
            )
1049
        plt.xlabel("Time-of-flight", fontsize=15)
1✔
1050
        plt.ylabel("Energy (eV)", fontsize=15)
1✔
1051
        plt.show()
1✔
1052

1053
    # 3a. Save energy calibration parameters to config file.
1054
    def save_energy_calibration(
1✔
1055
        self,
1056
        filename: str = None,
1057
        overwrite: bool = False,
1058
    ):
1059
        """Save the generated energy calibration parameters to the folder config file.
1060

1061
        Args:
1062
            filename (str, optional): Filename of the config dictionary to save to.
1063
                Defaults to "sed_config.yaml" in the current folder.
1064
            overwrite (bool, optional): Option to overwrite the present dictionary.
1065
                Defaults to False.
1066
        """
1067
        if filename is None:
1✔
1068
            filename = "sed_config.yaml"
1✔
1069
        calibration = {}
1✔
1070
        try:
1✔
1071
            for (key, value) in self.ec.calibration.items():
1✔
1072
                if key in ["axis", "refid", "Tmat", "bvec"]:
1✔
1073
                    continue
1✔
1074
                if key == "energy_scale":
1✔
1075
                    calibration[key] = value
1✔
1076
                elif key == "coeffs":
1✔
1077
                    calibration[key] = [float(i) for i in value]
1✔
1078
                else:
1079
                    calibration[key] = float(value)
1✔
1080
        except AttributeError as exc:
×
1081
            raise AttributeError(
×
1082
                "Energy calibration parameters not found, need to generate parameters first!",
1083
            ) from exc
1084

1085
        config = {"energy": {"calibration": calibration}}
1✔
1086
        save_config(config, filename, overwrite)
1✔
1087

1088
    # 4. Apply energy calibration to the dataframe
1089
    def append_energy_axis(
1✔
1090
        self,
1091
        calibration: dict = None,
1092
        preview: bool = False,
1093
        **kwds,
1094
    ):
1095
        """4. step of the energy calibration workflow: Apply the calibration function
1096
        to to the dataframe. Two approximations are implemented, a (normally 3rd order)
1097
        polynomial approximation, and a d^2/(t-t0)^2 relation. a calibration dictionary
1098
        can be provided.
1099

1100
        Args:
1101
            calibration (dict, optional): Calibration dict containing calibration
1102
                parameters. Overrides calibration from class or config.
1103
                Defaults to None.
1104
            preview (bool): Option to preview the first elements of the data frame.
1105
            **kwds:
1106
                Keyword args passed to ``EnergyCalibrator.append_energy_axis``.
1107
        """
1108
        if self._dataframe is not None:
1✔
1109
            print("Adding energy column to dataframe:")
1✔
1110
            self._dataframe, metadata = self.ec.append_energy_axis(
1✔
1111
                df=self._dataframe,
1112
                calibration=calibration,
1113
                **kwds,
1114
            )
1115

1116
            # Add Metadata
1117
            self._attributes.add(
1✔
1118
                metadata,
1119
                "energy_calibration",
1120
                duplicate_policy="merge",
1121
            )
1122
            if preview:
1✔
1123
                print(self._dataframe.head(10))
1✔
1124
            else:
1125
                print(self._dataframe)
1✔
1126

1127
    # Delay calibration function
1128
    def calibrate_delay_axis(
1✔
1129
        self,
1130
        delay_range: Tuple[float, float] = None,
1131
        datafile: str = None,
1132
        preview: bool = False,
1133
        **kwds,
1134
    ):
1135
        """Append delay column to dataframe. Either provide delay ranges, or read
1136
        them from a file.
1137

1138
        Args:
1139
            delay_range (Tuple[float, float], optional): The scanned delay range in
1140
                picoseconds. Defaults to None.
1141
            datafile (str, optional): The file from which to read the delay ranges.
1142
                Defaults to None.
1143
            preview (bool): Option to preview the first elements of the data frame.
1144
            **kwds: Keyword args passed to ``DelayCalibrator.append_delay_axis``.
1145
        """
1146
        if self._dataframe is not None:
1✔
1147
            print("Adding delay column to dataframe:")
1✔
1148

1149
            if delay_range is not None:
1✔
1150
                self._dataframe, metadata = self.dc.append_delay_axis(
1✔
1151
                    self._dataframe,
1152
                    delay_range=delay_range,
1153
                    **kwds,
1154
                )
1155
            else:
1156
                if datafile is None:
1✔
1157
                    try:
1✔
1158
                        datafile = self._files[0]
1✔
1159
                    except IndexError:
×
1160
                        print(
×
1161
                            "No datafile available, specify eihter",
1162
                            " 'datafile' or 'delay_range'",
1163
                        )
1164
                        raise
×
1165

1166
                self._dataframe, metadata = self.dc.append_delay_axis(
1✔
1167
                    self._dataframe,
1168
                    datafile=datafile,
1169
                    **kwds,
1170
                )
1171

1172
            # Add Metadata
1173
            self._attributes.add(
1✔
1174
                metadata,
1175
                "delay_calibration",
1176
                duplicate_policy="merge",
1177
            )
1178
            if preview:
1✔
1179
                print(self._dataframe.head(10))
1✔
1180
            else:
1181
                print(self._dataframe)
1✔
1182

1183
    def add_jitter(self, cols: Sequence[str] = None):
1✔
1184
        """Add jitter to the selected dataframe columns.
1185

1186
        Args:
1187
            cols (Sequence[str], optional): The colums onto which to apply jitter.
1188
                Defaults to config["dataframe"]["jitter_cols"].
1189
        """
1190
        if cols is None:
1✔
1191
            cols = self._config["dataframe"].get(
1✔
1192
                "jitter_cols",
1193
                self._dataframe.columns,
1194
            )  # jitter all columns
1195

1196
        self._dataframe = self._dataframe.map_partitions(
1✔
1197
            apply_jitter,
1198
            cols=cols,
1199
            cols_jittered=cols,
1200
        )
1201
        metadata = []
1✔
1202
        for col in cols:
1✔
1203
            metadata.append(col)
1✔
1204
        self._attributes.add(metadata, "jittering", duplicate_policy="append")
1✔
1205

1206
    def pre_binning(
1✔
1207
        self,
1208
        df_partitions: int = 100,
1209
        axes: List[str] = None,
1210
        bins: List[int] = None,
1211
        ranges: Sequence[Tuple[float, float]] = None,
1212
        **kwds,
1213
    ) -> xr.DataArray:
1214
        """Function to do an initial binning of the dataframe loaded to the class.
1215

1216
        Args:
1217
            df_partitions (int, optional): Number of dataframe partitions to use for
1218
                the initial binning. Defaults to 100.
1219
            axes (List[str], optional): Axes to bin.
1220
                Defaults to config["momentum"]["axes"].
1221
            bins (List[int], optional): Bin numbers to use for binning.
1222
                Defaults to config["momentum"]["bins"].
1223
            ranges (List[Tuple], optional): Ranges to use for binning.
1224
                Defaults to config["momentum"]["ranges"].
1225
            **kwds: Keyword argument passed to ``compute``.
1226

1227
        Returns:
1228
            xr.DataArray: pre-binned data-array.
1229
        """
1230
        if axes is None:
1✔
1231
            axes = self._config["momentum"]["axes"]
1✔
1232
        for loc, axis in enumerate(axes):
1✔
1233
            if axis.startswith("@"):
1✔
1234
                axes[loc] = self._config["dataframe"].get(axis.strip("@"))
1✔
1235

1236
        if bins is None:
1✔
1237
            bins = self._config["momentum"]["bins"]
1✔
1238
        if ranges is None:
1✔
1239
            ranges_ = list(self._config["momentum"]["ranges"])
1✔
1240
            ranges_[2] = np.asarray(ranges_[2]) / 2 ** (
1✔
1241
                self._config["dataframe"]["tof_binning"] - 1
1242
            )
1243
            ranges = [cast(Tuple[float, float], tuple(v)) for v in ranges_]
1✔
1244

1245
        assert self._dataframe is not None, "dataframe needs to be loaded first!"
1✔
1246

1247
        return self.compute(
1✔
1248
            bins=bins,
1249
            axes=axes,
1250
            ranges=ranges,
1251
            df_partitions=df_partitions,
1252
            **kwds,
1253
        )
1254

1255
    def compute(
1✔
1256
        self,
1257
        bins: Union[
1258
            int,
1259
            dict,
1260
            tuple,
1261
            List[int],
1262
            List[np.ndarray],
1263
            List[tuple],
1264
        ] = 100,
1265
        axes: Union[str, Sequence[str]] = None,
1266
        ranges: Sequence[Tuple[float, float]] = None,
1267
        **kwds,
1268
    ) -> xr.DataArray:
1269
        """Compute the histogram along the given dimensions.
1270

1271
        Args:
1272
            bins (int, dict, tuple, List[int], List[np.ndarray], List[tuple], optional):
1273
                Definition of the bins. Can be any of the following cases:
1274

1275
                - an integer describing the number of bins in on all dimensions
1276
                - a tuple of 3 numbers describing start, end and step of the binning
1277
                  range
1278
                - a np.arrays defining the binning edges
1279
                - a list (NOT a tuple) of any of the above (int, tuple or np.ndarray)
1280
                - a dictionary made of the axes as keys and any of the above as values.
1281

1282
                This takes priority over the axes and range arguments. Defaults to 100.
1283
            axes (Union[str, Sequence[str]], optional): The names of the axes (columns)
1284
                on which to calculate the histogram. The order will be the order of the
1285
                dimensions in the resulting array. Defaults to None.
1286
            ranges (Sequence[Tuple[float, float]], optional): list of tuples containing
1287
                the start and end point of the binning range. Defaults to None.
1288
            **kwds: Keyword arguments:
1289

1290
                - **hist_mode**: Histogram calculation method. "numpy" or "numba". See
1291
                  ``bin_dataframe`` for details. Defaults to
1292
                  config["binning"]["hist_mode"].
1293
                - **mode**: Defines how the results from each partition are combined.
1294
                  "fast", "lean" or "legacy". See ``bin_dataframe`` for details.
1295
                  Defaults to config["binning"]["mode"].
1296
                - **pbar**: Option to show the tqdm progress bar. Defaults to
1297
                  config["binning"]["pbar"].
1298
                - **n_cores**: Number of CPU cores to use for parallelization.
1299
                  Defaults to config["binning"]["num_cores"] or N_CPU-1.
1300
                - **threads_per_worker**: Limit the number of threads that
1301
                  multiprocessing can spawn per binning thread. Defaults to
1302
                  config["binning"]["threads_per_worker"].
1303
                - **threadpool_api**: The API to use for multiprocessing. "blas",
1304
                  "openmp" or None. See ``threadpool_limit`` for details. Defaults to
1305
                  config["binning"]["threadpool_API"].
1306
                - **df_partitions**: A list of dataframe partitions. Defaults to all
1307
                  partitions.
1308

1309
                Additional kwds are passed to ``bin_dataframe``.
1310

1311
        Raises:
1312
            AssertError: Rises when no dataframe has been loaded.
1313

1314
        Returns:
1315
            xr.DataArray: The result of the n-dimensional binning represented in an
1316
            xarray object, combining the data with the axes.
1317
        """
1318
        assert self._dataframe is not None, "dataframe needs to be loaded first!"
1✔
1319

1320
        hist_mode = kwds.pop("hist_mode", self._config["binning"]["hist_mode"])
1✔
1321
        mode = kwds.pop("mode", self._config["binning"]["mode"])
1✔
1322
        pbar = kwds.pop("pbar", self._config["binning"]["pbar"])
1✔
1323
        num_cores = kwds.pop("num_cores", self._config["binning"]["num_cores"])
1✔
1324
        threads_per_worker = kwds.pop(
1✔
1325
            "threads_per_worker",
1326
            self._config["binning"]["threads_per_worker"],
1327
        )
1328
        threadpool_api = kwds.pop(
1✔
1329
            "threadpool_API",
1330
            self._config["binning"]["threadpool_API"],
1331
        )
1332
        df_partitions = kwds.pop("df_partitions", None)
1✔
1333
        if df_partitions is not None:
1✔
1334
            dataframe = self._dataframe.partitions[
1✔
1335
                0 : min(df_partitions, self._dataframe.npartitions)
1336
            ]
1337
        else:
1338
            dataframe = self._dataframe
1✔
1339

1340
        self._binned = bin_dataframe(
1✔
1341
            df=dataframe,
1342
            bins=bins,
1343
            axes=axes,
1344
            ranges=ranges,
1345
            hist_mode=hist_mode,
1346
            mode=mode,
1347
            pbar=pbar,
1348
            n_cores=num_cores,
1349
            threads_per_worker=threads_per_worker,
1350
            threadpool_api=threadpool_api,
1351
            **kwds,
1352
        )
1353

1354
        for dim in self._binned.dims:
1✔
1355
            try:
1✔
1356
                self._binned[dim].attrs["unit"] = self._config["dataframe"]["units"][dim]
1✔
1357
            except KeyError:
1✔
1358
                pass
1✔
1359

1360
        self._binned.attrs["units"] = "counts"
1✔
1361
        self._binned.attrs["long_name"] = "photoelectron counts"
1✔
1362
        self._binned.attrs["metadata"] = self._attributes.metadata
1✔
1363

1364
        return self._binned
1✔
1365

1366
    def view_event_histogram(
1✔
1367
        self,
1368
        dfpid: int,
1369
        ncol: int = 2,
1370
        bins: Sequence[int] = None,
1371
        axes: Sequence[str] = None,
1372
        ranges: Sequence[Tuple[float, float]] = None,
1373
        backend: str = "bokeh",
1374
        legend: bool = True,
1375
        histkwds: dict = None,
1376
        legkwds: dict = None,
1377
        **kwds,
1378
    ):
1379
        """Plot individual histograms of specified dimensions (axes) from a substituent
1380
        dataframe partition.
1381

1382
        Args:
1383
            dfpid (int): Number of the data frame partition to look at.
1384
            ncol (int, optional): Number of columns in the plot grid. Defaults to 2.
1385
            bins (Sequence[int], optional): Number of bins to use for the speicified
1386
                axes. Defaults to config["histogram"]["bins"].
1387
            axes (Sequence[str], optional): Names of the axes to display.
1388
                Defaults to config["histogram"]["axes"].
1389
            ranges (Sequence[Tuple[float, float]], optional): Value ranges of all
1390
                specified axes. Defaults toconfig["histogram"]["ranges"].
1391
            backend (str, optional): Backend of the plotting library
1392
                ('matplotlib' or 'bokeh'). Defaults to "bokeh".
1393
            legend (bool, optional): Option to include a legend in the histogram plots.
1394
                Defaults to True.
1395
            histkwds (dict, optional): Keyword arguments for histograms
1396
                (see ``matplotlib.pyplot.hist()``). Defaults to {}.
1397
            legkwds (dict, optional): Keyword arguments for legend
1398
                (see ``matplotlib.pyplot.legend()``). Defaults to {}.
1399
            **kwds: Extra keyword arguments passed to
1400
                ``sed.diagnostics.grid_histogram()``.
1401

1402
        Raises:
1403
            TypeError: Raises when the input values are not of the correct type.
1404
        """
1405
        if bins is None:
1✔
1406
            bins = self._config["histogram"]["bins"]
1✔
1407
        if axes is None:
1✔
1408
            axes = self._config["histogram"]["axes"]
1✔
1409
        axes = list(axes)
1✔
1410
        for loc, axis in enumerate(axes):
1✔
1411
            if axis.startswith("@"):
1✔
1412
                axes[loc] = self._config["dataframe"].get(axis.strip("@"))
1✔
1413
        if ranges is None:
1✔
1414
            ranges = list(self._config["histogram"]["ranges"])
1✔
1415
            for loc, axis in enumerate(axes):
1✔
1416
                if axis == self._config["dataframe"]["tof_column"]:
1✔
1417
                    ranges[loc] = np.asarray(ranges[loc]) / 2 ** (
1✔
1418
                        self._config["dataframe"]["tof_binning"] - 1
1419
                    )
1420
                elif axis == self._config["dataframe"]["adc_column"]:
1✔
1421
                    ranges[loc] = np.asarray(ranges[loc]) / 2 ** (
×
1422
                        self._config["dataframe"]["adc_binning"] - 1
1423
                    )
1424

1425
        input_types = map(type, [axes, bins, ranges])
1✔
1426
        allowed_types = [list, tuple]
1✔
1427

1428
        df = self._dataframe
1✔
1429

1430
        if not set(input_types).issubset(allowed_types):
1✔
1431
            raise TypeError(
×
1432
                "Inputs of axes, bins, ranges need to be list or tuple!",
1433
            )
1434

1435
        # Read out the values for the specified groups
1436
        group_dict_dd = {}
1✔
1437
        dfpart = df.get_partition(dfpid)
1✔
1438
        cols = dfpart.columns
1✔
1439
        for ax in axes:
1✔
1440
            group_dict_dd[ax] = dfpart.values[:, cols.get_loc(ax)]
1✔
1441
        group_dict = ddf.compute(group_dict_dd)[0]
1✔
1442

1443
        # Plot multiple histograms in a grid
1444
        grid_histogram(
1✔
1445
            group_dict,
1446
            ncol=ncol,
1447
            rvs=axes,
1448
            rvbins=bins,
1449
            rvranges=ranges,
1450
            backend=backend,
1451
            legend=legend,
1452
            histkwds=histkwds,
1453
            legkwds=legkwds,
1454
            **kwds,
1455
        )
1456

1457
    def save(
1✔
1458
        self,
1459
        faddr: str,
1460
        **kwds,
1461
    ):
1462
        """Saves the binned data to the provided path and filename.
1463

1464
        Args:
1465
            faddr (str): Path and name of the file to write. Its extension determines
1466
                the file type to write. Valid file types are:
1467

1468
                - "*.tiff", "*.tif": Saves a TIFF stack.
1469
                - "*.h5", "*.hdf5": Saves an HDF5 file.
1470
                - "*.nxs", "*.nexus": Saves a NeXus file.
1471

1472
            **kwds: Keyword argumens, which are passed to the writer functions:
1473
                For TIFF writing:
1474

1475
                - **alias_dict**: Dictionary of dimension aliases to use.
1476

1477
                For HDF5 writing:
1478

1479
                - **mode**: hdf5 read/write mode. Defaults to "w".
1480

1481
                For NeXus:
1482

1483
                - **reader**: Name of the nexustools reader to use.
1484
                  Defaults to config["nexus"]["reader"]
1485
                - **definiton**: NeXus application definition to use for saving.
1486
                  Must be supported by the used ``reader``. Defaults to
1487
                  config["nexus"]["definition"]
1488
                - **input_files**: A list of input files to pass to the reader.
1489
                  Defaults to config["nexus"]["input_files"]
1490
                - **eln_data**: An electronic-lab-notebook file in '.yaml' format
1491
                  to add to the list of files to pass to the reader.
1492
        """
1493
        if self._binned is None:
1✔
1494
            raise NameError("Need to bin data first!")
1✔
1495

1496
        extension = pathlib.Path(faddr).suffix
1✔
1497

1498
        if extension in (".tif", ".tiff"):
1✔
1499
            to_tiff(
1✔
1500
                data=self._binned,
1501
                faddr=faddr,
1502
                **kwds,
1503
            )
1504
        elif extension in (".h5", ".hdf5"):
1✔
1505
            to_h5(
1✔
1506
                data=self._binned,
1507
                faddr=faddr,
1508
                **kwds,
1509
            )
1510
        elif extension in (".nxs", ".nexus"):
1✔
1511
            try:
1✔
1512
                reader = kwds.pop("reader", self._config["nexus"]["reader"])
1✔
1513
                definition = kwds.pop(
1✔
1514
                    "definition",
1515
                    self._config["nexus"]["definition"],
1516
                )
1517
                input_files = kwds.pop(
1✔
1518
                    "input_files",
1519
                    self._config["nexus"]["input_files"],
1520
                )
1521
            except KeyError as exc:
×
1522
                raise ValueError(
×
1523
                    "The nexus reader, definition and input files need to be provide!",
1524
                ) from exc
1525

1526
            if isinstance(input_files, str):
1✔
1527
                input_files = [input_files]
1✔
1528

1529
            if "eln_data" in kwds:
1✔
1530
                input_files.append(kwds.pop("eln_data"))
×
1531

1532
            to_nexus(
1✔
1533
                data=self._binned,
1534
                faddr=faddr,
1535
                reader=reader,
1536
                definition=definition,
1537
                input_files=input_files,
1538
                **kwds,
1539
            )
1540

1541
        else:
1542
            raise NotImplementedError(
1✔
1543
                f"Unrecognized file format: {extension}.",
1544
            )
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc