• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

tarantool / luajit / 5784751762

07 Aug 2023 11:54AM UTC coverage: 84.282% (-3.1%) from 87.373%
5784751762

push

github

ligurio
setup-gcovr [TO SQUASH]

5157 of 6002 branches covered (85.92%)

Branch coverage included in aggregate %.

19632 of 23410 relevant lines covered (83.86%)

229380.51 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

53.03
/src/lj_opt_narrow.c
1
/*
2
** NARROW: Narrowing of numbers to integers (double to int32_t).
3
** STRIPOV: Stripping of overflow checks.
4
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
5
*/
6

7
#define lj_opt_narrow_c
8
#define LUA_CORE
9

10
#include "lj_obj.h"
11

12
#if LJ_HASJIT
13

14
#include "lj_bc.h"
15
#include "lj_ir.h"
16
#include "lj_jit.h"
17
#include "lj_iropt.h"
18
#include "lj_trace.h"
19
#include "lj_vm.h"
20
#include "lj_strscan.h"
21

22
/* Rationale for narrowing optimizations:
23
**
24
** Lua has only a single number type and this is a FP double by default.
25
** Narrowing doubles to integers does not pay off for the interpreter on a
26
** current-generation x86/x64 machine. Most FP operations need the same
27
** amount of execution resources as their integer counterparts, except
28
** with slightly longer latencies. Longer latencies are a non-issue for
29
** the interpreter, since they are usually hidden by other overhead.
30
**
31
** The total CPU execution bandwidth is the sum of the bandwidth of the FP
32
** and the integer units, because they execute in parallel. The FP units
33
** have an equal or higher bandwidth than the integer units. Not using
34
** them means losing execution bandwidth. Moving work away from them to
35
** the already quite busy integer units is a losing proposition.
36
**
37
** The situation for JIT-compiled code is a bit different: the higher code
38
** density makes the extra latencies much more visible. Tight loops expose
39
** the latencies for updating the induction variables. Array indexing
40
** requires narrowing conversions with high latencies and additional
41
** guards (to check that the index is really an integer). And many common
42
** optimizations only work on integers.
43
**
44
** One solution would be speculative, eager narrowing of all number loads.
45
** This causes many problems, like losing -0 or the need to resolve type
46
** mismatches between traces. It also effectively forces the integer type
47
** to have overflow-checking semantics. This impedes many basic
48
** optimizations and requires adding overflow checks to all integer
49
** arithmetic operations (whereas FP arithmetics can do without).
50
**
51
** Always replacing an FP op with an integer op plus an overflow check is
52
** counter-productive on a current-generation super-scalar CPU. Although
53
** the overflow check branches are highly predictable, they will clog the
54
** execution port for the branch unit and tie up reorder buffers. This is
55
** turning a pure data-flow dependency into a different data-flow
56
** dependency (with slightly lower latency) *plus* a control dependency.
57
** In general, you don't want to do this since latencies due to data-flow
58
** dependencies can be well hidden by out-of-order execution.
59
**
60
** A better solution is to keep all numbers as FP values and only narrow
61
** when it's beneficial to do so. LuaJIT uses predictive narrowing for
62
** induction variables and demand-driven narrowing for index expressions,
63
** integer arguments and bit operations. Additionally it can eliminate or
64
** hoist most of the resulting overflow checks. Regular arithmetic
65
** computations are never narrowed to integers.
66
**
67
** The integer type in the IR has convenient wrap-around semantics and
68
** ignores overflow. Extra operations have been added for
69
** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type.
70
** Apart from reducing overall complexity of the compiler, this also
71
** nicely solves the problem where you want to apply algebraic
72
** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can
73
** use lea instead of an add for integer ADD, but not for ADDOV (lea does
74
** not affect the flags, but it helps to avoid register moves).
75
**
76
**
77
** All of the above has to be reconsidered for architectures with slow FP
78
** operations or without a hardware FPU. The dual-number mode of LuaJIT
79
** addresses this issue. Arithmetic operations are performed on integers
80
** as far as possible and overflow checks are added as needed.
81
**
82
** This implies that narrowing for integer arguments and bit operations
83
** should also strip overflow checks, e.g. replace ADDOV with ADD. The
84
** original overflow guards are weak and can be eliminated by DCE, if
85
** there's no other use.
86
**
87
** A slight twist is that it's usually beneficial to use overflow-checked
88
** integer arithmetics if all inputs are already integers. This is the only
89
** change that affects the single-number mode, too.
90
*/
91

92
/* Some local macros to save typing. Undef'd at the end. */
93
#define IR(ref)                        (&J->cur.ir[(ref)])
94
#define fins                        (&J->fold.ins)
95

96
/* Pass IR on to next optimization in chain (FOLD). */
97
#define emitir(ot, a, b)        (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
98

99
#define emitir_raw(ot, a, b)        (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J))
100

101
/* -- Elimination of narrowing type conversions --------------------------- */
102

103
/* Narrowing of index expressions and bit operations is demand-driven. The
104
** trace recorder emits a narrowing type conversion (CONV.int.num or TOBIT)
105
** in all of these cases (e.g. array indexing or string indexing). FOLD
106
** already takes care of eliminating simple redundant conversions like
107
** CONV.int.num(CONV.num.int(x)) ==> x.
108
**
109
** But the surrounding code is FP-heavy and arithmetic operations are
110
** performed on FP numbers (for the single-number mode). Consider a common
111
** example such as 'x=t[i+1]', with 'i' already an integer (due to induction
112
** variable narrowing). The index expression would be recorded as
113
**   CONV.int.num(ADD(CONV.num.int(i), 1))
114
** which is clearly suboptimal.
115
**
116
** One can do better by recursively backpropagating the narrowing type
117
** conversion across FP arithmetic operations. This turns FP ops into
118
** their corresponding integer counterparts. Depending on the semantics of
119
** the conversion they also need to check for overflow. Currently only ADD
120
** and SUB are supported.
121
**
122
** The above example can be rewritten as
123
**   ADDOV(CONV.int.num(CONV.num.int(i)), 1)
124
** and then into ADDOV(i, 1) after folding of the conversions. The original
125
** FP ops remain in the IR and are eliminated by DCE since all references to
126
** them are gone.
127
**
128
** [In dual-number mode the trace recorder already emits ADDOV etc., but
129
** this can be further reduced. See below.]
130
**
131
** Special care has to be taken to avoid narrowing across an operation
132
** which is potentially operating on non-integral operands. One obvious
133
** case is when an expression contains a non-integral constant, but ends
134
** up as an integer index at runtime (like t[x+1.5] with x=0.5).
135
**
136
** Operations with two non-constant operands illustrate a similar problem
137
** (like t[a+b] with a=1.5 and b=2.5). Backpropagation has to stop there,
138
** unless it can be proven that either operand is integral (e.g. by CSEing
139
** a previous conversion). As a not-so-obvious corollary this logic also
140
** applies for a whole expression tree (e.g. t[(a+1)+(b+1)]).
141
**
142
** Correctness of the transformation is guaranteed by avoiding to expand
143
** the tree by adding more conversions than the one we would need to emit
144
** if not backpropagating. TOBIT employs a more optimistic rule, because
145
** the conversion has special semantics, designed to make the life of the
146
** compiler writer easier. ;-)
147
**
148
** Using on-the-fly backpropagation of an expression tree doesn't work
149
** because it's unknown whether the transform is correct until the end.
150
** This either requires IR rollback and cache invalidation for every
151
** subtree or a two-pass algorithm. The former didn't work out too well,
152
** so the code now combines a recursive collector with a stack-based
153
** emitter.
154
**
155
** [A recursive backpropagation algorithm with backtracking, employing
156
** skip-list lookup and round-robin caching, emitting stack operations
157
** on-the-fly for a stack-based interpreter -- and all of that in a meager
158
** kilobyte? Yep, compilers are a great treasure chest. Throw away your
159
** textbooks and read the codebase of a compiler today!]
160
**
161
** There's another optimization opportunity for array indexing: it's
162
** always accompanied by an array bounds-check. The outermost overflow
163
** check may be delegated to the ABC operation. This works because ABC is
164
** an unsigned comparison and wrap-around due to overflow creates negative
165
** numbers.
166
**
167
** But this optimization is only valid for constants that cannot overflow
168
** an int32_t into the range of valid array indexes [0..2^27+1). A check
169
** for +-2^30 is safe since -2^31 - 2^30 wraps to 2^30 and 2^31-1 + 2^30
170
** wraps to -2^30-1.
171
**
172
** It's also good enough in practice, since e.g. t[i+1] or t[i-10] are
173
** quite common. So the above example finally ends up as ADD(i, 1)!
174
**
175
** Later on, the assembler is able to fuse the whole array reference and
176
** the ADD into the memory operands of loads and other instructions. This
177
** is why LuaJIT is able to generate very pretty (and fast) machine code
178
** for array indexing. And that, my dear, concludes another story about
179
** one of the hidden secrets of LuaJIT ...
180
*/
181

182
/* Maximum backpropagation depth and maximum stack size. */
183
#define NARROW_MAX_BACKPROP        100
184
#define NARROW_MAX_STACK        256
185

186
/* The stack machine has a 32 bit instruction format: [IROpT | IRRef1]
187
** The lower 16 bits hold a reference (or 0). The upper 16 bits hold
188
** the IR opcode + type or one of the following special opcodes:
189
*/
190
enum {
191
  NARROW_REF,                /* Push ref. */
192
  NARROW_CONV,                /* Push conversion of ref. */
193
  NARROW_SEXT,                /* Push sign-extension of ref. */
194
  NARROW_INT                /* Push KINT ref. The next code holds an int32_t. */
195
};
196

197
typedef uint32_t NarrowIns;
198

199
#define NARROWINS(op, ref)        (((op) << 16) + (ref))
200
#define narrow_op(ins)                ((IROpT)((ins) >> 16))
201
#define narrow_ref(ins)                ((IRRef1)(ins))
202

203
/* Context used for narrowing of type conversions. */
204
typedef struct NarrowConv {
205
  jit_State *J;                /* JIT compiler state. */
206
  NarrowIns *sp;        /* Current stack pointer. */
207
  NarrowIns *maxsp;        /* Maximum stack pointer minus redzone. */
208
  IRRef mode;                /* Conversion mode (IRCONV_*). */
209
  IRType t;                /* Destination type: IRT_INT or IRT_I64. */
210
  NarrowIns stack[NARROW_MAX_STACK];  /* Stack holding stack-machine code. */
211
} NarrowConv;
212

213
/* Lookup a reference in the backpropagation cache. */
214
static BPropEntry *narrow_bpc_get(jit_State *J, IRRef1 key, IRRef mode)
50✔
215
{
216
  ptrdiff_t i;
50✔
217
  for (i = 0; i < BPROP_SLOTS; i++) {
588✔
218
    BPropEntry *bp = &J->bpropcache[i];
567✔
219
    /* Stronger checks are ok, too. */
220
    if (bp->key == key && bp->mode >= mode &&
567✔
221
        ((bp->mode ^ mode) & IRCONV_MODEMASK) == 0)
29✔
222
      return bp;
223
  }
224
  return NULL;
225
}
226

227
/* Add an entry to the backpropagation cache. */
228
static void narrow_bpc_set(jit_State *J, IRRef1 key, IRRef1 val, IRRef mode)
21✔
229
{
230
  uint32_t slot = J->bpropslot;
21✔
231
  BPropEntry *bp = &J->bpropcache[slot];
21✔
232
  J->bpropslot = (slot + 1) & (BPROP_SLOTS-1);
21✔
233
  bp->key = key;
21✔
234
  bp->val = val;
21✔
235
  bp->mode = mode;
21✔
236
}
21✔
237

238
/* Backpropagate overflow stripping. */
239
static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth)
×
240
{
241
  jit_State *J = nc->J;
×
242
  IRIns *ir = IR(ref);
×
243
  if (ir->o == IR_ADDOV || ir->o == IR_SUBOV ||
×
244
      (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) {
×
245
    BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT);
×
246
    if (bp) {
×
247
      ref = bp->val;
×
248
    } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
×
249
      NarrowIns *savesp = nc->sp;
×
250
      narrow_stripov_backprop(nc, ir->op1, depth);
×
251
      if (nc->sp < nc->maxsp) {
×
252
        narrow_stripov_backprop(nc, ir->op2, depth);
×
253
        if (nc->sp < nc->maxsp) {
×
254
          *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref);
×
255
          return;
×
256
        }
257
      }
258
      nc->sp = savesp;  /* Path too deep, need to backtrack. */
×
259
    }
260
  }
261
  *nc->sp++ = NARROWINS(NARROW_REF, ref);
×
262
}
263

264
/* Backpropagate narrowing conversion. Return number of needed conversions. */
265
static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth)
83✔
266
{
267
  jit_State *J = nc->J;
83✔
268
  IRIns *ir = IR(ref);
83✔
269
  IRRef cref;
83✔
270

271
  if (nc->sp >= nc->maxsp) return 10;  /* Path too deep. */
83✔
272

273
  /* Check the easy cases first. */
274
  if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) {
83✔
275
    if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY)
×
276
      narrow_stripov_backprop(nc, ir->op1, depth+1);
×
277
    else
278
      *nc->sp++ = NARROWINS(NARROW_REF, ir->op1);  /* Undo conversion. */
×
279
    if (nc->t == IRT_I64)
×
280
      *nc->sp++ = NARROWINS(NARROW_SEXT, 0);  /* Sign-extend integer. */
×
281
    return 0;
×
282
  } else if (ir->o == IR_KNUM) {  /* Narrow FP constant. */
83✔
283
    lua_Number n = ir_knum(ir)->n;
21✔
284
    if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) {
21✔
285
      /* Allows a wider range of constants. */
286
      int64_t k64 = (int64_t)n;
×
287
      if (n == (lua_Number)k64) {  /* Only if const doesn't lose precision. */
×
288
        *nc->sp++ = NARROWINS(NARROW_INT, 0);
×
289
        *nc->sp++ = (NarrowIns)k64;  /* But always truncate to 32 bits. */
×
290
        return 0;
×
291
      }
292
    } else {
293
      int32_t k = lj_num2int(n);
21✔
294
      /* Only if constant is a small integer. */
295
      if (checki16(k) && n == (lua_Number)k) {
21✔
296
        *nc->sp++ = NARROWINS(NARROW_INT, 0);
21✔
297
        *nc->sp++ = (NarrowIns)k;
21✔
298
        return 0;
21✔
299
      }
300
    }
301
    return 10;  /* Never narrow other FP constants (this is rare). */
302
  }
303

304
  /* Try to CSE the conversion. Stronger checks are ok, too. */
305
  cref = J->chain[fins->o];
62✔
306
  while (cref > ref) {
76✔
307
    IRIns *cr = IR(cref);
14✔
308
    if (cr->op1 == ref &&
14✔
309
        (fins->o == IR_TOBIT ||
×
310
         ((cr->op2 & IRCONV_MODEMASK) == (nc->mode & IRCONV_MODEMASK) &&
×
311
          irt_isguard(cr->t) >= irt_isguard(fins->t)))) {
×
312
      *nc->sp++ = NARROWINS(NARROW_REF, cref);
×
313
      return 0;  /* Already there, no additional conversion needed. */
×
314
    }
315
    cref = cr->prev;
14✔
316
  }
317

318
  /* Backpropagate across ADD/SUB. */
319
  if (ir->o == IR_ADD || ir->o == IR_SUB) {
62✔
320
    /* Try cache lookup first. */
321
    IRRef mode = nc->mode;
50✔
322
    BPropEntry *bp;
50✔
323
    /* Inner conversions need a stronger check. */
324
    if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX && depth > 0)
50✔
325
      mode += IRCONV_CHECK-IRCONV_INDEX;
×
326
    bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
50✔
327
    if (bp) {
50✔
328
      *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
29✔
329
      return 0;
29✔
330
    } else if (nc->t == IRT_I64) {
21✔
331
      /* Try sign-extending from an existing (checked) conversion to int. */
332
      mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX;
×
333
      bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
×
334
      if (bp) {
×
335
        *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
×
336
        *nc->sp++ = NARROWINS(NARROW_SEXT, 0);
×
337
        return 0;
×
338
      }
339
    }
340
    if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
21✔
341
      NarrowIns *savesp = nc->sp;
21✔
342
      int count = narrow_conv_backprop(nc, ir->op1, depth);
21✔
343
      count += narrow_conv_backprop(nc, ir->op2, depth);
21✔
344
      if (count <= 1) {  /* Limit total number of conversions. */
21✔
345
        *nc->sp++ = NARROWINS(IRT(ir->o, nc->t), ref);
21✔
346
        return count;
21✔
347
      }
348
      nc->sp = savesp;  /* Too many conversions, need to backtrack. */
×
349
    }
350
  }
351

352
  /* Otherwise add a conversion. */
353
  *nc->sp++ = NARROWINS(NARROW_CONV, ref);
12✔
354
  return 1;
12✔
355
}
356

357
/* Emit the conversions collected during backpropagation. */
358
static IRRef narrow_conv_emit(jit_State *J, NarrowConv *nc)
41✔
359
{
360
  /* The fins fields must be saved now -- emitir() overwrites them. */
361
  IROpT guardot = irt_isguard(fins->t) ? IRTG(IR_ADDOV-IR_ADD, 0) : 0;
41✔
362
  IROpT convot = fins->ot;
41✔
363
  IRRef1 convop2 = fins->op2;
41✔
364
  NarrowIns *next = nc->stack;  /* List of instructions from backpropagation. */
41✔
365
  NarrowIns *last = nc->sp;
41✔
366
  NarrowIns *sp = nc->stack;  /* Recycle the stack to store operands. */
41✔
367
  while (next < last) {  /* Simple stack machine to process the ins. list. */
41✔
368
    NarrowIns ref = *next++;
83✔
369
    IROpT op = narrow_op(ref);
83✔
370
    if (op == NARROW_REF) {
83✔
371
      *sp++ = ref;
29✔
372
    } else if (op == NARROW_CONV) {
54✔
373
      *sp++ = emitir_raw(convot, ref, convop2);  /* Raw emit avoids a loop. */
12✔
374
    } else if (op == NARROW_SEXT) {
42✔
375
      lua_assert(sp >= nc->stack+1);
×
376
      sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1],
×
377
                      (IRT_I64<<5)|IRT_INT|IRCONV_SEXT);
378
    } else if (op == NARROW_INT) {
42✔
379
      lua_assert(next < last);
21✔
380
      *sp++ = nc->t == IRT_I64 ?
21✔
381
              lj_ir_kint64(J, (int64_t)(int32_t)*next++) :
21✔
382
              lj_ir_kint(J, *next++);
21✔
383
    } else {  /* Regular IROpT. Pops two operands and pushes one result. */
384
      IRRef mode = nc->mode;
21✔
385
      lua_assert(sp >= nc->stack+2);
21✔
386
      sp--;
21✔
387
      /* Omit some overflow checks for array indexing. See comments above. */
388
      if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) {
21✔
389
        if (next == last && irref_isk(narrow_ref(sp[0])) &&
1✔
390
          (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u)
1✔
391
          guardot = 0;
392
        else  /* Otherwise cache a stronger check. */
393
          mode += IRCONV_CHECK-IRCONV_INDEX;
×
394
      }
395
      sp[-1] = emitir(op+guardot, sp[-1], sp[0]);
21✔
396
      /* Add to cache. */
397
      if (narrow_ref(ref))
21✔
398
        narrow_bpc_set(J, narrow_ref(ref), narrow_ref(sp[-1]), mode);
145✔
399
    }
400
  }
401
  lua_assert(sp == nc->stack+1);
41✔
402
  return nc->stack[0];
41✔
403
}
404

405
/* Narrow a type conversion of an arithmetic operation. */
406
TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J)
41✔
407
{
408
  if ((J->flags & JIT_F_OPT_NARROW)) {
41✔
409
    NarrowConv nc;
41✔
410
    nc.J = J;
41✔
411
    nc.sp = nc.stack;
41✔
412
    nc.maxsp = &nc.stack[NARROW_MAX_STACK-4];
41✔
413
    nc.t = irt_type(fins->t);
41✔
414
    if (fins->o == IR_TOBIT) {
41✔
415
      nc.mode = IRCONV_TOBIT;  /* Used only in the backpropagation cache. */
×
416
    } else {
417
      nc.mode = fins->op2;
41✔
418
    }
419
    if (narrow_conv_backprop(&nc, fins->op1, 0) <= 1)
41✔
420
      return narrow_conv_emit(J, &nc);
41✔
421
  }
422
  return NEXTFOLD;
423
}
424

425
/* -- Narrowing of implicit conversions ----------------------------------- */
426

427
/* Recursively strip overflow checks. */
428
static TRef narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode)
18✔
429
{
430
  IRRef ref = tref_ref(tr);
18✔
431
  IRIns *ir = IR(ref);
18✔
432
  int op = ir->o;
18✔
433
  if (op >= IR_ADDOV && op <= lastop) {
18✔
434
    BPropEntry *bp = narrow_bpc_get(J, ref, mode);
×
435
    if (bp) {
×
436
      return TREF(bp->val, irt_t(IR(bp->val)->t));
×
437
    } else {
438
      IRRef op1 = ir->op1, op2 = ir->op2;  /* The IR may be reallocated. */
×
439
      op1 = narrow_stripov(J, op1, lastop, mode);
×
440
      op2 = narrow_stripov(J, op2, lastop, mode);
×
441
      tr = emitir(IRT(op - IR_ADDOV + IR_ADD,
×
442
                      ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2);
443
      narrow_bpc_set(J, ref, tref_ref(tr), mode);
×
444
    }
445
  } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) {
18✔
446
    tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode);
×
447
  }
448
  return tr;
449
}
450

451
/* Narrow array index. */
452
TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr)
44✔
453
{
454
  IRIns *ir;
44✔
455
  lua_assert(tref_isnumber(tr));
44✔
456
  if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
44✔
457
    return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX);
25✔
458
  /* Omit some overflow checks for array indexing. See comments above. */
459
  ir = IR(tref_ref(tr));
19✔
460
  if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) &&
19✔
461
      (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u)
×
462
    return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2);
×
463
  return tr;
464
}
465

466
/* Narrow conversion to integer operand (overflow undefined). */
467
TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr)
63✔
468
{
469
  if (tref_isstr(tr))
63✔
470
    tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
×
471
  if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
63✔
472
    return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY);
45✔
473
  if (!tref_isinteger(tr))
18✔
474
    lj_trace_err(J, LJ_TRERR_BADTYPE);
×
475
  /*
476
  ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV.
477
  ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same.
478
  */
479
  return narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
18✔
480
}
481

482
/* Narrow conversion to bitop operand (overflow wrapped). */
483
TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr)
×
484
{
485
  if (tref_isstr(tr))
×
486
    tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
×
487
  if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
×
488
    return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J));
×
489
  if (!tref_isinteger(tr))
×
490
    lj_trace_err(J, LJ_TRERR_BADTYPE);
×
491
  /*
492
  ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV.
493
  ** MULOV cannot be stripped due to precision widening.
494
  */
495
  return narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
×
496
}
497

498
#if LJ_HASFFI
499
/* Narrow C array index (overflow undefined). */
500
TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr)
×
501
{
502
  lua_assert(tref_isnumber(tr));
×
503
  if (tref_isnum(tr))
×
504
    return emitir(IRT(IR_CONV, IRT_INTP), tr, (IRT_INTP<<5)|IRT_NUM|IRCONV_ANY);
×
505
  /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */
506
  return narrow_stripov(J, tr, IR_MULOV,
×
507
                        LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) :
508
                                ((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT));
509
}
510
#endif
511

512
/* -- Narrowing of arithmetic operators ----------------------------------- */
513

514
/* Check whether a number fits into an int32_t (-0 is ok, too). */
515
static int numisint(lua_Number n)
18✔
516
{
517
  return (n == (lua_Number)lj_num2int(n));
18✔
518
}
519

520
/* Convert string to number. Error out for non-numeric string values. */
521
static TRef conv_str_tonum(jit_State *J, TRef tr, TValue *o)
66✔
522
{
523
  if (tref_isstr(tr)) {
66✔
524
    tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
×
525
    /* Would need an inverted STRTO for this rare and useless case. */
526
    if (!lj_strscan_num(strV(o), o))  /* Convert in-place. Value used below. */
×
527
      lj_trace_err(J, LJ_TRERR_BADTYPE);  /* Punt if non-numeric. */
×
528
  }
529
  return tr;
66✔
530
}
531

532
/* Narrowing of arithmetic operations. */
533
TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc,
33✔
534
                         TValue *vb, TValue *vc, IROp op)
535
{
536
  rb = conv_str_tonum(J, rb, vb);
33✔
537
  rc = conv_str_tonum(J, rc, vc);
33✔
538
  /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */
539
  if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) &&
33✔
540
      tref_isinteger(rb) && tref_isinteger(rc) &&
32✔
541
      numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc),
×
542
                               (int)op - (int)IR_ADD)))
×
543
    return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc);
×
544
  if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT);
33✔
545
  if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
33✔
546
  return emitir(IRTN(op), rb, rc);
33✔
547
}
548

549
/* Narrowing of unary minus operator. */
550
TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc)
×
551
{
552
  rc = conv_str_tonum(J, rc, vc);
×
553
  if (tref_isinteger(rc)) {
×
554
    uint32_t k = (uint32_t)numberVint(vc);
×
555
    if ((LJ_DUALNUM || k != 0) && k != 0x80000000u) {
×
556
      TRef zero = lj_ir_kint(J, 0);
×
557
      if (!LJ_DUALNUM)
×
558
        emitir(IRTGI(IR_NE), rc, zero);
×
559
      return emitir(IRTGI(IR_SUBOV), zero, rc);
×
560
    }
561
    rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
×
562
  }
563
  return emitir(IRTN(IR_NEG), rc, lj_ir_ksimd(J, LJ_KSIMD_NEG));
×
564
}
565

566
/* Narrowing of modulo operator. */
567
TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc)
×
568
{
569
  TRef tmp;
×
570
  rb = conv_str_tonum(J, rb, vb);
×
571
  rc = conv_str_tonum(J, rc, vc);
×
572
  if ((LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) &&
×
573
      tref_isinteger(rb) && tref_isinteger(rc) &&
×
574
      (tvisint(vc) ? intV(vc) != 0 : !tviszero(vc))) {
×
575
    emitir(IRTGI(IR_NE), rc, lj_ir_kint(J, 0));
×
576
    return emitir(IRTI(IR_MOD), rb, rc);
×
577
  }
578
  /* b % c ==> b - floor(b/c)*c */
579
  rb = lj_ir_tonum(J, rb);
×
580
  rc = lj_ir_tonum(J, rc);
×
581
  tmp = emitir(IRTN(IR_DIV), rb, rc);
×
582
  tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR);
×
583
  tmp = emitir(IRTN(IR_MUL), tmp, rc);
×
584
  return emitir(IRTN(IR_SUB), rb, tmp);
×
585
}
586

587
/* Narrowing of power operator or math.pow. */
588
TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc)
×
589
{
590
  rb = conv_str_tonum(J, rb, vb);
×
591
  rb = lj_ir_tonum(J, rb);  /* Left arg is always treated as an FP number. */
×
592
  rc = conv_str_tonum(J, rc, vc);
×
593
  /* Narrowing must be unconditional to preserve (-x)^i semantics. */
594
  if (tvisint(vc) || numisint(numV(vc))) {
×
595
    int checkrange = 0;
×
596
    /* Split pow is faster for bigger exponents. But do this only for (+k)^i. */
597
    if (tref_isk(rb) && (int32_t)ir_knum(IR(tref_ref(rb)))->u32.hi >= 0) {
×
598
      int32_t k = numberVint(vc);
×
599
      if (!(k >= -65536 && k <= 65536)) goto split_pow;
×
600
      checkrange = 1;
601
    }
602
    if (!tref_isinteger(rc)) {
×
603
      /* Guarded conversion to integer! */
604
      rc = emitir(IRTGI(IR_CONV), rc, IRCONV_INT_NUM|IRCONV_CHECK);
×
605
    }
606
    if (checkrange && !tref_isk(rc)) {  /* Range guard: -65536 <= i <= 65536 */
×
607
      TRef tmp = emitir(IRTI(IR_ADD), rc, lj_ir_kint(J, 65536));
×
608
      emitir(IRTGI(IR_ULE), tmp, lj_ir_kint(J, 2*65536));
×
609
    }
610
    return emitir(IRTN(IR_POW), rb, rc);
×
611
  }
612
split_pow:
×
613
  /* FOLD covers most cases, but some are easier to do here. */
614
  if (tref_isk(rb) && tvispone(ir_knum(IR(tref_ref(rb)))))
×
615
    return rb;  /* 1 ^ x ==> 1 */
616
  rc = lj_ir_tonum(J, rc);
×
617
  if (tref_isk(rc) && ir_knum(IR(tref_ref(rc)))->n == 0.5)
×
618
    return emitir(IRTN(IR_FPMATH), rb, IRFPM_SQRT);  /* x ^ 0.5 ==> sqrt(x) */
×
619
  /* Split up b^c into exp2(c*log2(b)). Assembler may rejoin later. */
620
  rb = emitir(IRTN(IR_FPMATH), rb, IRFPM_LOG2);
×
621
  rc = emitir(IRTN(IR_MUL), rb, rc);
×
622
  return emitir(IRTN(IR_FPMATH), rc, IRFPM_EXP2);
×
623
}
624

625
/* -- Predictive narrowing of induction variables ------------------------- */
626

627
/* Narrow a single runtime value. */
628
static int narrow_forl(jit_State *J, cTValue *o)
18✔
629
{
630
  if (tvisint(o)) return 1;
18✔
631
  if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o));
24✔
632
  return 0;
633
}
634

635
/* Narrow the FORL index type by looking at the runtime values. */
636
IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv)
6✔
637
{
638
  lua_assert(tvisnumber(&tv[FORL_IDX]) &&
6✔
639
             tvisnumber(&tv[FORL_STOP]) &&
640
             tvisnumber(&tv[FORL_STEP]));
641
  /* Narrow only if the runtime values of start/stop/step are all integers. */
642
  if (narrow_forl(J, &tv[FORL_IDX]) &&
6✔
643
      narrow_forl(J, &tv[FORL_STOP]) &&
6✔
644
      narrow_forl(J, &tv[FORL_STEP])) {
6✔
645
    /* And if the loop index can't possibly overflow. */
646
    lua_Number step = numberVnum(&tv[FORL_STEP]);
6✔
647
    lua_Number sum = numberVnum(&tv[FORL_STOP]) + step;
6✔
648
    if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0))
6✔
649
      return IRT_INT;
6✔
650
  }
651
  return IRT_NUM;
652
}
653

654
#undef IR
655
#undef fins
656
#undef emitir
657
#undef emitir_raw
658

659
#endif
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2026 Coveralls, Inc