• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

randombit / botan / 5111374265

29 May 2023 11:19AM UTC coverage: 92.227% (+0.5%) from 91.723%
5111374265

push

github

randombit
Next release will be 3.1.0. Update release notes

75588 of 81959 relevant lines covered (92.23%)

11886470.91 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

90.0
/src/lib/misc/zfec/zfec.cpp
1
/*
2
* Forward error correction based on Vandermonde matrices
3
*
4
* (C) 1997-1998 Luigi Rizzo (luigi@iet.unipi.it)
5
* (C) 2009,2010,2021 Jack Lloyd
6
* (C) 2011 Billy Brumley (billy.brumley@aalto.fi)
7
*
8
* Botan is released under the Simplified BSD License (see license.txt)
9
*/
10

11
#include <botan/zfec.h>
12

13
#include <botan/exceptn.h>
14
#include <botan/mem_ops.h>
15
#include <botan/internal/cpuid.h>
16
#include <cstring>
17
#include <vector>
18

19
namespace Botan {
20

21
namespace {
22

23
/* Tables for arithetic in GF(2^8) using 1+x^2+x^3+x^4+x^8
24
*
25
* See Lin & Costello, Appendix A, and Lee & Messerschmitt, p. 453.
26
*
27
* Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
28
* Lookup tables:
29
*     index->polynomial form           gf_exp[] contains j= \alpha^i;
30
*     polynomial form -> index form    gf_log[ j = \alpha^i ] = i
31
* \alpha=x is the primitive element of GF(2^m)
32
*/
33
alignas(256) const uint8_t GF_EXP[255] = {
34
   0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1D, 0x3A, 0x74, 0xE8, 0xCD, 0x87, 0x13, 0x26, 0x4C, 0x98, 0x2D,
35
   0x5A, 0xB4, 0x75, 0xEA, 0xC9, 0x8F, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0x9D, 0x27, 0x4E, 0x9C, 0x25, 0x4A,
36
   0x94, 0x35, 0x6A, 0xD4, 0xB5, 0x77, 0xEE, 0xC1, 0x9F, 0x23, 0x46, 0x8C, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x5D,
37
   0xBA, 0x69, 0xD2, 0xB9, 0x6F, 0xDE, 0xA1, 0x5F, 0xBE, 0x61, 0xC2, 0x99, 0x2F, 0x5E, 0xBC, 0x65, 0xCA, 0x89, 0x0F,
38
   0x1E, 0x3C, 0x78, 0xF0, 0xFD, 0xE7, 0xD3, 0xBB, 0x6B, 0xD6, 0xB1, 0x7F, 0xFE, 0xE1, 0xDF, 0xA3, 0x5B, 0xB6, 0x71,
39
   0xE2, 0xD9, 0xAF, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xBD, 0x67, 0xCE, 0x81, 0x1F,
40
   0x3E, 0x7C, 0xF8, 0xED, 0xC7, 0x93, 0x3B, 0x76, 0xEC, 0xC5, 0x97, 0x33, 0x66, 0xCC, 0x85, 0x17, 0x2E, 0x5C, 0xB8,
41
   0x6D, 0xDA, 0xA9, 0x4F, 0x9E, 0x21, 0x42, 0x84, 0x15, 0x2A, 0x54, 0xA8, 0x4D, 0x9A, 0x29, 0x52, 0xA4, 0x55, 0xAA,
42
   0x49, 0x92, 0x39, 0x72, 0xE4, 0xD5, 0xB7, 0x73, 0xE6, 0xD1, 0xBF, 0x63, 0xC6, 0x91, 0x3F, 0x7E, 0xFC, 0xE5, 0xD7,
43
   0xB3, 0x7B, 0xF6, 0xF1, 0xFF, 0xE3, 0xDB, 0xAB, 0x4B, 0x96, 0x31, 0x62, 0xC4, 0x95, 0x37, 0x6E, 0xDC, 0xA5, 0x57,
44
   0xAE, 0x41, 0x82, 0x19, 0x32, 0x64, 0xC8, 0x8D, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0xDD, 0xA7, 0x53, 0xA6, 0x51,
45
   0xA2, 0x59, 0xB2, 0x79, 0xF2, 0xF9, 0xEF, 0xC3, 0x9B, 0x2B, 0x56, 0xAC, 0x45, 0x8A, 0x09, 0x12, 0x24, 0x48, 0x90,
46
   0x3D, 0x7A, 0xF4, 0xF5, 0xF7, 0xF3, 0xFB, 0xEB, 0xCB, 0x8B, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x7D, 0xFA, 0xE9, 0xCF,
47
   0x83, 0x1B, 0x36, 0x6C, 0xD8, 0xAD, 0x47, 0x8E,
48
};
49

50
alignas(256) const uint8_t GF_LOG[256] = {
51
   0xFF, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1A, 0xC6, 0x03, 0xDF, 0x33, 0xEE, 0x1B, 0x68, 0xC7, 0x4B, 0x04, 0x64, 0xE0,
52
   0x0E, 0x34, 0x8D, 0xEF, 0x81, 0x1C, 0xC1, 0x69, 0xF8, 0xC8, 0x08, 0x4C, 0x71, 0x05, 0x8A, 0x65, 0x2F, 0xE1, 0x24,
53
   0x0F, 0x21, 0x35, 0x93, 0x8E, 0xDA, 0xF0, 0x12, 0x82, 0x45, 0x1D, 0xB5, 0xC2, 0x7D, 0x6A, 0x27, 0xF9, 0xB9, 0xC9,
54
   0x9A, 0x09, 0x78, 0x4D, 0xE4, 0x72, 0xA6, 0x06, 0xBF, 0x8B, 0x62, 0x66, 0xDD, 0x30, 0xFD, 0xE2, 0x98, 0x25, 0xB3,
55
   0x10, 0x91, 0x22, 0x88, 0x36, 0xD0, 0x94, 0xCE, 0x8F, 0x96, 0xDB, 0xBD, 0xF1, 0xD2, 0x13, 0x5C, 0x83, 0x38, 0x46,
56
   0x40, 0x1E, 0x42, 0xB6, 0xA3, 0xC3, 0x48, 0x7E, 0x6E, 0x6B, 0x3A, 0x28, 0x54, 0xFA, 0x85, 0xBA, 0x3D, 0xCA, 0x5E,
57
   0x9B, 0x9F, 0x0A, 0x15, 0x79, 0x2B, 0x4E, 0xD4, 0xE5, 0xAC, 0x73, 0xF3, 0xA7, 0x57, 0x07, 0x70, 0xC0, 0xF7, 0x8C,
58
   0x80, 0x63, 0x0D, 0x67, 0x4A, 0xDE, 0xED, 0x31, 0xC5, 0xFE, 0x18, 0xE3, 0xA5, 0x99, 0x77, 0x26, 0xB8, 0xB4, 0x7C,
59
   0x11, 0x44, 0x92, 0xD9, 0x23, 0x20, 0x89, 0x2E, 0x37, 0x3F, 0xD1, 0x5B, 0x95, 0xBC, 0xCF, 0xCD, 0x90, 0x87, 0x97,
60
   0xB2, 0xDC, 0xFC, 0xBE, 0x61, 0xF2, 0x56, 0xD3, 0xAB, 0x14, 0x2A, 0x5D, 0x9E, 0x84, 0x3C, 0x39, 0x53, 0x47, 0x6D,
61
   0x41, 0xA2, 0x1F, 0x2D, 0x43, 0xD8, 0xB7, 0x7B, 0xA4, 0x76, 0xC4, 0x17, 0x49, 0xEC, 0x7F, 0x0C, 0x6F, 0xF6, 0x6C,
62
   0xA1, 0x3B, 0x52, 0x29, 0x9D, 0x55, 0xAA, 0xFB, 0x60, 0x86, 0xB1, 0xBB, 0xCC, 0x3E, 0x5A, 0xCB, 0x59, 0x5F, 0xB0,
63
   0x9C, 0xA9, 0xA0, 0x51, 0x0B, 0xF5, 0x16, 0xEB, 0x7A, 0x75, 0x2C, 0xD7, 0x4F, 0xAE, 0xD5, 0xE9, 0xE6, 0xE7, 0xAD,
64
   0xE8, 0x74, 0xD6, 0xF4, 0xEA, 0xA8, 0x50, 0x58, 0xAF};
65

66
alignas(256) const uint8_t GF_INVERSE[256] = {
67
   0x00, 0x01, 0x8E, 0xF4, 0x47, 0xA7, 0x7A, 0xBA, 0xAD, 0x9D, 0xDD, 0x98, 0x3D, 0xAA, 0x5D, 0x96, 0xD8, 0x72, 0xC0,
68
   0x58, 0xE0, 0x3E, 0x4C, 0x66, 0x90, 0xDE, 0x55, 0x80, 0xA0, 0x83, 0x4B, 0x2A, 0x6C, 0xED, 0x39, 0x51, 0x60, 0x56,
69
   0x2C, 0x8A, 0x70, 0xD0, 0x1F, 0x4A, 0x26, 0x8B, 0x33, 0x6E, 0x48, 0x89, 0x6F, 0x2E, 0xA4, 0xC3, 0x40, 0x5E, 0x50,
70
   0x22, 0xCF, 0xA9, 0xAB, 0x0C, 0x15, 0xE1, 0x36, 0x5F, 0xF8, 0xD5, 0x92, 0x4E, 0xA6, 0x04, 0x30, 0x88, 0x2B, 0x1E,
71
   0x16, 0x67, 0x45, 0x93, 0x38, 0x23, 0x68, 0x8C, 0x81, 0x1A, 0x25, 0x61, 0x13, 0xC1, 0xCB, 0x63, 0x97, 0x0E, 0x37,
72
   0x41, 0x24, 0x57, 0xCA, 0x5B, 0xB9, 0xC4, 0x17, 0x4D, 0x52, 0x8D, 0xEF, 0xB3, 0x20, 0xEC, 0x2F, 0x32, 0x28, 0xD1,
73
   0x11, 0xD9, 0xE9, 0xFB, 0xDA, 0x79, 0xDB, 0x77, 0x06, 0xBB, 0x84, 0xCD, 0xFE, 0xFC, 0x1B, 0x54, 0xA1, 0x1D, 0x7C,
74
   0xCC, 0xE4, 0xB0, 0x49, 0x31, 0x27, 0x2D, 0x53, 0x69, 0x02, 0xF5, 0x18, 0xDF, 0x44, 0x4F, 0x9B, 0xBC, 0x0F, 0x5C,
75
   0x0B, 0xDC, 0xBD, 0x94, 0xAC, 0x09, 0xC7, 0xA2, 0x1C, 0x82, 0x9F, 0xC6, 0x34, 0xC2, 0x46, 0x05, 0xCE, 0x3B, 0x0D,
76
   0x3C, 0x9C, 0x08, 0xBE, 0xB7, 0x87, 0xE5, 0xEE, 0x6B, 0xEB, 0xF2, 0xBF, 0xAF, 0xC5, 0x64, 0x07, 0x7B, 0x95, 0x9A,
77
   0xAE, 0xB6, 0x12, 0x59, 0xA5, 0x35, 0x65, 0xB8, 0xA3, 0x9E, 0xD2, 0xF7, 0x62, 0x5A, 0x85, 0x7D, 0xA8, 0x3A, 0x29,
78
   0x71, 0xC8, 0xF6, 0xF9, 0x43, 0xD7, 0xD6, 0x10, 0x73, 0x76, 0x78, 0x99, 0x0A, 0x19, 0x91, 0x14, 0x3F, 0xE6, 0xF0,
79
   0x86, 0xB1, 0xE2, 0xF1, 0xFA, 0x74, 0xF3, 0xB4, 0x6D, 0x21, 0xB2, 0x6A, 0xE3, 0xE7, 0xB5, 0xEA, 0x03, 0x8F, 0xD3,
80
   0xC9, 0x42, 0xD4, 0xE8, 0x75, 0x7F, 0xFF, 0x7E, 0xFD};
81

82
const uint8_t* GF_MUL_TABLE(uint8_t y) {
7,305,523✔
83
   class GF_Table final {
7,305,523✔
84
      public:
85
         GF_Table() {
5✔
86
            m_table.resize(256 * 256);
5✔
87

88
            // x*0 = 0*y = 0 so we iterate over [1,255)
89
            for(size_t i = 1; i != 256; ++i) {
1,280✔
90
               for(size_t j = 1; j != 256; ++j) {
326,400✔
91
                  m_table[256 * i + j] = GF_EXP[(GF_LOG[i] + GF_LOG[j]) % 255];
325,125✔
92
               }
93
            }
94
         }
5✔
95

96
         const uint8_t* ptr(uint8_t y) const { return &m_table[256 * y]; }
7,305,523✔
97

98
      private:
99
         std::vector<uint8_t> m_table;
100
   };
101

102
   static GF_Table table;
7,305,523✔
103
   return table.ptr(y);
7,305,523✔
104
}
105

106
/*
107
* invert_matrix() takes a K*K matrix and produces its inverse
108
* (Gauss-Jordan algorithm, adapted from Numerical Recipes in C)
109
*/
110
void invert_matrix(uint8_t matrix[], size_t K) {
87,705✔
111
   class pivot_searcher {
263,115✔
112
      public:
113
         explicit pivot_searcher(size_t K) : m_ipiv(K) {}
87,705✔
114

115
         std::pair<size_t, size_t> operator()(size_t col, const uint8_t matrix[]) {
337,030✔
116
            /*
117
            * Zeroing column 'col', look for a non-zero element.
118
            * First try on the diagonal, if it fails, look elsewhere.
119
            */
120

121
            const size_t K = m_ipiv.size();
337,030✔
122

123
            if(m_ipiv[col] == false && matrix[col * K + col] != 0) {
337,030✔
124
               m_ipiv[col] = true;
337,030✔
125
               return std::make_pair(col, col);
337,030✔
126
            }
127

128
            for(size_t row = 0; row != K; ++row) {
×
129
               if(m_ipiv[row])
×
130
                  continue;
×
131

132
               for(size_t i = 0; i != K; ++i) {
×
133
                  if(m_ipiv[i] == false && matrix[row * K + i] != 0) {
×
134
                     m_ipiv[i] = true;
×
135
                     return std::make_pair(row, i);
×
136
                  }
137
               }
138
            }
139

140
            throw Invalid_Argument("ZFEC: pivot not found in invert_matrix");
×
141
         }
142

143
      private:
144
         // Marks elements already used as pivots
145
         std::vector<bool> m_ipiv;
146
   };
147

148
   pivot_searcher pivot_search(K);
87,705✔
149
   std::vector<size_t> indxc(K);
87,705✔
150
   std::vector<size_t> indxr(K);
87,705✔
151

152
   for(size_t col = 0; col != K; ++col) {
424,735✔
153
      const auto icolrow = pivot_search(col, matrix);
337,030✔
154

155
      const size_t icol = icolrow.first;
337,030✔
156
      const size_t irow = icolrow.second;
337,030✔
157

158
      /*
159
      * swap rows irow and icol, so afterwards the diagonal
160
      * element will be correct. Rarely done, not worth
161
      * optimizing.
162
      */
163
      if(irow != icol) {
337,030✔
164
         for(size_t i = 0; i != K; ++i)
×
165
            std::swap(matrix[irow * K + i], matrix[icol * K + i]);
×
166
      }
167

168
      indxr[col] = irow;
337,030✔
169
      indxc[col] = icol;
337,030✔
170
      uint8_t* pivot_row = &matrix[icol * K];
337,030✔
171
      const uint8_t c = pivot_row[icol];
337,030✔
172
      pivot_row[icol] = 1;
337,030✔
173

174
      if(c == 0)
337,030✔
175
         throw Invalid_Argument("ZFEC: singlar matrix");
×
176

177
      if(c != 1) {
337,030✔
178
         const uint8_t* mul_c = GF_MUL_TABLE(GF_INVERSE[c]);
158,771✔
179
         for(size_t i = 0; i != K; ++i)
774,333✔
180
            pivot_row[i] = mul_c[pivot_row[i]];
615,562✔
181
      }
182

183
      /*
184
      * From all rows, remove multiples of the selected row to zero
185
      * the relevant entry (in fact, the entry is not zero because we
186
      * know it must be zero).
187
      */
188
      for(size_t i = 0; i != K; ++i) {
1,650,506✔
189
         if(i != icol) {
1,313,476✔
190
            const uint8_t z = matrix[i * K + icol];
976,446✔
191
            matrix[i * K + icol] = 0;
976,446✔
192

193
            // This is equivalent to addmul()
194
            const uint8_t* mul_z = GF_MUL_TABLE(z);
976,446✔
195
            for(size_t j = 0; j != K; ++j)
4,835,898✔
196
               matrix[i * K + j] ^= mul_z[pivot_row[j]];
3,859,452✔
197
         }
198
      }
199
   }
200

201
   for(size_t i = 0; i != K; ++i) {
424,735✔
202
      if(indxr[i] != indxc[i]) {
337,030✔
203
         for(size_t row = 0; row != K; ++row)
×
204
            std::swap(matrix[row * K + indxr[i]], matrix[row * K + indxc[i]]);
×
205
      }
206
   }
207
}
175,410✔
208

209
/*
210
* Generate and invert a Vandermonde matrix.
211
*
212
* Only uses the second column of the matrix, containing the p_i's
213
* (contents - 0, GF_EXP[0...n])
214
*
215
* Algorithm borrowed from "Numerical recipes in C", section 2.8, but
216
* largely revised for my purposes.
217
*
218
* p = coefficients of the matrix (p_i)
219
* q = values of the polynomial (known)
220
*/
221
void create_inverted_vdm(uint8_t vdm[], size_t K) {
92,530✔
222
   if(K == 0) {
92,530✔
223
      return;
547✔
224
   }
225

226
   if(K == 1) /* degenerate case, matrix must be p^0 = 1 */
92,530✔
227
   {
228
      vdm[0] = 1;
547✔
229
      return;
547✔
230
   }
231

232
   /*
233
   * c holds the coefficient of P(x) = Prod (x - p_i), i=0..K-1
234
   * b holds the coefficient for the matrix inversion
235
   */
236
   std::vector<uint8_t> b(K);
91,983✔
237
   std::vector<uint8_t> c(K);
91,983✔
238

239
   /*
240
   * construct coeffs. recursively. We know c[K] = 1 (implicit)
241
   * and start P_0 = x - p_0, then at each stage multiply by
242
   * x - p_i generating P_i = x P_{i-1} - p_i P_{i-1}
243
   * After K steps we are done.
244
   */
245
   c[K - 1] = 0; /* really -p(0), but x = -x in GF(2^m) */
91,983✔
246
   for(size_t i = 1; i < K; ++i) {
353,293✔
247
      const uint8_t* mul_p_i = GF_MUL_TABLE(GF_EXP[i]);
261,310✔
248

249
      for(size_t j = K - 1 - (i - 1); j < K - 1; ++j)
510,904✔
250
         c[j] ^= mul_p_i[c[j + 1]];
249,594✔
251
      c[K - 1] ^= GF_EXP[i];
261,310✔
252
   }
253

254
   for(size_t row = 0; row < K; ++row) {
445,276✔
255
      // synthetic division etc.
256
      const uint8_t* mul_p_row = GF_MUL_TABLE(row == 0 ? 0 : GF_EXP[row]);
353,293✔
257

258
      uint8_t t = 1;
353,293✔
259
      b[K - 1] = 1; /* this is in fact c[K] */
353,293✔
260
      for(size_t i = K - 1; i > 0; i--) {
1,375,101✔
261
         b[i - 1] = c[i] ^ mul_p_row[b[i]];
1,021,808✔
262
         t = b[i - 1] ^ mul_p_row[t];
1,021,808✔
263
      }
264

265
      const uint8_t* mul_t_inv = GF_MUL_TABLE(GF_INVERSE[t]);
353,293✔
266
      for(size_t col = 0; col != K; ++col)
1,728,394✔
267
         vdm[col * K + row] = mul_t_inv[b[col]];
1,375,101✔
268
   }
269
}
183,966✔
270

271
}  // namespace
272

273
/*
274
* addmul() computes z[] = z[] + x[] * y
275
*/
276
void ZFEC::addmul(uint8_t z[], const uint8_t x[], uint8_t y, size_t size) {
624,599✔
277
   if(y == 0)
624,599✔
278
      return;
279

280
   const uint8_t* GF_MUL_Y = GF_MUL_TABLE(y);
624,599✔
281

282
   // first align z to 16 bytes
283
   while(size > 0 && reinterpret_cast<uintptr_t>(z) % 16) {
1,249,198✔
284
      z[0] ^= GF_MUL_Y[x[0]];
×
285
      ++z;
×
286
      ++x;
×
287
      size--;
×
288
   }
289

290
#if defined(BOTAN_HAS_ZFEC_VPERM)
291
   if(size >= 16 && CPUID::has_vperm()) {
1,249,025✔
292
      const size_t consumed = addmul_vperm(z, x, y, size);
618,416✔
293
      z += consumed;
618,416✔
294
      x += consumed;
618,416✔
295
      size -= consumed;
618,416✔
296
   }
297
#endif
298

299
#if defined(BOTAN_HAS_ZFEC_SSE2)
300
   if(size >= 64 && CPUID::has_sse2()) {
629,268✔
301
      const size_t consumed = addmul_sse2(z, x, y, size);
2,350✔
302
      z += consumed;
2,350✔
303
      x += consumed;
2,350✔
304
      size -= consumed;
2,350✔
305
   }
306
#endif
307

308
   while(size >= 16) {
655,974✔
309
      z[0] ^= GF_MUL_Y[x[0]];
31,375✔
310
      z[1] ^= GF_MUL_Y[x[1]];
31,375✔
311
      z[2] ^= GF_MUL_Y[x[2]];
31,375✔
312
      z[3] ^= GF_MUL_Y[x[3]];
31,375✔
313
      z[4] ^= GF_MUL_Y[x[4]];
31,375✔
314
      z[5] ^= GF_MUL_Y[x[5]];
31,375✔
315
      z[6] ^= GF_MUL_Y[x[6]];
31,375✔
316
      z[7] ^= GF_MUL_Y[x[7]];
31,375✔
317
      z[8] ^= GF_MUL_Y[x[8]];
31,375✔
318
      z[9] ^= GF_MUL_Y[x[9]];
31,375✔
319
      z[10] ^= GF_MUL_Y[x[10]];
31,375✔
320
      z[11] ^= GF_MUL_Y[x[11]];
31,375✔
321
      z[12] ^= GF_MUL_Y[x[12]];
31,375✔
322
      z[13] ^= GF_MUL_Y[x[13]];
31,375✔
323
      z[14] ^= GF_MUL_Y[x[14]];
31,375✔
324
      z[15] ^= GF_MUL_Y[x[15]];
31,375✔
325

326
      x += 16;
31,375✔
327
      z += 16;
31,375✔
328
      size -= 16;
31,375✔
329
   }
330

331
   // Clean up the trailing pieces
332
   for(size_t i = 0; i != size; ++i)
5,450,899✔
333
      z[i] ^= GF_MUL_Y[x[i]];
4,826,300✔
334
}
335

336
/*
337
* This section contains the proper FEC encoding/decoding routines.
338
* The encoding matrix is computed starting with a Vandermonde matrix,
339
* and then transforming it into a systematic matrix.
340
*/
341

342
/*
343
* ZFEC constructor
344
*/
345
ZFEC::ZFEC(size_t K, size_t N) : m_K(K), m_N(N), m_enc_matrix(N * K) {
92,532✔
346
   if(m_K == 0 || m_N == 0 || m_K > 256 || m_N > 256 || m_K > N)
92,532✔
347
      throw Invalid_Argument("ZFEC: violated 1 <= K <= N <= 256");
2✔
348

349
   std::vector<uint8_t> temp_matrix(m_N * m_K);
92,530✔
350

351
   /*
352
   * quick code to build systematic matrix: invert the top
353
   * K*K Vandermonde matrix, multiply right the bottom n-K rows
354
   * by the inverse, and construct the identity matrix at the top.
355
   */
356
   create_inverted_vdm(&temp_matrix[0], m_K);
92,530✔
357

358
   for(size_t i = m_K * m_K; i != temp_matrix.size(); ++i)
1,266,595✔
359
      temp_matrix[i] = GF_EXP[((i / m_K) * (i % m_K)) % 255];
1,174,065✔
360

361
   /*
362
   * the upper part of the encoding matrix is I
363
   */
364
   for(size_t i = 0; i != m_K; ++i)
446,370✔
365
      m_enc_matrix[i * (m_K + 1)] = 1;
353,840✔
366

367
   /*
368
   * computes C = AB where A is n*K, B is K*m, C is n*m
369
   */
370
   for(size_t row = m_K; row != m_N; ++row) {
398,398✔
371
      for(size_t col = 0; col != m_K; ++col) {
1,479,933✔
372
         uint8_t acc = 0;
373
         for(size_t i = 0; i != m_K; i++) {
5,751,876✔
374
            const uint8_t row_v = temp_matrix[row * m_K + i];
4,577,811✔
375
            const uint8_t row_c = temp_matrix[col + m_K * i];
4,577,811✔
376
            acc ^= GF_MUL_TABLE(row_v)[row_c];
4,577,811✔
377
         }
378
         m_enc_matrix[row * m_K + col] = acc;
1,174,065✔
379
      }
380
   }
381
}
92,532✔
382

383
/*
384
* ZFEC encoding routine
385
*/
386
void ZFEC::encode(const uint8_t input[], size_t size, const output_cb_t& output_cb) const {
767✔
387
   if(size % m_K != 0)
767✔
388
      throw Invalid_Argument("ZFEC::encode: input must be multiple of K uint8_ts");
×
389

390
   const size_t share_size = size / m_K;
767✔
391

392
   std::vector<const uint8_t*> shares;
767✔
393
   for(size_t i = 0; i != m_K; ++i)
3,294✔
394
      shares.push_back(input + i * share_size);
2,527✔
395

396
   this->encode_shares(shares, share_size, output_cb);
767✔
397
}
767✔
398

399
void ZFEC::encode_shares(const std::vector<const uint8_t*>& shares,
767✔
400
                         size_t share_size,
401
                         const output_cb_t& output_cb) const {
402
   if(shares.size() != m_K)
767✔
403
      throw Invalid_Argument("ZFEC::encode_shares must provide K shares");
×
404

405
   // The initial shares are just the original input shares
406
   for(size_t i = 0; i != m_K; ++i)
3,294✔
407
      output_cb(i, shares[i], share_size);
5,054✔
408

409
   std::vector<uint8_t> fec_buf(share_size);
767✔
410

411
   for(size_t i = m_K; i != m_N; ++i) {
3,045✔
412
      clear_mem(fec_buf.data(), fec_buf.size());
2,278✔
413

414
      for(size_t j = 0; j != m_K; ++j) {
11,033✔
415
         addmul(&fec_buf[0], shares[j], m_enc_matrix[i * m_K + j], share_size);
8,755✔
416
      }
417

418
      output_cb(i, &fec_buf[0], fec_buf.size());
4,556✔
419
   }
420
}
767✔
421

422
/*
423
* ZFEC decoding routine
424
*/
425
void ZFEC::decode_shares(const std::map<size_t, const uint8_t*>& shares,
92,250✔
426
                         size_t share_size,
427
                         const output_cb_t& output_cb) const {
428
   /*
429
   Todo:
430
   If shares.size() < K:
431
   signal decoding error for missing shares < K
432
   emit existing shares < K
433
   (ie, partial recovery if possible)
434
   Assert share_size % K == 0
435
   */
436

437
   if(shares.size() < m_K)
92,250✔
438
      throw Decoding_Error("ZFEC: could not decode, less than K surviving shares");
×
439

440
   std::vector<uint8_t> decoding_matrix(m_K * m_K);
92,250✔
441
   std::vector<size_t> indexes(m_K);
92,250✔
442
   std::vector<const uint8_t*> sharesv(m_K);
92,250✔
443

444
   auto shares_b_iter = shares.begin();
92,250✔
445
   auto shares_e_iter = shares.rbegin();
92,250✔
446

447
   bool missing_primary_share = false;
92,250✔
448

449
   for(size_t i = 0; i != m_K; ++i) {
445,997✔
450
      size_t share_id = 0;
353,747✔
451
      const uint8_t* share_data = nullptr;
353,747✔
452

453
      if(shares_b_iter->first == i) {
353,747✔
454
         share_id = shares_b_iter->first;
194,694✔
455
         share_data = shares_b_iter->second;
194,694✔
456
         ++shares_b_iter;
194,694✔
457
      } else {
458
         // if share i not found, use the unused one closest to n
459
         share_id = shares_e_iter->first;
159,053✔
460
         share_data = shares_e_iter->second;
159,053✔
461
         ++shares_e_iter;
159,053✔
462
         missing_primary_share = true;
159,053✔
463
      }
464

465
      if(share_id >= m_N)
353,747✔
466
         throw Decoding_Error("ZFEC: invalid share id detected during decode");
×
467

468
      /*
469
      This is a systematic code (encoding matrix includes K*K identity
470
      matrix), so shares less than K are copies of the input data,
471
      can output_cb directly. Also we know the encoding matrix in those rows
472
      contains I, so we can set the single bit directly without copying
473
      the entire row
474
      */
475
      if(share_id < m_K) {
353,747✔
476
         decoding_matrix[i * (m_K + 1)] = 1;
194,694✔
477
         output_cb(share_id, share_data, share_size);
389,388✔
478
      } else  // will decode after inverting matrix
479
      {
480
         std::memcpy(&decoding_matrix[i * m_K], &m_enc_matrix[share_id * m_K], m_K);
159,053✔
481
      }
482

483
      sharesv[i] = share_data;
353,747✔
484
      indexes[i] = share_id;
353,747✔
485
   }
486

487
   // If we had the original data shares then no need to perform
488
   // a matrix inversion, return immediately.
489
   if(!missing_primary_share) {
92,250✔
490
      for(size_t i = 0; i != indexes.size(); ++i) {
21,262✔
491
         BOTAN_ASSERT_NOMSG(indexes[i] < m_K);
16,717✔
492
      }
493
      return;
4,545✔
494
   }
495

496
   invert_matrix(&decoding_matrix[0], m_K);
87,705✔
497

498
   for(size_t i = 0; i != indexes.size(); ++i) {
424,735✔
499
      if(indexes[i] >= m_K) {
337,030✔
500
         std::vector<uint8_t> buf(share_size);
159,053✔
501
         for(size_t col = 0; col != m_K; ++col) {
774,897✔
502
            addmul(&buf[0], sharesv[col], decoding_matrix[i * m_K + col], share_size);
615,844✔
503
         }
504
         output_cb(i, &buf[0], share_size);
318,106✔
505
      }
159,053✔
506
   }
507
}
276,750✔
508

509
std::string ZFEC::provider() const {
243✔
510
#if defined(BOTAN_HAS_ZFEC_VPERM)
511
   if(CPUID::has_vperm()) {
243✔
512
      return "vperm";
81✔
513
   }
514
#endif
515

516
#if defined(BOTAN_HAS_ZFEC_SSE2)
517
   if(CPUID::has_sse2()) {
162✔
518
      return "sse2";
81✔
519
   }
520
#endif
521

522
   return "base";
81✔
523
}
524

525
}  // namespace Botan
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc